Теория МО ЛКАО

Построение квантово-механической теории валентности. Происхождение электронного облака в межъядерной области и природа устойчивости простейшей молекулярной системы. Спектрально наблюдаемые свойства молекул. Физическое происхождение феномена валентности.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 29.01.2009
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Теория МО ЛКАО.

Молекулярные интегралы и формула энергетические уровни:

Эти формулы удобны для графического исследования уровней МО с помощью компьютера.

Наконец, для проверки физической корректности расчётов и положенных в их основу схем проанализируем предельные значения интегралов и уровней энергии МО:

Пределы интегралов (Квази-ион He+) Пределы электронной энергии

Можно видеть, что с физической точки зрения расчёт совершенно верно предсказывает пределы изменения электронной энергии системы в электростатическом поле ядер в гипотетическом процессе их сближения от бесконечного удаления до гипотетического слияния. Так подтверждается корректность теории, и это особенно важно, поскольку при её построении было использовано значительное количество непростых приближений.

В простейшей модели без оптимизации базисной АО получаем :

Показатель экспоненты в АО фиксирован и равен

Все выводимые ниже выражения легко получаются из более общих выражений при

Интегралы существенно упрощаются и получаются следующие выражения:

1) Уровень исходной базисной АО

2) Интеграл перекрывания:

.

Интегрируя по частям, получаем

,

3) Кулоновский интеграл:

,

4) Резонансный интеграл:

Отсюда получаются энергетические уровни МО в виде:

.

Этот простой подход был исторически первым на пути построения квантово-механической теории валентности. Несмотря на свою ограниченность, он позволил на качественном уровне понять и происхождение электронного облака в межъядерной области, и природу устойчивости простейшей молекулярной системы. В количественном отношении этот примитивный подход очень слаб, и, вроде бы, не идёт ни в какое в сравнение с уточнёнными расчётами. НО...!!!

Самый трудный шаг на неизведанном и полном неясностей пути создания ранее не существовавшей теории всегда первый. Автор этого учебного текста наблюдал триумфальное развитие квантовой химии с середины 60-х годов по настоящее время (январь 1999 года) и застал переход от её исходного состояния к уже современному этапу и видел ещё слегка недоверчивое, изумлённое отношение химиков-синтетиков - людей, вообще-то весьма прагматично и дерзко мыслящих о веществе, к необычному ещё в то время варианту теории валентности, которая властно и как бы играючи вытесняла вариант привычной с 19 века качественной теории Бутлерова, оперирующей валентными штрихами с её причудливым нагромождением дополнительных конструкций. Оказалось, что не только качественно, но и количественно можно легко и точно объяснять и предсказывать спектрально наблюдаемые свойства молекул. Автор со студенческих лет хорошо помнит многочисленные дискуссии о сравнительных достоинствах и недостатках методов МО ЛКАО и ВС ЛКАО. Где-то сейчас метод ВС...?!!

Бесспорным фаворитом теории валентности стал метод МО ЛКАО, идеально приспособленный к алгоритмам современной вычислительной математики и компьютерной техники.

Сейчас уже совершенно ясно, что теория ЛКАО МО была настоящей идейной революцией. В её основу положено одноэлектронное приближение. Молекулярный ион водорода был первой и простейшей системой, на примере которой было понято и теоретически изучено физическое происхождение феномена валентности.

Необходимые молекулярные интегралы принимают вид

.

Выражая локальные переменные (r1, r2) через единые декартовы координаты , запишем выражение МО в виде:

.

Оптимизированные параметры отвечают абсолютному минимуму целевой функции - полной энергии связывающей МО, определяемой в зависимости от двух переменных: межъядерного расстояния и эффективного заряда ядра - показателя экспоненты в формуле базисной АО. Энергетические уровни передаются формулой, на первый взгляд того же вида, что и в расчётах с одним варьируемым параметром R:

.

Однако весьма существенное качественное отличие этой формулы состоит в том, что расчёт с двумя варьируемыми параметрами R , z--состоит в том, что в общем случае является довольно сложной функцией обеих переменных, и лишь его предел переходит в величину E1s(H):

,

Оптимизация энергетического уровня за счёт дополнительного варьирования показателя экспоненты приводит к намного лучшему согласию с экспериментом.

График функции представляет собой поверхность. Рассматривая переход системы в минимум энергии вдоль одного лишь межъядерного расстояния, не следует забывать о сопутствующем изменении и второй переменной - показателя экспоненты базисной АО. Мысленное сближение частиц протекает в условном энергетическом минимуме адиабатического потенциала и завершается достижением точки абсолютного минимума. Условный минимум на поверхности энергии представляет собою пространственную кривую, а его проекция на координатной плоскости это плоская кривая, которую называют координатой реакции исследуемого процесса. В этом процессе образование молекулярной системы формально является лишь промежуточной стадией.

Применяя графические процессоры для современных персональных компьютеров (MATHCAD PLUS/PENTIUM 2,3,4), можно проиллюстрировать все вычисления. Наглядные пространственные графики на рис. изображают адиабатические потенциалы основного и первого разрыхляющего одноэлектронных уровней E±--(z,R).

Признаки связывающих и разрыхляющих свойств МО (признаки связи и разрыхления).

Рис.Графические изображения молекулярных орбиталей s(s)- типа .

Используют три способа графического изображения МО молекулярного иона H2+ :

1) Вариант A - изображение МО в виде поверхности.

Вариант B - изображение МО в топографической форме

(в виде совокупности горизонтальных сечений - линий уровня).

3) Вариант C - изображение сечения МО вдоль линии связи.

Во всех случаях ярко выделяются пучности и узлы МО, формирующие пространственные «лепестки».

Подобное изображение возможно только для МО, базис которых составляют лишь прос-тейшие1s-АО.

Размещено на Allbest.ru


Подобные документы

  • Понятие о валентности как свойстве атомов присоединять определённое число атомов другого элемента. Определение валентности элементов по формулам. Сумма единиц валентности всех атомов одного элемента равна сумме единиц валентности атомов другого элемента.

    лекция [10,4 K], добавлен 16.05.2004

  • Примеры важнейших оксидов. Сравнение качественного и количественного состава в молекулах HCl, H2O, NH3, CH4. Эволюция понятия "валентность". Последовательность действий при определении валентности атомов элементов в соединениях, составление формулы.

    презентация [1,6 M], добавлен 02.10.2012

  • Общая последовательность расчёта электронного строения молекулы по методу МО ЛКАО. Простой метод Хюккеля. Примеры молекулярных структур для метода МОХ. Аллил в методе МОХ. Общие свойства электронного распределения в системе хюккелевского углеводорода.

    реферат [441,8 K], добавлен 01.02.2009

  • Способы расчетов молекулярной геометрии. Теория отталкивания локализованных электронных пар в валентной оболочке центрального атома. Объекты описания в теории ЛЭП. Примеры, иллюстрирующие прогнозы теории ЛЭП. Связь теории ЛЭП с теорией гибридизации.

    реферат [232,8 K], добавлен 01.02.2009

  • Простейшая одноэлектронная двуцентровая связь, иона водорода. Максимальное число возможных в природе различных химических связей между парами атомов. Круг специфических физических явлений, приводящих к образованию химических связей, теории валентности.

    реферат [169,5 K], добавлен 29.01.2009

  • Основные характеристики атомов. Связь кислотно-основных свойств оксида с электроотрицательностью. Разделение элементов на металлы и неметаллы. Типы химической связи. Схемы образования молекул простых веществ, углекислого газа. Общее понятие о валентности.

    лекция [235,5 K], добавлен 22.04.2013

  • Сущность и состав кислот, их классификация по наличию кислорода и по числу атомов водорода. Определение валентности кислотных остатков. Виды и структурные формулы кислот, их физические и химические свойства. Результаты реакции кислот с другими веществами.

    презентация [1,7 M], добавлен 17.12.2011

  • Элементы теории групп симметрии молекул. Классы смежности и классы сопряженных элементов. Групповые постулаты и факторизация групп. Векторные (линейные), эвклидовы и унитарные пространства, матрицы. Теория, характер представлений групп симметрии молекул.

    дипломная работа [519,5 K], добавлен 27.07.2010

  • История развития квантово-химических методов анализа "структура вещества – проявляемая физиологическая активность". Вычисление геометрии органических соединений. Физические свойства, механизм действия и синтез сульфаниламидов, параметры их молекул.

    дипломная работа [2,1 M], добавлен 25.03.2011

  • Уравнение Шрёдингера для простейшей схемы одноэлектронной теории. Система приближений. Базис и его свойства. Базисные функции. Эффективный гамильтониан. Простейшее упрощение молекулярного гамильтониана. Математическая схема квантовой механики по Дираку.

    реферат [47,1 K], добавлен 31.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.