Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах

Достижения Московских нефтехимических НИИ по внедрению диметилового эфира в качестве альтернативы дизельному топливу. Исследование каталитических систем на основе аморфного алюмофосфата с SiO2 в процессе дегидратации метанола до диметилового эфира.

Рубрика Химия
Вид дипломная работа
Язык русский
Дата добавления 04.01.2009
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Физические свойства ДМЭ и других углеводородных топлив

Показатель

ДМЭ

Метан (СПГ)

Пропан

Метанол

Дизельное топливо

Химическая формула

CH3OCH3

CH4

C3H8

CH3OH

-

Температура кипения, 0С

-25,1

-161,5

-42,0

64,6

180-370

Плотность при 200С, г/см3

0,67

0,42*

0,49

0,79

0,84

Давление насыщенных паров при 250С, Мпа

0,61

24,6

0,93

-

-

Вязкость кинематическая при 200С, мм2

0,15

-

0,17

-

3-5

Температура воспламенения, 0С

235

650

504

470

250

Предел взрываемости, %

3,4-17

5-15

2,1- 9,4

5,5-26

0,6-7,5

Цетановое число

55-60

0

5

5

40-55

Низшая теплота сгорания, кДж/кг

28 900

50 300

46 500

21 100

42 500

* плотность СПГ определена при температуре минус 161,50С

Таким образом, химическое превращение природного газа в ДМЭ непосредственно на газовом месторождении позволяет значительно сэкономить средства, связанные с транспортированием углеводородного топлива от мест добычи, и получить продукт, являющийся перспективным дизельным топливом (альтернативным нефтяному).

Из возможных направлений использования ДМЭ (топливо для бытовых нужд, моторное топливо, сырье для теплоэлектростанций) для европейского рынка наиболее вероятен транспорт. Несмотря на то, что в настоящее время ДМЭ используется исключительно в качестве пропелента и ежегодное мировое потребление не превышает 150 тыс. тонн, ожидается, что в ближайшие годы сформируется рынок ДМЭ как моторного топлива.

10.3. Выбор технологии переработки

В основе существующего процесса промышленного синтеза ДМЭ лежит экзотермическая реакция дегидратации метанола. Это относительно простой процесс, который целесообразен только для установок небольшой мощности и капиталоемкости. Синтез проводят при давлении около 1,0 МПа, температуре 290-4000С в адиабатическом реакторе в присутствии катализатора (оксид алюминия). Конверсия метанола за один проход составляет около 80%.

Рекомендовать данную технологию для крупнотоннажного производства ДМЭ нельзя, так как себестоимость ДМЭ, образующегося при дегидратации метанола, существенно (в 2 раза) выше, чем метанола.
Так как получение ДМЭ в любом случае проходит стадию образования метанола, то все предлагаемые к реализации технологии синтеза ДМЭ из природного газа являются, в общем случае, развитием метанольного производства и включают в себя ряд общих стадий: стадию риформинга природного газа в синтез-газ (смесь водорода и окиси углерода), на которую приходится до 70% общего объема затрат на процесс; стадию каталитического превращения синтез-газа в смесь метанола и ДМЭ, на которую приходится 20-25% капитальных затрат на процесс; стадию разделения метанола и ДМЭ.

В Российских академических институтах (ИНХС им. А.В.Топчиева, ИОХ им. А.Д.Зелинского) также проводятся работы по созданию технологии производства ДМЭ из природного газа. Исследования носят преимущественно академический характер, направлены на создание новых катализаторов получения ДМЭ из синтез-газа. Исследования, проводимые в ГНЦ НИФХИ им Л.Я.Карпова, направлены на разработку технологической схемы и конструктивного оформления процесса.

По-нашему мнению, ключевой стадией процесса химической конверсии природного газа в ДМЭ является стадия превращения метана в синтез-газ. Поэтому основной акцент при разработке технологий следует сделать на получение более дешевого синтез-газа по сравнению с существующими способами.

Технология "Тандем" (двухступенчатая парокислородная конверсия природного газа с трубчатым реактором), разработанная ГИАП (Россия) и фирмой Linde (Германия), в настоящее время является одной из самых эффективных технологий получения метанола из природного газа. В промышленном масштабе она реализована на ПО "Азот" (Беларусь). Производительность установки по перерабатываемому газу - 130 млн м3/год. По данной технологии проектируется установка производства метанола на АО "Нитроферт" (Эстония) производительностью по природному газу 400 млн м3/год.

Процесс "Тандем" имеет ряд очевидных преимуществ по сравнению с паровой конверсией природного газа в шахтном реакторе.

К ним следует отнести автотермичность процесса и замкнутый энергетический цикл, минимальный удельный расход природного газа на 1 тонну вырабатываемого продукта (расходный коэффициент получения 1 тонны метанола из природного газа составляет 85% от потенциально возможного, т.е. только 15% или 150 м3 природного газа из взятых 1 000 м3 потребляется для обеспечения энергетики процесса "Тандем"). Кроме того, обеспечивается низкий уровень выбросов вредных веществ (NOx, SO2, CO) в атмосферу.

В отличие от западных технологий конверсию синтез-газа в ДМЭ можно осуществлять без стадии ректификации. Общая рециркуляционная схема, характерная для синтеза метанола, остается без изменений. Реактор, как и в синтезе метанола, состоит из адиабатических слоев (полок), но отличается способом размещения катализатора дегидратации метанола и используемым циркулирующим агентом для охлаждения образующихся продуктов.

Конденсация состоит из трех ступеней: конденсатора влаги, конденсатора метанола и конденсатора ДМЭ. Предлагаемый способ позволяет получить ДМЭ без примесей метанола.

Процесс "Тандем" обеспечивает необходимый для последующей стадии состав синтез-газа при давлении в реакторе 30-90 атм. Это определяет благоприятные условия для создания агрегата производства ДМЭ без компрессора синтез-газа, что, безусловно, значительно повысит его технико-экономические показатели.

Предварительный анализ процесса показывает возможность создания агрегата производительностью 500-800 тыс. тонн в год по ДМЭ, оборудование которого имеет промышленные аналоги и может быть создано в однолинейном исполнении транспортабельных габаритов.

В настоящее время ВНИИГАЗ совместно с ГНЦ НИФХИ, ИВТАН, РГУНГ им. И.М.Губкина разрабатывает ТЭО по созданию завода производства ДМЭ единичной мощности 500 тыс. тонн в год. Работа проводится в рамках научно-технической подпрограммы "Прогрессивные технологии комплексного освоения топливно-энергетических ресурсов недр России" федеральной целевой научно-технической программы "Исследования и разработки по приоритетным направлениям развития науки и техники гражданского назначения" Министерства науки и технологий Российской Федерации. [27]

11. Производство ДМЭ из угля

Речь идет, прежде всего, о применении на угледобывающих предприятиях технологий и установок по переработке угля в особо ценные виды высокоэффективных и экологически чистых синтетических моторных топлив, таких например, как диметиловый эфир (ДМЭ). Тем более что именно сжиженный природный газ и синтетические моторные топлива, как известно, являются одним из приоритетов уже в только что принятой Энергетической стратегии России.

Применение этого высококачественного дизельного и энергетического топлива, альтернативного нефтяному, является настолько перспективным, что не только многие зарубежные компании и фирмы (BP, Marubeni, NKK, Air Products & Chemicals Inc.), но и ряд российских предприятий ведут работы по промышленному освоению этого весьма привлекательного в коммерческом отношении направления. Это обусловлено тем, что ДМЭ, как моторное топливо, в частности, имеет более высокое цетановое число (55-60 в отличие от 40-55 для нефтяного дизельного топлива), а при его сгорании в выхлопных газах практически отсутствуют сажа и оксиды азота.

Независимо от технологии промышленного синтеза ДМЭ получение этого топлива проходит стадию образования метанола путем риформинга природного газа в синтез-газ (смесь водорода и окиси углерода), на которую приходится почти две трети общих энергетических затрат на процесс. Последующие же стадии каталитического превращения синтез-газа в смесь метанола и ДМЭ, а затем их разделения требуют значительно более низких энергозатрат, но являются достаточно капиталоемкими.

Сегодня некоторые зарубежные фирмы (NKK, Air Products & Chemicals Inc.) уже имеют опытно-промышленные технологии и установки производства ДМЭ из угля в шламовых реакторах, работающих при соотношениях H2/CO от 0,7 до 1. По данным корпорации NKK (Япония) установка по производству 2500 т/сут ДМЭ будет перерабатывать 4000 т угля в сутки. Синтез ДМЭ осуществляется при температуре 250-2700С и давлении 30-70 атм., процент конверсии за один цикл прохода метанола составляет 55-60 и на выходе реактора ДМЭ составляет 95-99%. Минимальная стоимость такой установки составляет 365 млн долл. США.

Ориентировочный расчет экономической эффективности работы такой установки по специально разработанной Excel-программе, выполненный при следующих исходных данных:

- производительность установки по ДМЭ, млн. т/год - 0,83

- стоимость 1т у.т., $/т - 50

- стоимость установки, млн $ - 365

- дополнительные капиталовложения, $/т ДМЭ - 18,5

- прочие переменные издержки, $/т ДМЭ - 5,5

- транспортные расходы по доставке ДМЭ, $/т ДМЭ - 2,5

- длительность эксплуатации установки, год - 20подтверждает достаточно высокую экономическую эффективность осуществления такого проекта.

При расчетах определялись стандартные показатели, характеризующие эффективность проекта: чистый дисконтированный доход NPV = 359,85 млн $; внутренняя норма доходности IRR = 26%; индекс доходности PI = 0,95 и tд = 6 лет.

Как видим, при принятых исходных данных не все критерии эффективности, строго говоря, свидетельствуют в пользу реализации данного проекта. Так, индекс доходности проекта является несколько меньшим единицы, хотя другие показатели, такие как IRR и дисконтированный срок окупаемости являются достаточно высокими.

Ситуация в этом смысле изменяется существенным образом при изменении таких параметров, как ставка дисконтирования, цена исходного топлива, ставка налогообложения, стоимость реализации (поставки) одной тонны ДМЭ и пр. В частности, только при снижении ставки дисконтирования с 12 до 10 % индекс доходности проекта уже становится равным 1,21, а дисконтированный срок окупаемости снижается с 6 до 5 лет. Если же принять стоимость исходного топлива на уровне 30 $/т, что находится даже несколько выше существующих сегодня цен на уголь, то рассматриваемый проект становится “эффективным” по всем показателям и при ставке дисконтирования 12%.

Еще большие возможности для перспективного развития угольной промышленности открываются на путях комплексного энергохимического использования (сжигания) каменного угля, при котором в значительной мере снижаются и выбросы в окружающую среду инертного газа СО2, являющегося, как известно (в силу парникового эффекта), своего рода барьером на пути развития угольной энергетики.[28]

12. Каталитические системы на основе алюмофосфатов цеолитного типа

Важным направлением работ в области синтеза новых адсорбентов и катализаторов является получение цеолитных структур на основе неорганических фосфатов. В последние годы пристальное внимание исследователей привлекли фосфорсодержащие цеолиты. Однако получить алюмофосфатные молекулярные сита, свободные от кремний-кислородных тетраэдров, не удавалось, поскольку синтез проводили в присутствии алюмосиликатного геля. В 1982 г., проведя гидротермальный синтез с использованием структурообразующих реагентов, получили новый класс алюмофосфатных молекулярных сит, в которых кремний-кислородные тетраэдры полностью изоморфно замещены на фосфор-кислородные. Разнообразие размеров пор и структуры в сочетании с высокой термической устойчивостью делают каталитические и адсорбционные свойства алюмофосфатных молекулярных сит уникальными.

По данным работы [29] фосфорсодержащие цеолиты обладают мягкими кислотными свойствами, а в [30, 31] указывается, что при каталитическом разложении метанола на алюмофосфатах в атмосфере азота единственным продуктом конверсии метанола при Т до 400°С был диметиловый эфир, но при дальнейшим увеличении температуры наблюдается образование формальдегида и закоксовывание катализатора. Алюмофосфаты обладают высокой удельной поверхностью, которая достигает 440 м2 /г, что является очень важным, так как их активность значительно возрастает с увеличением их удельной поверхности [32].

В литературе [31-33] представлены способы получения алюмофосфатов путем гидротермальной обработки реакционных гелей, полученных взаимодействием активного золя гидроксида алюминия с концентрированной фосфорной кислотой. Кристаллизацию гидрогеля проводят при температуре Т = 303-523 К в присутствии органических оснований или мочевины, выполняющих структурно-направляющую роль в процессе синтеза. Органические основания и мочевина, применяемые в процессе синтеза, определяют направление кристаллизации алюмофосфатного геля [33], что приводит к воспроизводимому формированию различных кристаллических структур с развитой системой микропор. Тип структуры алюмофосфатов обусловлен главным образом природой и свойствами структурообразующих реагентов. В ряде случаев алюмофосфаты цеолитного типа как по структуре, так и по способности к поглощению газов и паров подтверждают свою близость к эталонным образцам известных алюмосиликатных сит [31]. Поскольку формирование структуры алюмофосфатов происходит с заполнением микропор органическими соединениями, которые удаляются при нагревании, по завершении приготовления таких катализаторов необходимо их прокаливание с целью удаления органических составляющих, а также остатков влаги.

В [32, 34] представлен способ получения аморфных фосфатов алюминия осажденем из растворов азотнокислого алюминия и фосфорной кислоты аммиаком. Кроме того в [32] предложен способ получения гелеобразных фосфатов путем осаждения из раствора нитрата алюминия и фосфорной кислоты аммиаком с добавлением мочевины в качестве структурообразующего компонента.

Несомненным плюсом алюмофосфатов является их высокая термическая стабильность. По сравнению с алюмосиликатными молекулярными ситами, имеющими сравнительно низкий температурный предел устойчивости, в большинстве случаев 400-600°С [31], алюмофосфаты характеризуются высокой термической устойчивостью, и появление экзоэффектов, соответствующих перестройке их кристаллических структур наблюдается в области температур 900-980°С [30- 33].

Стоит заметить, что на алюмофосфатах диметиловый эфир можно получать как путем дегидратации метанола, так и путем прямого его синтеза из синтез-газа [34].

В связи с этим представляет интерес исследования каталитической активности алюмофосфатов в реакции дегидратации метанола.

На основании анализа литературного обзора можно сделать следующее заключение о том, что на протяжении уже нескольких лет интенсивно ведутся разработки процессов получения альтернативных топлив, взамен нефтяным. Это связано в первую очередь с тем, что запасы нефти с каждым годом истощаются и, кроме того, нефть является ценнейшим сырьем для нефтехимической промышленности, поэтому следует всячески снижать долю нефтепродуктов, используемых в качестве автомобильного топлива. Еще одной немаловажной причиной является экологическая ситуация, сложившаяся сегодня во многих крупных городах нашей планеты.

В настоящее время в различных странах мира проявляется значительный интерес к процессам производства диметилового эфира, который в 1995 году на Международном конгрессе и выставке в Детройте рядом крупных фирм (Amoco Co., Haldor Topsoe A/S и др.), представляющих специализацию по нефте- и газопереработке, по катализу, по двигателям и транспорту, был представлен как новое экологически чистое дизельное топливо 21 -го века.

Наиболее перспективными процессами получения ДМЭ являются газо- и жидкофазные синтезы на основе монооксида углерода и водорода. Метод получения ДМЭ дегидратацией метанола менее эффективен, однако если он происходит непосредственно в автомобильном двигателе, то решается ряд проблем с транспортировкой и хранением топлива. Недостатком является то, что данный процесс, проводимый при Т=250-300°С, атмосферном давлении и в присутствии катализатора - ?-оксида алюминия идет с невысокой производительностью по ДМЭ, что является проблемой для устройства такого двигателя. В связи с этим, нами предлагается процесс переработки метанола в диметиловый эфир на фосфатном катализаторе, на котором, из-за его большей активности, синтез протекает с большей скоростью, а, следовательно, при дальнейшем сжигании полученного топлива в цилиндрах двигателя выделяется больше тепловой энергии.

13. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

13.1. Методика проведения эксперимента

Эксперименты по дегидратации метанола с получением диметилового эфира проводили при атмосферном давлении на лабораторной установке, схема которой представлена на рисунке 4.

Перед началом экспериментов в кварцевый реактор (3), помещенный в каталитическую печь (6), через вентиль тонкой регулировки (13), моностат (14) и реометр (11) подавался аргон, расход которого, необходимый для нахождения количества газа, образовавшегося за время опыта, определяли по пенному расходомеру (15). Разогрев катализатора до 150-180°С проводили в токе аргона, дальнейший нагрев до реакционной температуры осуществляли в токе испаренного сырья.

Контроль температуры обогрева реактора осуществляется с помощью терморегулятора ТРМ1 (9) и реле РЭР-10М (12), с точностью + ГС. Контроль температуры в слое катализатора (5) осуществляется потенциометром ПП-63А (8) по хромель-копелевой термопаре.

При достижении температуры 150-180°С в верхнюю часть реактора (3), заполненную кварцевой насадкой (4), начинали подавать метанол из бюретки (1) с помощью перистальтического микродозатора (ДЛВ) (2). Жидкие продукты реакции на выходе из реактора охлаждались в водяном холодильнике-конденсаторе (10).

Сконденсировавшиеся продукты реакции и не прореагировавший метанол собирались в приемнике холодильника-конденсатора. Остальная часть жидких и газообразные продукты реакции проходили через низкотемпературную ловушку, охлаждаемую смесью льда и NaCl (до Т = -22°С). В ловушке конденсировались и собирались, в зависимости от используемого катализатора диметиловый эфир, метанол, метилформиат и вода, а газообразные продукты направлялись на продувку кранов-дозаторов хроматографов. Сброс газа осуществлялся в вытяжную вентиляцию.

Рис.4 Схема лабораторной установки

I бюретка; 2 микродозатор; 3 кварцевый реактор; 4 кварцевая насадка; 5 слой катализатора 6 электрообогрев реактора; 7 термопара 8 потенциометр ПП-63; 9 регулятор температуры ЭПВ-11 А; 10 холодильник-конденсатор; 11 реометр; 12 электрическое реле РЭР ЮМ; 13 вентиль тонкой регулировки; 14 моностат; 15 пенный расходомер; 16 низкотемпературная ловушка.

Газообразные и жидкие продукты анализировали методами ГЖХ и ГАХ на хроматографах ЛХМ-8МД. На основании информации о составе и количестве продуктов реакции, а также количестве пропущенного сырья, рассчитывали материальный баланс опыта, и выходные показатели процесса.

13.2. Методика анализа жидких продуктов

Методика рассчитана на хроматографическое определение диметилового эфира, метанола, метилформиата и воды в жидких продуктах реакции.

Для определения состава продуктов реакции использовался газовый хроматограф ЛХМ-8МД (модель 5) с детектором по теплопроводности. Газноситель -гелий. Колонка хроматографа, изготовленная из нержавеющей стали, длиной 2 м и диаметром 2 мм, заполнена сорбентом 10%масс. Tween-60/ПолихроМ".

Условия анализа продуктов:

Температура колонки 85°С;

Температура испарителя 125°С;

Расход газа-носителя 25мл/мин;

Ток моста катарометра 100мА;

Скорость ленты самописца 720м/ч.

Исследуемые пробы вводились в хроматограф с помощью микрошприца МШ 10 через головку испарителя. Иглу шприца вводили быстро и на всю длину. Объем пробы 1мкл.

Время удерживания компонентов:

Воздух 23 сек;

Диметиловый эфир 37 сек;

Метилформиат

Метанол 2 мин. 13 сек;

Вода 4мин.51 сек.

Для количественного определения состава жидких продуктов реакции использовался метод абсолютной калибровки с учетом поправочных коэффициентов.

Поправочный коэффициент определяли как тангенс угла наклона прямой, построенной в координатах: Si/SCT=F(Gi/GCT), где Si, Sct - площади пиков определяемого вещества и стандарта; Gi,Gct - их весовые соотношения. За стандарт принимался метанол. Поправочные коэффициенты:

Диметиловый эфир 1,2

Метанол 1

Вода 1,21

Для определения содержания компонентов рассчитывались площади соответствующих пиков по формуле:

Si=hi*bi*Mi (1)

где: hi - высота пика, мм;

bi - ширина пика на середине высоты;

Mi - масштаб записи пика.

Процентное содержание каждого компонента вычислялось по формуле:

Ci=(Si*Ki*100)/?? (2)

где: Si - площадь пика компонента, мм ;

Ki - поправочный коэффициент для данного компонента.

13.3. Методика анализа газообразных продуктов

Анализ газообразных продуктов реакции, содержащих Н2, СО, СО2, CH4, ДМЭ и смесь углеводородов С2 - С4, проводили на хроматографах ЛХМ-8МД с использованием катарометров, четырех насадочных колонок и печи конверсии углеводородов. Анализируемым газом последовательно продували петли кранов-дозаторов и далее пробу газа вводили на анализ в колонки А и Г. По завершении анализа на этих колонках газ подавался на колонки Б и В.

Условия анализа ДМЭ (колонка А):

Колонка из нержавеющей стали, L=1,5м, D=2мм.

Адсорбент Порапак PQS;

Газ-носитель Не ;

Температура испарителя 125°С;

Расход газа-носителя 30 мл/мин

Ток моста 120 мА.

Условия анализа углеводородов (колонка Б):

Колонка из нержавеющей стали, L=6м, D=2мм.

Колонка из нержавеющей стали, L=l ,5м, D=2мм.

Адсорбент А12О3;

Газ-носитель Аг;

Температура колонки 75°С

Расход газа-носителя 30 мл/мин

Ток моста 65 мА;

Температура печи конверсии углеводородов 900°С.

Условия анализа Аr, СО (колонка В):

Колонка из нержавеющей стали, L=4м, D=2мм.

Адсорбент молекулярные сита, 5А;

Газ-носитель Не ;

Температура колонки 75°С

Температура испарителя 125°С;

Расход газа-носителя 30 мл/мин

Ток моста 120мА.

Условия анализа Н2, CH4, CO2 (колонка Г):

Колонка из нержавеющей стали, L=2м, D=2мм.

Адсорбент уголь СКТ;

Газ-носитель Аr;

Температура колонки 75°С

Расход газа-носителя 30 мл/мин

Ток моста 65 мА.

Калибровочные коэффициенты определялись по площадям пиков, полученных при заколе чистых веществ на соответствующие колонки, в соответствии с уравнениями:

КДМЭ =SAr2 / SДМЭ

KH2=SH2/ SHе

KCO=SCO/SAr1

KCO2=SCO2/SAr2

KCH4=SCH4/SAr1

где SHе, SAr1 , SAr2 - площади пиков чистых аргона и гелия, полученных соответственно с колонок Г, В и А. Калибровочные коэффициенты проверяются каждые два месяца, площади пиков берутся как среднее значение из трех вводов. Значения калибровочных коэффициентов представлены ниже:

КДМЭ = 0,68

KH2= 1,64

KCO= 0,75

KCO2= 2,58

KCH4= 0,5

Ежедневно хроматографы калибровались по аргону и гелию.

Концентрации газообразных продуктов реакции (%об.) определялись по формулам:

CДМЭ=SДМЭ*KДМЭ*MДМЭ*100/(S Ar2*M Ar2) (3)

СН2=SH2*MH2*100/(KH2*SHe*MHe) (4)

CCO=SCO*MCO*100/(KCO*SAr1*MAr1) (5) CCO2=SCO2*MCO2*100/(KCO2*SAr2*MAr2) (6) CCH4=SCH4*MCH4*100/(KCH4*SAr1*MAr1) (7)

где: Sдмэ= SH2, Sco, SCO2, SCH4 - площади пиков компонентов газообразных продуктов реакции,

М - масштаб записи пика,

К - калибровочные коэффициенты.

Концентрации углеводородной смеси рассчитывались по формуле:

Ci=Si*Ki*100/?(Si*Ki) (9)

где: Si- площади пиков компонентов углеводородной смеси,

Ki- количество молекул водорода в углеводороде.

Далее концентрация водорода в смеси углеводородов приравнивалась к СH2, полученной из уравнения (10) и соответственно пересчитывались концентрации всех углеводородов по пропорции:

CУ.В. (1) =CH2* CУ.В. / CH2 У.В. (10)

где: CУ.В. (1) - концентрация углеводорода, приведенная к одинаковой концентрации водорода в составах газа, полученных по результатам разных анализов.

Полученные концентрации углеводородной и не углеводородной газовых смесей приводились к одному составу по уравнению:

C i =C ri * 100 / ( ? ( Cr+( CУ.В. (1)- -( CH2 У.В. + CCH4 У.В.)) (11)

где: C ri - концентрация i-того компонента углеводородной или не углеводородной газовых смесей,

Сг - концентрации не углеводородной газовой смеси,

CH2 У.В. , CCH4 У.В концентрации водорода и метана в углеводородной газовой смеси.

Количество газа, полученное за время опыта, определялось исходя из известного количества аргона, подаваемого в реактор, и его концентрации в смеси газообразных продуктов реакции по уравнению:

Vr = (VAr/CAr)*100-VAr (12)

13.4 Методика определения удельной поверхности

Измерение удельной поверхности дисперсных пористых тел, в том числе катализаторов и сорбентов, является в настоящее время необходимым элементом научных исследований и средством контроля в соответствующих технологических процессах. Из многочисленных методов определения удельной поверхности твердых тел наиболее универсальными и широко используемыми являются методы газовой адсорбции [35].

Для определения удельной поверхности интересующих нас образцов в работе был использован метод низкотемпературной десорбции аргона. Анализ проводили на приборе ЛХМ-8МД при следующих условиях:

Ток моста катарометра92мА;

Скорость газа-носителя гелия с 10% об. Аргона 30 мл/мин.;

Температура образца катализатора - 195,8°С;

Эталон - ?-А12О3 Sуд. = 160м2/г.

Расчет удельной поверхности проводили методом сравнения площадей де-сорбционных пиков, пропорциональных поверхности образца и эталона в соответствии со следующим уравнением [35 ]:

Siуд=si*g оэт* Sэтуд(gi*sэт0 )

где: Si- площадь десорбционного пика образца, мм ;

gi - навеска образца, г;

sэт0 - площадь десорбционного пика эталона, мм ;

gоэт - навеска эталона, г;

Sэтуд - удельная поверхность эталона, м2/г.

13.5 Методика приготовления катализаторов

В связи с широким применением катализаторов в промышленности основного органического синтеза производится большое количество катализаторов, различающихся как по химическому составу, так и по методу их приготовления.

Катализатор должен обладать рядом свойств, обеспечивающих рентабельность его использования, а именно:

- высокой активностью и селективностью;

- большой поверхностью активного компонента;

- достаточной устойчивостью к действию ядов и высоких температур;

- достаточной механической прочностью;

- оптимальными гидродинамическими характеристиками, которые обуславливаются размерами, формой и плотностью упаковки зерен катализатора [36].

К методам приготовления катализаторов предъявляется ряд требований; они

должны обеспечивать получение катализаторов, обладающих заданными химическим и физическим составами, высокой удельной поверхностью, а также быть малоотходными. Выбранный метод приготовления катализатора определяет степень дисперсности, пористую структуру и форму катализатора, а, следовательно, и его активность. В процессе данного исследования нами применялись катализаторы, приготовленные следующим способом:

Аморфный алюмофосфат в смеси с 10% SiO2 был получен путем осаждения из раствора азотнокислого алюминия и фосфорной кислоты аммиаком. Сначала брали определенное количество SiO2 и засыпали его в дистиллированную воду, затем добавляли нитрат алюминия, после этого к полученному раствору добавлялась 100% ортофосфорная кислота. Полученный раствор тщательно перемешивали в течение 30 мин. После чего проводилась нейтрализация полученного раствора путем постепенного добавления аммиачной воды при постоянном перемешивании. При достижении значения рН = 6 - 8 в растворе образовывался аморфный осадок, который отделяли от маточного раствора путем фильтрования и промывали дистиллированной водой. Полученную массу сушили в течении 6 ч. при Т = 110°С.

14. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В данной работе были исследованы каталитические системы на основе аморфного алюмофосфата с SiO2 в процессе дегидратации метанола до диметилового эфира.

Задачей данного исследования являлось приготовление серии образцов аморфного алюмофосфата, прокаленных при разной температуре, а также с разным содержанием SiO2. Физико -химические характеристики, полученных образцов представлены в таблице.

Из результатов экспериментов, ранее проведенных на кафедре ТНХС и ИЖТ МИТХТ им. М.В. Ломоносова, а также на основе литературных данных [16, 71], было установлено, что оптимальными температурами для протекания процесса дегидратации метанола в присутствии различных каталитических систем является диапазон температур 250-350°С. Исходя из этого, были выбраны условия проведения эксперимента, а именно диапазон температур 200-350°С и объемной скорости 1ч' по исходному метанолу.

СПИСОК ЛИТЕРАТУРЫ

1. «Энергия» 2002, N 11. С. 42-44.

2. Бухаркин А.К., Лихтерова Н.М., Капкин В.Д. «Основы химии и технологии производства и применения транспортных энергоносителей». Москва, МИТХТ, 1997

3. John Bogild Hansen, Bodil Voss, Finn Joensen, Inga Dora Siguroardottir. «Large scale manufacture of dimethyl ether - a new alternative diesel fuel from natural gas», International Congress & Exposition, Detroit, Michigan, February 27 - March 2,1995. SAC Paper 950063, 1995.

4. Караваев М.М., Леонов А. Л., Мастеров Б. П. «Промышленный синтез метанола». Москва, «Химия», 1974 г.

5. Караваев М.М. и др, «Технология синтетического метанола». Москва, «Химия», 1984 г.

6. Хенрице-Оливе Г., Оливе С., «Химия каталитического гидрирования СО». Москва, «Мир», 1987

7. «Перспективные автомобильные топлива». Под редакцией
Черникова Я.Б., Москва, Транспорт, 1998 г.

8. Смаль Ф. В., Аксенов Е. Е., «Перспективные топлива для автомобилей». Москва, Транспорт, 1979 г.

9. Гайнуллин Ф. Г., «Природный газ как моторное топливо на транспорте». Москва, Транспорт, 1986 г

10. Simon A., Stumpf H., J. Chem. Soc. Faraday Trans. 1- 1981, V. 77, №9, P. 2209-2221.

11. Топчиева К.В., Кубасов А.А., Тыонг Ван Дао, «Дегидратация метилового спирта на щелочных формах цеолитов X и Y», Вестник МГУ. Химия. 1972, т. 13, №6, стр. 628-632.

12. Хамагульгова Н.С., Хадишев С.Н., Кубасов А.А., «Закономерности конверсии метанола в микрореакторе на цеолитах ультрасил», Вестник МГУ. Химия. 1981, т. 22, №2, стр. 156-160.

13. Нефедов Б.К., Сергеева Н.С., «Влияние состава катализатора Rh -носитель и добавок различных веществ в зону реакции на карбонилирование метанола окисью углерода при атмосферном давлении», Известия АН СССР, серия Химия. 1976, №10, стр. 2271 -2276.

14. Соловьев А.А., Каденцев В.И., Чижов О.С., «Метиловык эфиры метилдезоксигексопиранозидов», Известия АН СССР, серия Химия. 1976, №11, стр. 2500-2505.

15. Герич А.П., Шмелев А.С., «Кинетика образования диметилового эфира на у-А12О3», «Метанол и его переработка», сборник трудов НИИТЭХИМ и ГосНИИ Метанолпроект, Москва, 1985, стр. 49 - 52.

16. Светляков Е.Б., Флид P.M., «Кинетика реакции дегидратации метанола и гидрохлорирования диметилового эфира на катализаторах парофазного синтеза хлористого метила», Журнал Физической химии. 1966, том XL., №12, стр. 3055 - 3059.

17. Физическая химия. Кинетика. 1974, Т. 3.

18. Якерсон В. И., Лафер Л. И., Рубинштейн А. М. «Термодесорбция спиртов и простых эфиров с поверхности окиси алюминия», Известия АН СССР, серия Химия. 1967, №1, стр. 200-201.

19. Нефедов Б.К., Мишин И.В., «Синтез диэтилового эфира в присутствии цеолитных катализаторов», Известия АН СССР, серия Химия. 1979, №1, стр. 196-199.

20. Tonner S. P., Christiansen J. A., Chem. Left. 1982, P. 1805 - 1808.

21. AC СССР С07С43/07, 841578, «Способ получения простых эфиров», Виттарио Фатторе, Джовани Манара, Бруно Нотари, 1981.

22. Розовский А.Я. «Диметиловый эфир - топливо 21 века». Международная школа повышения квалификации. Инженерно - химическая наука для передовых технологий. Труды третьей сессии. Казань. Россия. 1997. Под редакцией Махлина В.Л.

23. «Доклад на совещании ИНХС РАН по новым топливно-энергетическим технологиям» 26.11.1997.

24. Розовский А.Я., Смирнова Т.Н. «Диметиловый эфир - экологически чистое моторное топливо для города Москва». Тезисы конференции «Актуальные проблемы нефтехимии». Москва, 2001 г.

25. 3RD International Petroleum Conference «PETROTECH-99», New Deli, India, January 9-12, 1999

26. «The Chemical Journal / Химический журнал» №1 сентябрь 2002г.

27. Нефтегазовая Вертикаль №9-2000

28. ЖУРНАЛ УГОЛЬ № 7-2002.

29. Rastelli H., Lok B. M., Duisman J. A. et al. Can. J. Chem. Eng., 1982, v.60, p. 44

30. Семина О. В., Грязнова З. В., Нефедова А. Р. и др. «Физико-химическин и каталитические свойства алюмофосфатных цеолитов», Вестник МГУ, сер. Химия, 1987 г., т. 28, №4, С. 375-380.

31. Грязнова 3. В., Нефедова А.Р., Семина О. В., и др., «Каталитическое превращение метанола на алюмофосфатах цеолитного типа»,Журнал физической химии, 1987, том 61, №10, стр. 2624 -2629.

32. Гребенько Н.В., Ещенко Л.С., Печковский В.В. «Синтез и исследование пористых алюмфосфатов», Журнал неорг. химии,

1976,т. 21, с. 2660-2664.

33. Гребенько Н.В., Маргулец А. В., Печковский В.В., Ещенко Л.С. «Микропористые алюмофосфаты со свойствами цеолитов», Химия и химическая технология - 1987 г., вып.№1, С.27-33

34. Патент США, С07С27/00, 5753716(1998)

35. Танабе К., «Твердые кислоты и основания». Москва, «Мир», 1973.

36. Якерсон В. И., Голосман Е. 3., «Катализаторы и цементы». Москва, «Химия», 1992.


Подобные документы

  • Проведение конструктивного функционального анализа технологического процесса схемы переэтерификации диметилового эфира цианоэтилфосфоновой кислоты моноэтиленгликоль (мет) акрилатом. Морфологический анализ процесса и аппарата проведения переэтерификации.

    курсовая работа [340,1 K], добавлен 13.12.2010

  • Строение и схема получения малонового эфира. Синтез ацетоуксусного эфира из уксусной кислоты, его использование для образования различных кетонов. Таутомерные формы и производные барбитуровой кислоты. Восстановление a,b-Непредельных альдегидов и кетонов.

    лекция [270,8 K], добавлен 03.02.2009

  • Характеристика этапов и особенностей переведения установки метилтретбутилового эфира на выпуск этилтретбутилового эфира. Изучение условий синтеза этилтретбутилового эфира. Разработка технологической схемы производства ЭТБЭ. Нормы технологического режима.

    презентация [165,5 K], добавлен 01.12.2014

  • Разработка альтернативных видов топлива и новых направлений в области переработки природного газа и других источников углерода. Технологии синтеза диметилового эфира из биомассы и синтез-газа. Особенности нетрадиционных процессов получения топлива.

    контрольная работа [227,2 K], добавлен 04.09.2010

  • Изобутилацетат широко применяется в качестве растворителя перхлорвиниловых, полиакриловых и других лакокрасочных материалов. Синтезы изобутилацетата: реакция этерификации, получение на катионитовых катализаторах, на ионообменных катализаторах. Сольволиз.

    курсовая работа [367,9 K], добавлен 17.01.2009

  • Класификация дикарбонильных соединений, физические свойства альдегидо- и кетокислот. Ацетоуксусная кислота, ее эфир, химические свойства. Получение опытным путем натриевого производного ацетоуксусного эфира, исследование ее взаимодействия с веществами.

    курсовая работа [71,7 K], добавлен 07.06.2011

  • Синтез метанола из оксида углерода и водорода. Технологические свойства метанола (метиловый спирт). Применение метанола и перспективы развития производства. Сырьевые источники получения метанола: очистка синтез-газа, синтез, ректификация метанола-сырца.

    контрольная работа [291,5 K], добавлен 30.03.2008

  • Рассмотрение методов проведения реакций ацилирования (замещение водорода спиртовой группы на остаток карбоновой кислоты). Определение схемы синтеза, физико-химических свойств метилового эфира монохлоруксусной кислоты и способов утилизации отходов.

    контрольная работа [182,3 K], добавлен 25.03.2010

  • Понятие степени окисления элементов в неорганической химии. Получение пленок SiO2 методом термического окисления. Анализ влияния технологических параметров на процесс окисления кремния. Факторы, влияющие на скорость получения и качество пленок SiO2.

    реферат [147,2 K], добавлен 03.12.2014

  • Свойства диэтилового эфира малеиновой кислоты. Практическое применение диэтилмалеата - использование в качестве органического растворителя. Методика синтеза. Дикарбоновые кислоты. Реакция этерификации. Механизм этерификации. Метод "меченых атомов".

    курсовая работа [585,5 K], добавлен 17.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.