Химия и биологическая роль элементов VIII Б группы

Общая характеристика, краткие сведения об истории открытия элементов и их распространённости в природе. Физико-химические свойства железа, кобальта и никеля. Свойства соединений железа в степенях окисления. Цис-, транс-изомерия соединений платины.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 21.09.2019
Размер файла 36,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оренбургская Государственная Медицинская Академия Кафедра химии и фармацевтической химии

Реферат

Химия и биологическая роль элементов VIII Б группы

Выполнила:

студентка 16 группы

педиатрического факультета

Папсуева Е.Ю.

Проверила:

доцент кафедры химии Е.И. Шостак

Оренбург 2013

1. Общая характеристика, краткие сведения об истории открытия элементов и их распространённости в природе

Железо (Fe).

Распространенность в природе

Железо - самый распространенный после алюминия металл на земном шаре: оно составляет 4% земной коры (4-е место после O, Si, Al). Считается также, что железо составляет большую часть земного ядра.Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном состоянии железо находят только в метеоритах.

Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более.К важнейшим рудам железа относятся: магнитный железняк Fe3O4 - содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии; красный железняк Fe2O3 - содержит до 65% железа, такие месторождения встречаются в Криворожском районе; бурый железняк 2Fe2O3*3H2O - одержит до 60% железа, месторождения встречаются в Крыму и шпатовый железняк FeCO3 - содержит примерно 47% железа, месторождения встречаются на Урале. Встречающийся в больших количествах пирит, или железный колчедан, FeS2 редко применяется в металлургии, так как чугун из него получается очень низкого качества из-за большого содержания серы. Тем не менее, железный колчедан имеет важнейшее применение- он служит исходным сырьем для получения серной кислоты. химия окисление железо кобальт

Происхождение названия

Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза, укр. залізо, ст.-слав. жел?зо, болг. желязо, сербохорв. жељезо, польск. їelazo, чеш. ћelezo, словен. ћelezo).Одна из этимологий связывает праславянское *ћelмzo с греческим словом чблкьт, что означало железо и медь, согласно другой версии *ћelмzo родственно словам *ћely "черепаха и *glazъ "скала", с общей семой “камень”. Третья версия предполагает древнее заимствование из неизвестного языка.

Название природного карбоната железа (сидерита) происходит от лат. sidereus -- звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос (уЯдзспт) для железа и латинское sidus, означающее «звезда», вероятно, имеют общее происхождение.

Железо как инструментальный материал известно с древнейших времён, самые древние изделия из железа, найденные при археологических раскопках, датируются 4-м тысячелетием до н. э. и относятся к древнешумерской и древнеегипетской цивилизациям. Это наконечники для стрел и украшения из метеоритного железа, то есть, сплава железа и никеля (содержание последнего колеблется от 5 до 30 %), из которого состоят метеориты. От их небесного происхождения идёт, видимо, одно из наименований железа в греческом языке: «сидер» (а на латыни это слово значит «звёздный»).

Изделия из железа, полученного искусственно, известны со времени расселения арийских племён из Европы в Азию и острова Средиземного моря (4--3-е тысячелетие до н. э.). Самый древний железный инструмент из известных -- стальное долото, найденное в каменной кладке пирамиды Хеопса в Египте (построена около 2550 года до н. э.). Железо часто упоминается в древнейших (3-е тысячелетие до н. э.) текстах хеттов, основавших свою империю на территории современной Анатолии в Турции.

2. Общая характеристика. Положение в периодической системе Д. И. Менделеева

Желемзо -- элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 26. Обозначается символом Fe (лат.Ferrum). Атомная масса Ar(Fe) = 56; состав атома: 26-протонов; 30 - нейтронов; 26 - электронов.

Электронная формула: 1s22s22p63s23p63d64s2. Металл средней активности, восстановитель:

Fe0-2e->Fe+2, окисляется восстановитель

Fe0-3e->Fe+3, окисляется восстановитель

Кобальт (Со)

Нахождение в природе

В природе кобальт мало распространен: содержание его в земной коре составляет около 0,004%. Чаще всего кобальт встречается в соединение с мышьяком в виде минералов кобальтовый шпейсCoAs2 и кобальтовый блеск CoAs. А также в составе других минералов: каролит CuCo2S4, линнеит Co3S4, кобальтин CoAsS, сферокобальтит CoCO3, скуттерудит (Co, Ni)As3 и других.Всего известно около 30 кобальтосодержащих минералов. Кобальту сопутствуют железо, никель, марганец и медь. Содержание в морской воде приблизительно (1,7)Ч10-10%

Краткие сведения об открытии

Соединения кобальта известны человеку с глубокой древности, синие кобальтовые стёкла, эмали, краски находят в гробницах Древнего Египта. Так в гробнице Тутанхамона нашли много осколков синего кобальтового стекла, не известно, было ли приготовление стёкол и красок сознательным или случайным. Первое приготовление синих красок относится к 1679 г.

Название химического элемента кобальт происходит от нем. Kobold -- домовой, гном. При обжиге содержащих мышьяк кобальтовых минералов выделяется летучий ядовитый оксид мышьяка. Руда, содержащая эти минералы, получила у горняков имя горного духа Кобольда. Древние норвежцы приписывали отравления плавильщиков при переплавке серебра проделкам этого злого духа.

В 1735 году шведский минералог Георг Бранд сумел выделить из этого минерала неизвестный ранее металл, который и назвал кобальтом. Он выяснил также, что соединения именно этого элемента окрашивают стекло в синий цвет -- этим свойством пользовались ещё в древних Ассирии и Вавилоне.

Общая характеристика, положение в периодической системе Менделеева

Кобальт -- элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 27 . Обозначается символом Co (лат.Cobaltum). Простое вещество кобальт -- серебристо-белый, слегка желтоватый металл с розоватым или синеватым отливом.

Никель (Ni)

Распространенность в природе

Никель довольно распространён в природе -- его содержание в земной коре составляет около 0,01 %(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный никель (до 8 %). Содержание его в ультраосновных породах примерно в 200 раз выше, чем в кислых (1,2 кг/т и 8г/т). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13 -- 0,41 % Ni. Он изоморфно замещает железо и магний. Небольшая часть никеля присутствует в виде сульфидов. Никель проявляет сидерофильные и халькофильные свойства. При повышенном содержании в магме серы возникают сульфиды никеля вместе с медью, кобальтом, железом и платиноидами. В гидротермальном процессе совместно с кобальтом, мышьяком и серой и иногда с висмутом, ураном и серебром, никель образует повышенные концентрации в виде арсенидов и сульфидов никеля. Никель обычно содержится в сульфидных и мышьяк-содержащих медно-никелевых рудах:

* никелин (красный никелевый колчедан, купферникель) NiAs

* хлоантит (белый никелевый колчедан) (Ni, Co, Fe)As2

* гарниерит (Mg, Ni)6(Si4O11)(OH)6*H2O и другие силикаты

* магнитный колчедан (Fe, Ni, Cu)S

* мышьяково-никелевый блеск (герсдорфит) NiAsS,

* пентландит (Fe,Ni)9S8

В растениях в среднем 5Ч10-5 весовых процентов никеля, в морских животных -- 1,6Ч10-4, в наземных -- 1Ч10-6, в человеческом организме -- 1…2Ч10-6. О никеле в организмах известно уже немало. Установлено, например, что содержание его в крови человека меняется с возрастом, что у животных количество никеля в организме повышено, наконец, что существуют некоторые растения и микроорганизмы -- «концентраторы» никеля, содержащие в тысячи и даже в сотни тысяч раз больше никеля, чем окружающая среда.

Происхождение названия

Название своё этот элемент получил от злого духа гор, который, согласно немецкой мифологии, подбрасывал искателям меди минерал, похожий на медную руду; ср. нем. Nickel - озорник.

Никель (англ., франц. и нем. Nickel) открыт в 1751 г. Однако задолго до этого саксонские горняки хорошо знали руду, которая внешне походила на медную руду и применялась в стекловарении для окраски стёкол в зелёный цвет. Все попытки получить из этой руды медь оказались неудачными, в связи с чем в конце XVII в. руда получила название купферникель (Kupfernickel), что приблизительно означает «Медный дьявол». Руду эту (красный никелевый колчедан NiAs) в 1751 г. исследовал шведский минералог Кронштедт. Ему удалось получить зелёный окисел и путём восстановления последнего -- новый металл, названный никелем. Когда Бергман получил металл в более чистом виде, он установил, что по своим свойствам металл похож на железо; более подробно никель изучали многие химики, начиная с Пруста. Никкел -- ругательное слово на языке горняков. Оно образовалось из искажённого Nicolaus -- родового слова, имевшего несколько значений. Но главным образом слово Nicolaus служило для характеристики двуличных людей; кроме того, оно обозначало «озорной маленький дух», «обманчивый бездельник» и т. д. В русской литературе начала XIX в. употреблялись названия николан (Шерер, 1808), николан (Захаров, 1810), николь и никель (Двигубский, 1824).

Общая характеристика. Положение в периодической системе Д. И. Менделеева

Нимкель -- элемент побочной подгруппы восьмой группы, четвертого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 28. Обозначается символом Ni (лат.Niccolum). Простое вещество никель -- это пластичный ковкий переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой защитной плёнкой оксида. Химически малоактивен.

2. Физико-химические свойства железа, кобальта и никеля

Железо (Fe)

Физические свойства

Железо -- типичный металл, в свободном состоянии -- серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен, различные примеси (в частности -- углерод) повышают его твёрдость и хрупкость. Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую «триаду железа» -- группу трёх металлов (железо Fe, кобальт Co, никель Ni), обладающих схожими физическими свойствами, атомными радиусами и значениями электроотрицательности.

Для железа характерен полиморфизм, он имеет четыре кристаллические модификации:до 769 °C существует б-Fe (феррит) с объёмноцентрированной кубической решёткой и свойствами ферромагнетика (769 °C ? 1043 K -- точка Кюри для железа) в температурном интервале 769--917 °C существует в-Fe, который отличается от б-Fe только параметрами объёмноцентрированной кубической решётки и магнитными свойствами парамагнетика в температурном интервале 917--1394 °C существует г-Fe (аустенит) с гранецентрированной кубической решёткой

выше 1394 °C устойчиво д-Fe с объёмоцентрированной кубической решёткой.

Металловедение не выделяет в-Fe как отдельную фазу, и рассматривает её как разновидность б-Fe. При нагреве железа или стали выше точки Кюри (769 °C ? 1043 K) тепловое движение ионов расстраивает ориентацию спиновых магнитных моментов электронов, ферромагнетик становится парамагнетиком -- происходит фазовый переход второго рода, но фазового перехода первого рода с изменением основных физических параметров кристаллов не происходит.

Для чистого железа при нормальном давлении, с точки зрения металловедения, существуют следующие устойчивые модификации:

От абсолютного нуля до 910 °C устойчива б-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой.

От 910 до 1400 °C устойчива г-модификация с гранецентрированной кубической (ГЦК) кристаллической решёткой.

От 1400 до 1539 °C устойчива д-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой.

Наличие в стали углерода и легирующих элементов существенным образом изменяет температуры фазовых переходов (см. фазовую диаграмму железо -- углерод). Твёрдый раствор углерода в б- и д-железе называется ферритом. Иногда различают высокотемпературный д-феррит и низкотемпературный б-феррит (или просто феррит), хотя их атомные структуры одинаковы. Твёрдый раствор углерода в г-железе называется аустенитом.

В области высоких давлений (свыше 104 МПа, 100 тыс. атм.) возникает модификация е-железа с гексагональной плотноупакованной (ГПУ) решёткой.

Явление полиморфизма чрезвычайно важно для металлургии стали. Именно благодаря б--г переходам кристаллической решётки происходит термообработка стали. Без этого явления железо как основа стали не получило бы такого широкого применения.

Железо тугоплавко, относится к металлам средней активности. Температура плавления железа 1539 °C, температура кипения -- 2862 °C

Химические свойства

Основные степени окисления железа -- +2 и +3.

При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной плёнкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближённо её химическую формулу можно записать как Fe2O3*xH2O.

С кислородом железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe3O4, при сгорании в чистом кислороде -- оксид Fe2O3. Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeO. При нагревании порошка серы и железа образуется сульфид, приближённую формулу которого можно записать как FeS.

При нагревании железо реагирует с галогенами. Так как FeF3нелетуч, железо устойчиво к действию фтора до температуры 200--300 °C. При хлорировании железа (при температуре около 200 °C) образуется летучийдимер Fe3Cl6. Если взаимодействие железа и брома протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr3. При нагревании FeCl3 и, особенно, FeBr3 отщепляют галоген и превращаются в галогениды железа(II). При взаимодействии железа и йода образуется иодид Fe3I8.

При нагревании железо реагирует с азотом, образуя нитрид железа Fe3N, с фосфором, образуя фосфиды FeP, Fe2P и Fe3P, с углеродом, образуя карбид Fe3C, с кремнием, образуя несколько силицидов, например, FeSi.

При повышенном давлении металлическое железо реагирует с оксидом углерода(II) CO, причём образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO)5. Известны также карбонилы железа составов Fe2(CO)9 и Fe3(CO)12. Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава (з5-C5H5)2Fe.

Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. Железо не растворяется в холодных концентрированных серной и азотной кислотах из-за пассивации поверхности металла прочной оксидной плёнкой. Горячая концентрированная серная кислота, являясь более сильным окислителем, взаимодействует с железом.

С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа(II):

Fe + 2HCl > FeCl2 + H2^;

Fe + H2SO4 > FeSO4 + H2^.

При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа(III):

2Fe + 6H2SO4 > Fe2(SO4)3 + 3SO2^ + 6H2O.

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH)2. Оксид железа(III) Fe2O3 слабо амфотерен, ему отвечает ещё более слабое, чем Fe(OH)2, основание Fe(OH)3, которое реагирует с кислотами:

2Fe(OH)3 + 3H2SO4 > Fe2(SO4)3 + 6H2O.

Гидроксид железа(III) Fe(OH)3 проявляет слабо амфотерные свойства, он способен реагировать только с концентрированными растворами щелочей:

Fe(OH)3 + 3КОН > K3[Fe(OH)6].

Образующиеся при этом гидроксокомплексы железа(III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH)3.

Соединения железа(III) в растворах восстанавливаются металлическим железом:

Fe + 2FeCl3 > 3FeCl2.

При хранении водных растворов солей железа(II) наблюдается окисление железа(II) до железа(III):

4FeCl2 + O2 + 2H2O > 4Fe(OH)Cl2.

Из солей железа(II) в водных растворах устойчива соль Мора -- двойной сульфат аммония и железа(II) (NH4)2Fe(SO4)2*6Н2O.

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO4)2 -- железокалиевые квасцы, (NH4)Fe(SO4)2 -- железоаммонийные квасцы и т. д.

При действии газообразного хлора или озона на щелочные растворы соединений железа(III) образуются соединения железа(VI) -- ферраты, например, феррат(VI) калия K2FeO4. Имеются сообщения о получении под действием сильных окислителей соединений железа(VIII).

Для обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe3+ с тиоцианат-ионами SCN?. При взаимодействии ионов Fe3+ с анионами SCN? образуется ярко-красный роданид железа Fe(SCN)3. Другим реактивом на ионы Fe3+ служит гексацианоферрат(II) калия K4[Fe(CN)6] (жёлтая кровяная соль). При взаимодействии ионов Fe3+ и [Fe(CN)6]4? выпадает ярко-синий осадок берлинской лазури:

4K4[Fe(CN)6] + 4Fe3+ > 4KFeIII[FeII(CN)6]v + 12K+.

Реактивом на ионы Fe2+ в растворе может служить гексацианоферрат(III) калия K3[Fe(CN)6] (красная кровяная соль). При взаимодействии ионов Fe2+ и [Fe(CN)6]3? выпадает осадок турнбулевой сини:

3K3[Fe(CN)6] + 3Fe2+> 3KFe2[Fe3(CN)6]v + 6K+.

Интересно, что берлинская лазурь и турнбулева синь -- две формы одного и того же вещества, так как в растворе устанавливается равновесие:

KFe3[Fe2(CN)6] - KFe2[Fe3(CN)6]

Кобальт (Со)

Физические свойства

При обычной температуре и до 417 °С кристаллическая решетка Кобальта гексагональная плотноупакованная (с периодами а = 2,5017Е, с = 4,614Е), выше этой температуры решетка Кобальта кубическая гранецентрированная (а = 3,5370Е). Атомный радиус 1,25Е, ионные радиусы Со2+0,78Е и Со3+0,64Е. Плотность 8,9 г/см3 (при 20 °С); tпл 1493°С, tкип 3100°С. Теплоемкость 0,44 кдж/(кг*К), или 0,1056 кал/(г*°С); теплопроводность 69,08 вт/(м*К), или 165 кал/(см*сек*°С) при 0-100 °С. Удельное электросопротивление 5,68*10-8ом*м, или 5,68*10-6 ом*см (при О °С). Кобальт ферромагнитен, причем сохраняет ферромагнетизм от низких температур до точки Кюри, И = 1121 °С. Механические свойства Кобальта зависят от способа механической и термической обработки. Предел прочности при растяжении 500Мн/м2 (или 50 кгс/мм2) для кованого и отожженного Кобальта; 242-260 Мн/м2 для литого; 700 Мн/м2 для проволоки. Твердость по Бринеллю 2,8 Гн/м2 (или 280 кгс/мм2) для наклепанного металла, 3,0 Гн/м2для осажденного электролизом; 1,2-1,3 Гн/м2для отожженного [5].

Химические свойства

Конфигурация внешних электронных оболочек атома Кобальта 3d74s2. В соединениях Кобальт проявляет переменную валентность. В простых соединениях наиболее устойчив Со(П), в комплексных - Со(Ш). Для Со(I) и Co(IV) получены только немногочисленные комплексные соединения. При обыкновенной температуре компактный Кобальт стоек против действия воды и воздуха. Мелко раздробленный Кобальт, полученный восстановлением его оксида водородом при 250 °С (пирофорный Кобальт), на воздухе самовоспламеняется, превращаясь в СоО. Компактный Кобальт начинает окисляться на воздухе выше 300 °С; при красном калении он разлагает водяной пар: Со + Н2О = СоО + Н2. С галогенами Кобальт легко соединяется при нагревании, образуя галогениды СоХ2. При нагревании Кобальт взаимодействует с S, Se, P, As, Sb, С, Si, В, причем состав получающихся соединений иногда не удовлетворяет указанным выше валентным состояниям (например, Со2Р, Co2As, CoSb2, Со3С, CoSi3). В разбавленных соляной и серной кислотах Кобальт медленно растворяется с выделением водорода и образованием соответственно хлорида СоCl2 и сульфата CoSO4. Разбавленная азотная кислота растворяет Кобальт с выделением оксидов азота и образованием нитрата Co(NO3)2. Концентрированная HNO3пассивирует Кобальт. Названные соли Со (П) хорошо растворимы в воде [при 25°С 100 г воды растворяют 52,4 г СоCl2, 39,3 г CoSO4, 136,4 г Co(NO3)2]. Едкие щелочи осаждают из растворов солей Со2+ синий гидрооксид Со(ОН)2, которая постепенно буреет вследствие окисления кислородом воздуха до Со(ОН)3. Нагревание в кислороде при 400-500 °С переводит СоО в черную закись-окись Со3О4, или СоО*Со2О3 - соединение типа шпинели. Соединение того же типа CoAl2О4 или СоО*Al2О3 синего цвета (тенарова синь, открытая в 1804 году Л. Ж. Тенаром) получается при прокаливании смеси СоО и Al2О3 при температуре около 1000 °С.

Из простых соединений Со (IП) известны лишь немногие. При действии фтора на порошок Со или СоCl2 при 300-400 °С образуется коричневый фторид CoF3. Комплексные соединения Со (Ш) весьма устойчивы и получаются легко. Например, KNO2 осаждает из растворов солей Со (П), содержащих СН3СООН, желтый труднорастворимый гексанитрокобальтат (III) калия K3[Co(NO2)6]. Весьма многочисленны кобальтаммины (прежнее название кобальтиаки) - комплексные соединения Со (Ш), содержащие аммиак или некоторые органических амины

Никель (Ni).

Физические свойства

При обычных условиях Никель существует в виде в-модификации, имеющей гранецентрированную кубическую решетку (а = 3,5236Е). Но Никель, подвергнутый катодному распылению в атмосфере H2, образует б-модификацию, имеющую гексагональную решетку плотнейшей упаковки (а = 2,65Е, с = 4,32Е), которая при нагревании выше 200 °C переходит в кубическую. Компактный кубический Никель имеет плотность 8,9 г/см3 (20 °C), атомный радиус 1,24Е, ионные радиусы: Ni2+0,79Е, Ni3+ 0,72Е; tпл 1453 °C; tкип около 3000 °C; удельная теплоемкость при 20°C 0,440 кдж/(кг*К) [0,105 кал/(г*°C)]; температурный коэффициент линейного расширения 13,3*10-6 (0-100 °C); теплопроводность при 25°C 90,1 вт/(м*К) [0,215 кал/(см*сек*°С)]; тоже при 500 °C 60,01 вт/(м*К) [0,148 кал/(см*сек*C°)]. Удельное электросопротивление при 20°C 68,4 ном*м, т.е. 6,84 мком*см; температурный коэффициент электросопротивления 6,8*10-3(0-100 °C). Никель - ковкий и тягучий металл, из него можно изготовлять тончайшие листы и трубки. Предел прочности при растяжении 400-500Мн/м2 (т. е. 40-50 кгс/мм2); предел упругости 80 Мн/м2, предел текучести 120 Мн/м2; относительное удлинение 40%; модуль нормальной упругости 205 Гн/м2; твердость по Бринеллю 600- 800 Мн/м2. В температурном интервале от 0 до 631 К (верхняя граница соответствует точке Кюри) Никель ферромагнитен. Ферромагнетизм Никеля обусловлен особенностями строения внешних электронных оболочек (3d84s2) его атомов. Никель вместе с Fe (3d64s2) и Со (3d74s2), также ферромагнетиками, относится к элементам с недостроенной 3d-электронной оболочкой (к переходным 3d-металлам). Электроны недостроенной оболочки создают нескомпенсированный спиновый магнитный момент, эффективное значение которого для атомов Никеля составляет 6мБ, где мБ - магнетон Бора. Положительное значение обменного взаимодействия в кристаллах Никеля приводит к параллельной ориентации атомных магнитных моментов, то есть к ферромагнетизму. По той же причине сплавы и ряд соединений Никеля (оксиды, галогениды и других) магнитоупорядочены (обладают ферро-, реже ферримагнитной структурой). Никель входит в состав важнейших магнитных материалов и сплавов с минимальным значением коэффициента теплового расширения (пермаллой, монелъ-металл, инвар и других)

Химические свойства

Атомы никеля имеют внешнюю электронную конфигурацию 3d84s2. Наиболее устойчивым для никеля является состояние окисления Ni(II).

Никель образует соединения со степенью окисления +2 и +3. При этом никель со степенью окисления +3 только в виде комплексных солей. Для соединений никеля +2 известно большое количество обычных и комплексных соединений. Оксид никеля Ni2O3 является сильным окислителем. Никель характеризуется высокой коррозионной стойкостью -- устойчив на воздухе, в воде, в щелочах, в ряде кислот. Химическая стойкость обусловлена его склонностью к пассивированию -- образованию на его поверхности плотной оксидной плёнки, обладающей защитным действием. Никель активно растворяется в азотной кислоте. С оксидом углерода CO никель легко образует летучий и весьма ядовитый карбонилNi(CO)4. Тонкодисперсный порошок никеля пирофорный (самовоспламеняется на воздухе). Никель горит только в виде порошка. Образует два оксида NiO и Ni2O3 и соответственно два гидроксида Ni(OH)2 и Ni(OH)3. Важнейшие растворимые соли никеля -- ацетат, хлорид, нитрат и сульфат. Растворы окрашены обычно в зелёный цвет, а безводные соли -- жёлтые или коричнево-жёлтые. К нерастворимым солям относятся оксалат и фосфат (зелёные), три сульфида NiS (черный), Ni2S3 (желтовато-бронзовый) и Ni3S4 (черный). Никель также образует многочисленные координационные и комплексные соединения. Например, диметилглиоксимат никеля Ni(C4H6N2O2)2, дающий чёткую красную окраску в кислой среде, широко используется в качественном анализе для обнаружения никеля. Водный раствор сульфата никеля имеет зелёный цвет. Водные растворы солей никеля(II) содержат ион гексаакваникеля(II) [Ni(H2O)6]2+. При добавлении к раствору, содержащему эти ионы, аммиачного раствора происходит осаждение гидроксида никеля (II), зелёного желатинообразного вещества. Этот осадок растворяется при добавлении избыточного количества аммиака вследствие образования ионов гексамминникеля(II) [Ni(NH3)6]2+.

Никель образует комплексы с тетраэдрической и с плоской квадратной структурой. Например, комплекс тетрахлороникелат (II) [NiCl4]2? имеет тетраэдрическую структуру, а комплекс тетрацианоникелат(II) [Ni(CN)4]2? имеет плоскую квадратную структуру.

В качественном и количественном анализе для обнаружения ионов никеля (II) используется щелочной раствор бутандиондиоксима, известного также под названием диметилглиоксима. При его взаимодействии с ионами никеля (II) образуется красное координационное соединение бис (бутандиондиоксимато) никель(II). Это -- хелатное соединение и бутандиондиоксимато-лиганд является бидентатным.

4. Свойства соединений железа в степенях окисления 0 ,+2, +3, +6

Степень окисления 0 (пентакарбонилжелезо).

В 1916 на Баденскойанилиново-содовой фабрике (BASF) в Германии обнаружили забытый стальной баллон со сжатым монооксидом углерода. Когда баллон вскрыли, на дне его было около 500 мл желтой маслянистой жидкости с характерным запахом. Была установлена его химическая формула [Fe(CO)5]. При нагревании в инертной атмосфере этот карбонильный комплекс вполне устойчив (закипает при 103° С), однако легко сгорает на воздухе. Группы СО могут замещаться на другие лиганды - амины, непредельные органические соединения (например, бутадиен С4Н6) и др.:

[Fe(CO)5] + C4H6 = [Fe(C4H6)(CO)3] + 2CO.

Степень окисления +2

Оксид железа (II) -- черный порошок, пирофорен (в мелкораздробленном состоянии способен самовоспламеняться). Ввиду того, что довольно трудно «поймать и зафиксировать» соединения железа в степени окисления +2, получить FeO не удается ни окислением железа, ни разложением соответствующего ему гидроксида Fe(OH)2. Получают оксид железа (II) разложением оксалата (соли щавелевой кислоты) или восстановлением оксида железа (III):

FeC2O4*2Н2О ?FeO + СО2 + СО + 2Н2О

Fe2O3 + CO = 2FeO + CO2

Оксид железа (II) проявляет основные свойства, не взаимодействует с водой, но легко реагирует с кислотами:

FeO + 2HCl = FeCl2 + H2O

Проявляет восстановительные свойства:

3FeO + 10HNO3 = 3Fe(NO3)3 + NO + 5H2O

Гидроксид железа (II) можно получить обменной реакцией между растворимой в воде солью железа (II) и щелочью:

FeSO4+ 2NaOH = Fe(OH)2+ Na2SO4

Свежеприготовленный осадок имеет серовато-зеленоватую окраску, но быстро темнеет вследствие окисления (см. выше). Проявляет слабые амфотерные свойства с преобладанием основных

Fe(OH)2+2HBr = FeBr2 + 2H2O

Fe(OH)2+2NaOH(конц) ?Na2[Fe(OH)4] тетрагидроксоферрат (II) натрия

Соли железа (II) в водных растворах неустойчивы. В присутствии окислителей они медленно окисляются, образуя соли железа +3:

2FeCl2 + Cl2 = 2FeCl3

Кристаллогидрат сульфата железа(II) FeSO4*7H2O -- железный купорос, наиболее распространенная соль железа (II). Это светло-зеленое кристаллическое вещество, растворимое в воде; на воздухе и в растворе постепенно окисляется. Замечено, что в присутствии сульфата аммония FeSO4 значительно более устойчив к окислению, а из водного раствора такой смеси выпадают кристаллы двойной соли (NH4)2Fe(SO4)2*6Н2О. Эту соль называют солью Мора и применяют в аналитической химии.

Степень окисления +3

Оксид железа(III) порошок красно-бурого цвета. В промышленности его получают хорошо знакомой Вам реакцией обжига пирита:

4FeS2 + 11О2 = 2Fe2O3 + 8SO2

Проявляет слабоамфотерные свойства. Хорошо растворяется в кислотах с образованием солей Fe3+:

Fe2O3 + 3H2SO4 = Fe2(SO4)3 + 3H2O

Вместе с тем при сплавлении со щелочами или карбонатами щелочных металлов образует соли ферриты:

Fe2O3 + 2NaOH = 2NaFeO2 + Н2О

Fe2О3 + Na2CO3 = 2NaFeO2 + CO2

При нагревании оксид железа (III) восстанавливается водородом или оксидом углерод (II).

Гидроксид железа (III) получают добавлением щелочи к растворам солей железа (III). При этом образуется буро-коричневая желеобразная масса, которую принято называть гидроксидом железа (III) и обозначать формулой Fe(OH)3. На самом деле это соединение является полимерным, поэтому его состав правильнее выражать формулой mFe2O3*nH2O. При нагревании он переходит сначала в метагидроксид, а затем в оксид железа (III):

Fe(OH)3 = FeO(OH) + Н2О и далее

2FeO(OH) = Fe2O3 + Н2О

Для того чтобы уравнение реакции было не таким громоздким, допускается использовать формулу Fe(OH)3. Гидроксид железа (III) проявляет слабые амфотерные свойства. Растворяется в кислотах с образованием солей Fe3+:

2Fe(OH)3+ 3H2SO4 = Fe2(SO4)3 + 6H2O

Слабо взаимодействуя с растворами щелочей, образует комплексные гидроксоферриты сложного состава; при сплавлении со щелочами легко образует ферриты. Соли железа (III) в растворах подвергаются гидролизу, поэтому их растворы окрашены в бурый цвет. Соли, образованные катионом Fe3+ и многозарядным анионом - остатком слабой кислоты в растворе полностью гидролизуются, образуя гидроксид:

Fe2(CO3)3 + 3Н2О = 2Fe(OH)3v+ 3CO2^

Соли железа (III) в растворах сравнительно устойчивы, но при взаимодействии с достаточно активными восстановителями проявляют себя, как окислители, переходя в соли железа (II):

2FeCl3 + 2KI = 2FeCl2 + I2 + 2KCl

Стандартный электродный потенциал для перехода Fe3+ + з = Fe2+ составляет +0,77 B. Поэтому нельзя получить соли железа +3, содержащие анионы сильных восстановителей (I-,S2-). Они моментально превращаются в соответствующие соли железа +2:

Fe2S3 = 2FeS + S

Сульфат железа (III) способен к образованию двойной соли, называемой железоаммонийными квасцами (NH4)Fe(SO4)2*12Н2О.

Степень окисления +6

Оксид железа (VI) должен быть кислотным оксидом. Ему соответствует железная кислота H2FeO4. Однако, и оксид, и кислота неустойчивы и в свободном виде не получены. Устойчивы только соли железной кислоты - ферраты в сильно щелочной среде. Ферраты щелочных металлов можно получить окислением солей железа (III) сильными окислителями в сильно щелочной среде:

2FeCl3 + 3Br2 + 16KOH = 2K2FeO4 + 6KBr + 6KCl + Н2О

Ферраты в растворе имеют пурпурно-красную окраску. Они являются очень сильными окислителями.

Стандартный электродный потенциал для полуреакции FeO42-+ 8H++ 3з = Fe3+ + 4Н2О составляет +1,9 B. Поэтому при подкислении раствора ферраты переходят в соединения железа +3.Комплексные соединения железа. Обладая набором частично вакантныхорбиталей, железо склонно к комплексообразованию. Наиболее типичное координационное число для ионов Fe2+ и Fe3+ равно 6. Даже в водных растворах обычных солей, например хлоридов, катион железа координационно связан с шестью молекулами воды в аквакомплекс [Fe(H2O)6]3+. Однако более распространены анионные комплексы железа. При нагревании хлоридов железа с концентрированными растворами цианида калия образуются гексацианоферраты калия с похожими формулами и названиями:

FeCl2 + 6KCN= K4[Fe(CN)6] + 2KCl гексацианоферрат(II) калия, желтая кровяная соль

FeCl3 + 6KCN = K3[Fe(CN)6] + 3KCIгексацианоферрат(III)калия, красная кровяная соль

Это растворимые в воде кристаллические вещества соответственно желтого и красно-оранжевого цвета, очень устойчивые на воздухе и в растворе. В аналитической химии применяются в качестве реагентов для обнаружения катионов Fe3+ и Fe2+ соответственно, с которыми они образуют нерастворимые вещества интенсивно-синего цвета. Ранее считали, что образующиеся осадки представляют собой различные вещества, и даже дали им самостоятельные тривиальные названия: берлинская лазурь и турнбуллева синь. В настоящее время полагают, что в обоих случаях образуется одно и тоже вещество --гексацианоферрат (II) железа (III), калия:

FeCl3 + K3[Fe(CN)6] ? KFe3+[Fe2+(CN)6] + KCl

FeCl3 + K4[Fe(CN)6] ?KFe3+[Fe2+(CN)6] + KCl

Надо отметить, что «кровавые» названия комплексных соединении железа возникли не случайно. Желтую кровяную соль на заре химии получали нагреванием измельченных рогов, копыт и крови животных с карбонатом калия К2СО3 и железными опилками. В свою очередь, красную кровяную соль получали, окисляя желтую. Комплексы Fe3+ с роданид-аниономSCN-окрашены в интенсивный красный цвет, их образование используют как чувствительный тест для обнаружения и количественного определения катиона железа (III) в растворах:

Fe3+ + 3SCN-= Fe(SCN)3 (а также [Fe(SCN)4]-)

Но стоит только к кроваво-красному раствору роданида железа добавить раствор фторида натрия, как он становится совершенно бесцветным. Образуется очень прочный комплексный ион [FeF6]3-, при этом роданидныйкомплекс разрушается:

[Fe(SCN)3] + 6F- = [FeF6]3-+ 3SCN-

Красная кровяная соль за счет атома железа в степени окисления +3 проявляет значительные окислительные свойства, особенно в щелочной среде, например:

2K3[Fe(CN)6] + Pb(OH)2 + 2КОН = 2K4[Fe(CN)6] + PbO2 + 2H2O.

5. Цис-, транс-изомерия комплексных соединений платины

Циc-изомер:

Транc-изомер получается при замещении двух молекул аммиака на хлорид-ионы в комплексе тетрааммин-платина (II):

[Pt(NH3)4]Cl2 +2HC1 = [Pt(NH3)2Cl2] + 2NH4C1.

Транс-изомер:

Для понимания направления течения реакций замещения лигандов в комплексах важное значение имеет принцип транс-влияния («Поведение комплексов зависит от трансзаместителей»), установленный И. И. Черняевым (1926). Согласно этому принципу некоторые лиганды облегчают замещение лигандов, находящихся с ними в транс-положении. Таким образом, при синтезе соединений платины играет важную роль не только природа реагентов, но и порядок их смешения, временные и концентрационные соотношения: в зависимости от условий синтеза могут быть получены изомеры положения. Трансзаместители находятся на линии (координате) проходящей через центральный атом, цисзаместители находятся как бы сбоку от центрального атома -- на линии (координате), не проходящей через центральный атом. Экспериментально установлено, что для соединений Pt (II) транс-влияниелигандов увеличивается в ряду

Н2О < NH3 < ОН- < С1- <Br- < NCS-, I- < NO2 < СО, CN-

Принцип транс-влияния сыграл выдающуюся роль в развитии синтеза комплексных соединений. Одним из хорошо изученных комплексов платины, носящих имя его открывателя, является соль Цейзе K[PtCl3(С2H4)]. Это окрашенное в желтый цвет соединение было синтезировано датским фармацевтом Цейзе еще в 1827г. Соль Цейзе -- одно из первых синтетически полученных металлоорганических соединений; одним из лигандов в координационной сфере платины (II) здесь является этилен (донорные свойства проявляет двойная связь Н2С==СН2).

6. Медико-биологическое значение элементов VIIIБ группы

Содержание железа в организме человека и депонирование в органах и тканях. Биологическая роль.

В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания). В организме взрослого человека содержится около 3,5 грамма железа (около 0,02 %), из которых 75 % являются главным действующим элементом гемоглобина крови, остальное входит в состав ферментов других клеток, катализируя процессы дыхания в клетках. Депонируется в печени.

Обычно железо входит в ферменты в виде комплекса, называемого гемом. В частности, этот комплекс присутствует в гемоглобине -- важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

Комплексы железа, отличные от гема, встречаются, например, в ферменте метан-моноксигеназе, окисляющем метан в метанол, в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК.

Обычно железо входит в ферменты в виде комплекса, называемого гемом. В частности, этот комплекс присутствует в гемоглобине -- важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

Комплексы железа, отличные от гема, встречаются, например, в ферменте метан-моноксигеназе, окисляющем метан в метанол, в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК.

Неорганические соединения железа встречается в некоторых бактериях, иногда используется ими для связывания азота воздуха.

В организм животных и человека железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, свёкла). Интересно, что некогда шпинат ошибочно был внесён в этот список (из-за опечатки в результатах анализа -- был потерян «лишний» ноль после запятой).

Суточная потребность человека в железе следующая: дети -- от 4 до 18 мг, взрослые мужчины -- 10 мг, взрослые женщины -- 18 мг, беременные женщины во второй половине беременности -- 33 мг. У женщин потребность несколько выше, чем у мужчин. Как правило, железа, поступающего с пищей, вполне достаточно, но в некоторых специальных случаях (анемия, а также при донорстве крови) необходимо применять железосодержащие препараты и пищевые добавки (гематоген, ферроплекс).

Содержание железа в воде больше 1--2 мг/л значительно ухудшает её органолептические свойства, придавая ей неприятный вяжущий вкус, и делает воду малопригодной для использования, вызывает у человека аллергические реакции, может стать причиной болезни крови и печени (гемохроматоз). ПДК железа в воде 0,3 мг/л.

Избыточная доза железа (200 мг и выше) может оказывать токсическое действие. Передозировка железа угнетает антиоксидантную систему организма, поэтому употреблять препараты железа здоровым людям не рекомендуется.

7. Биологическая роль

Входит в состав гемоглобина, участвует в кроветворении, дыхании и окислительно-восстановительных реакциях, недостаток железа приводит к анемии

Применение железа в медицине

При анемических состояниях лечебное применение железа обусловлено его участием в процессе гемоглобинообразования, совершающемся в эритробластах костного мозга.

Показаниями к применению железа являются железодефицитные анемии различной этиологии (анемии от кровопотерь, алиментарные анемии, хлороз, анемии беременных и др.), протекающие с пониженным содержанием железа в крови и истощением тканевых резервов железа, а также состояния латентного (бессимптомного) дефицита железа, встречающегося у 20-30% практически здоровых женщин. Назначение железа показано и при других состояниях гипосидероза (недостаточности железа), сочетающихся с анемией или проявляющихся самостоятельно: при сидеропенической дисфагии Россолимо-Бехтерева, коилонихии, извращенности вкуса и обоняния, зловонном насморке (онезе).

При назначении препаратов железа внутрь следует учитывать анатомо-функциональное состояние желудочно-кишечного тракта, особенно его верхних отделов желудка, двенадцатиперстной кишки и начального отдела тощей кишки, являющихся наиболее активными участками всасывания железа. После кровопусканий, активирующих эритропоэз, абсорбция железа возрастает и осуществляется на протяжении всего кишечника, включая слепую кишку.

Лечебное применение железа обусловлено необходимостью восстановления нормальной концентрации не только гемоглобина, но и железа в тканях. Недостаточное лечение, в результате которого резервы тканевого железа не восполняются, способствует сохранению латентного дефицита железа и быстрому рецидиву анемии.

Критериями эффективности лечения препаратами железа считаются:

* повышение цветного показателя крови;

* повышение числа эритроцитов показателя гематокрита (в меньшей степени);

* нормализация величины концентрации сывороточного железа;

* снижение общей и латентной железо-связывающей способности сыворотки крови;

* повышение насыщенности трансферрина железа;

* пополнение тканевых резервов железа, определяемых при помощи десфераловой пробы.

Показателем эффективности лечения препаратами железа является также обратное развитие трофических нарушений эпителия и эндотелия, связанных с дефицитом железа.

Содержание никеля в организме человека и депонирование в органах и тканях. Биологическая роль.

Никель в организме является необходимым микроэлементом. В животном организме Никель обнаружен в печени, коже и эндокринных железах; накапливается в ороговевших тканях (особенно в перьях). Установлено, что Никель активирует фермент аргиназу, влияет на окислительные процессы.

У растений принимает участие в ряде ферментативных реакций (карбоксилирование, гидролиз пептидных связей и других). На обогащенных Никелем почвах содержание его в растениях может повыситься в 30 раз и более, что приводит к эндемическим заболеваниям (у растений - уродливые формы, у животных - заболевания глаз, связанные с повышенным накоплением Никеля в роговице: кератиты, кератоконъюнктивиты).

8. Применение никеля в медицине

Применяется при изготовлении брекет-систем и протезирование

Биологическая роль

Преимущественно накапливается никель в организме человека в печени, гипофизе, роговице глаза.

Содержание кобальта в организме человека и депонирование в органах и тканях. Биологическая роль.

Биологическая роль

Преимущественно накапливается в печени, крови, селезенке, щитовидной железе, костной ткани, яичниках, гипофизе,лимфатических узлах и железистых.

Кобальт, один из микроэлементов, жизненно важных организму. Участвует в синтезе ряда ферментов (глициндипептидазы, холинэстеразы, ацилазы), гормона щитовидной железы, витамина В12, гемоглобина и д.р; стимулирует кроветворение, деятельность щитовидной железы, регулирует углеводный обмен.

Потребность человека в кобальте 0,007-0,015 мг, ежедневно. В теле человека содержится 0,2 мг кобальта на каждый килограмм массы человека. При отсутствии кобальта развивается акобальтоз.

Стимулирует процесс кроветворения, участвует в синтезе белков, в том числе ферментных, регулирует углеводный обмен, влияя на обмен веществ. Но важнейшая роль кобальта состоит в эндогенном синтезе витамина В12 (цианокобаламина). Активизирует Фермент ангидразу, влияет на окислительные процессы и углеводный обмен; входит в состав инсулина.

Суточная потребность человеческого организма в кобаламине составляет 40-70 мкг, которая увеличивается у беременных женщин и в период лактации.

Потребность в кобальте обеспечивается при сбалансированном пищевом рационе (10-100 мкг). Кобальт содержится в микродозах в речной, озерной и морской воде, в морских растениях, в рыбе и морепродуктах.

Из пищевых продуктов больше всего содержат кобальта:

* горох - 15 мкг/%,

* печень (говяжья) - 13,53 мкг/%,

* свекла - 12,1 мкг/%,

* земляника - 9,8 мкг/%,

* сыр - 4,38 мкг/%.

Также содержится кобальт в молоке, хлебопродуктах, овощах.

Избыток кобальта для человека вреден.

В 1960-х годах соли кобальта использовались некоторыми пивоваренными компаниями для стабилизации пены. Регулярно выпивавшие более четырёх литров пива в день получали серьёзные побочные эффекты на сердце, и, в отдельных случаях, это приводило к смерти. Известные случаи т. н. кобальтовой кардиомиопатии в связи с употреблением пива происходили с 1964 по 1966 годы в Омахе (штат Небраска), Квебеке (Канада), Левене(Бельгия), и Миннеаполисе (штат Миннесота). С тех пор его использование в пивоварении прекращено, и в настоящее время являетсязапрещенным.

Роль кобальта в медицине

Кобальт помогает в лечении малокровия. При этом заболевании резко уменьшается число эритроцитов, снижается гемоглобин. Развитие болезни ведет к смерти. В поисках средства от этого недуга врачи обнаружили, что сырая печень, употребляемая в пищу, задерживает развитие малокровия. После многолетних исследований из печени удалось выделить вещество, способствующее появлению красных кровяных шариков. Еще восемь лет потребовалось для того, чтобы выяснить его химическое строение. За эту работу английской исследовательнице Дороти Кроуфут-Ходжкин присуждена в 1964 г. Нобелевская премия по химии. Вещество это получило название витамина B12. Оно содержит 4% кобальта.

Таким образом, выяснена основная роль солей кобальта для живого организма - они участвуют в синтезе витамина B12. В последние годы этот витамин стал привычным в медицинской практике лечебным средством, которое вводят в мышцы больного, в чьем организме по той или иной причине не хватает кобальта.

Список литературы

Монография:

1. «Общая химия» под редакцией Н.Л. Глинко стр.670-699

2. «Общая химия» под редакцией В. А. Рабиновича стр.650 - 676

3. «Введение в бионеорганическую и биофизическую химию» Под редакцией А.С. Ленский стр. 166-172

Интернет-ресурс:

1. http://www.referatbank.ru/referat/preview/7786/referat-vosmaya-gruppa-periodicheskoy-sistemy-himicheskih-elementov.html

2. http://www.osaber.net/

3. http://www.public-liceum.ru/files/746/757/Zhelezo_i_ego_soedineniya.pdf

4. http://dic.academic.ru/

5. http://www.chem100.ru/elem.php?n=27

6. http://www.alhimikov.net/otkritie_elementov/Ni.html

7. http://www.en.edu.ru/publications/internet/2186?catalogueId=223

8. http://www.twirpx.com/file/1014650/

9. http://dop.uchebalegko.ru/docs/index-33147.html

Размещено на Allbest.ru


Подобные документы

  • Характеристика, сведения об истории открытия элементов и их распространённости в природе. Изменение в группе величины радиусов атомов и ионов, потенциала ионизации. Свойства соединений азота в отрицательных степенях окисления: нитриды, гидроксиламин.

    реферат [258,9 K], добавлен 28.04.2016

  • Физические свойства элементов VIIIB группы и их соединений, в частности, соединений железа. Анализ комплексных соединений железа (II) и железа (III) с различными лигандами с точки зрения теории кристаллического поля. Строение цианидных комплексов железа.

    курсовая работа [1,3 M], добавлен 24.02.2011

  • Характеристика кобальта по положению в периодической системе. Электронная формула. Нахождение кобальта в природе. Получение кобальта. Химические свойства кобальта, соединений кобальта. Биологическая роль кобальта для сельского хозяйства.

    реферат [12,7 K], добавлен 08.04.2005

  • История производства и использования железа. Общая характеристика элемента, строение атома. Степени окисления и примеры соединений, основные реакции. Нахождение железа в природе, применение. Содержание железа в земной коре. Биологическая роль железа.

    презентация [5,3 M], добавлен 09.05.2012

  • Электронные структуры d-элементов и их валентные возможности. Кислотно-основные свойства гидроксидов. Характеристика элементов подгрупп меди, цинка, титана, ванадия, хрома, марганца, их биологическая роль и применение. Металлы семейств железа и платины.

    курс лекций [294,4 K], добавлен 08.08.2015

  • Запасы железных руд России. История получения железа. Основные физические и химические свойства железа. Способы обнаружения в растворе соединений железа. Применение железа, его сплавов и соединений. Сплавы железа с углеродом. Роль железа в организме.

    реферат [19,6 K], добавлен 02.11.2009

  • Электронное строение железа, характерные степени окисления. Нахождение железа в природе, способы получения, применение. Парамагнитные сине-зеленые моноклинные кристаллы. Соединения железа, их физические и химические свойства, биологическое значение.

    реферат [256,2 K], добавлен 08.06.2014

  • История открытия: свинцово-серый с металлическим блеском минерал молибденит. Физико-химические свойства, переработка молибденового сырья. Применение молибдена и его соединений: биологическая роль и токсикология. Кластеры, содержащие атомы молибдена.

    реферат [160,8 K], добавлен 27.06.2009

  • Основные классы неорганических соединений. Распространенность химических элементов. Общие закономерности химии s-элементов I, II и III групп периодической системы Д.И. Менделеева: физические, химические свойства, способы получения, биологическая роль.

    учебное пособие [3,8 M], добавлен 03.02.2011

  • Общие сведения о свойствах d-элементов. Степени окисления. Комплексообразование, металлопорфирины. Общие сведения о биологической роли d-элементов: железа, меди, кобальта, марганца, молибдена. Колебательные реакции. Методика реакции Бриггса-Раушера.

    курсовая работа [704,9 K], добавлен 23.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.