Хроматографическое разделение углеводов

Хроматография. Пути развития хроматографического анализа и возможности классификации хроматографических методов. Выделение и очистка углеводов. Хроматографическое разделение и его основные принципы. Качественная тонкоструйная хроматография сахаров.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 29.09.2008
Размер файла 772,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1) анисовый альдегид + серная кислота;

2) нафторезорцин +серная кислота

3) нафторезорцин +фосфорная кислота (кетозы дают красное окрашивание, альдозы - синее);

4) азотнокислое серебро + основание;

5) кислый анилинфталат;

6) о-аминодифенил + ортофосфорная кислота;

7) дифениламин + анилин + фосфорная кислота;

8) п-анизидинфталат или хлоргидрат н-анизидина (гексозы дают зеленое окрашивание; пентозы -- фиолетово-красное; 6-дезоксигексозы -- желто-зеленое; уроновые кислоты -- коричневое);

9) мочевина + фосфорная или соляная кислота;

10) хлористый 2,3,5-трифенилтетразолий;

11) бихромат калия + серная кислота;

12) азотнокислое железо(III) +солянокислый гидроксиламин;

13) перманганат калия + едкий натр;

14) карбазол + серная кислота;

15) димедон + ортофосфорная кислота (кетозы дают серо-зеленое окрашивание);

16) фенол+серная кислота;

17) тимол + серная кислота;

и многие другие.

3.2. КОЛИЧЕСТВЕННАЯ ТОНКОСЛОЙНАЯ ХРОМАТОГРАФИЯ

Тонкослойная хроматография находит все большее применение для количественного определения углеводов. Этот метод чрезвычайно полезен при изучении кинетики реакций, исследовании их механизма и определении выхода продуктов, однако он применим лишь для анализа смесей, компоненты которых можно полностью разделить. Способы количественного определения делят на две большие группы:

а) прямое определение (установление количества вещества непосредственно на пластинке);

б) косвенное определение (элюирование пятен вещества с последующим анализом элюата физическими методами).

Для прямого определения используются денситометрия и радиометрия элюатов. Обе группы методов требуют построения калибровочных кривых, связывающих концентрацию компонента с интенсивностью окраски, степенью поглощения или уровнем радиоактивности соединения.

Если на каждом этапе анализа соблюдаются все меры предосторожности, точность описанных ниже методов составляет 3--5%. Измерение интенсивности окраски сахара или продуктов его распада непосредственно на хроматограмме производится методом денситометрии. Ввиду того, что сами сахара не окрашены, их обрабатывают реактивом, вызывающим появление окрашенного пятна на фоне слоя сорбента. Цвет последнего, как правило, не изменяется (белый). Если сорбент все-таки окрашивается, необходимо, чтобы окрашивание было. Пятна должны иметь четко очерченные границы и не должны выцветать. Даллас, а также Шеллард и Алам подробно рассмотрели факторы, влияющие на точность и воспроизводимость результатов анализа

Чтобы оценить содержание сахаров в образце, можно также сфотографировать хроматограмму (или сделать фотокопию) и, разрезав поученный снимок на полосы, просканировать их на денситометре.

Сахара, несущие радиоактивную метку, количественно определяют непосредственно на хроматограмме с помощью счетчика радиоактивности или радиоавтографическим методом путем денситометрического сканирования рентгеновского снимка хроматограммы.

После вымывания сахара проводят либо прямую оценку его количества, либо предварительно обрабатывают его подходящим реактивом, а затем измеряют поглощение в УФ- или видимом свете. Трудности возникают в тех случаях, когда с сорбента элюируются посторонние вещества, мешающие измерению поглощения. Чтобы исключить возможные ошибки, необходимо тем же способом иследовать элюат образца сорбента, взятого на уровне пятна.

Сахара, несущие радиоактивную метку, количественно определяют в элюате при помощи жидкостного сцинтилляционного счетчика. Высокая точность оценки достигается даже в тех случая, когда сорбент (~0,1 г) попадает в ампулу счетчика (15 мл).

МЕТОДИКА

ПРЯМОЕ ДЕНСИТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ САХАРОВ (на примере использования кукурузной патоки). Анализ проводится на стеклянных пластинках со слоем силикагеля толщиной 0,5 мм. Пластинки используются сразу после получения. Образцы кукурузной патоки с известным содержанием твердого остатка разбавляют водой до концентрации 1 % (по этому остатку). С помощью шприца на 25 мкл, снабженного дозатором, полученный раствор наносят на пластинку полосами шириной 6 мм, содержащими от 5 до 90 мкг твердого вещества. Чтобы полосы были узкими, их подсушивают током теплого воздуха. (если образец растворяют в каком-либо органическом растворителе, раствор при подсушивании может «ползти» по внешней стороне иглы шприца, что приводит к потере вещества при нанесении). На каждой пластинке помещается 12 полос: 6 -- контрольного сиропа и 6 -- анализируемого.

Пластинку проявляют в подходящей системе растворителей при ~25°С; фронт растворителя должен подняться на 12 см от стартовой линии. Мальтоолигосахариды вплоть до декасахарида можно разделить в системе этилацетат--метанол--вода (37:40:23 по объему), однако этот проявитель эффективен лишь для пластинок с силикагелем F-254.

Несколько изменив состав проявителя, его можно применять и с другими сорбентами.

Пластинку высушивают в токе теплого воздуха, опрыскивают 50%-ной серной кислотой и прокаливают при 120 °С для обнаружения пятен. Чтобы полученные результаты были воспроизводимыми, пластинка должна быть равномерно опрыскана мелкими капельками распыляемой жидкости.

Количественную оценку состава смеси проводят методом трансмиссионной денситометрии на денситометре, снабженном самописцем и интегратором для определения площади каждого пика.

Пластинку сканируют в горизонтальном направлении так, что сначала регистрируются все моносахариды, затем дисахариды и т. д. Для определения площадей пиков можно также использовать планиметр. Количество каждого компонента определяют по отношению к соответствующему сахару в стандартном образце путем сравнения площадей пиков. В данном случае необходимость в использовании фильтра к лампе денситометра отсутствует.

При использовании в качестве проявителя смеси (3:4:2 по объему) этилацетат -- метанол -- вода, которая позволяет получить четкое разделение высших сахаров, рассматриваемый метод обеспечивает высокую точность результатов (табл.4).

Таблица 4. Состав кукурузной патоки

определенный методом бумажной и тонкослойной хроматографии

Сахариды, %

моно

ди

три

тетра

пента

гекса

гепта

окта

нона + высшие

Обычная патока (43 экв. глюкозы)

БХ

20,5

15,4

11,3

9,8

7,7

6,0

4,7

3,9

21,5

ТСХ

20,1

14,6

11,

8,6

7,2

5,4

4,9

3,4

23,9

Станд. отклонение для ТСХ

0,7

0,51

0,40

0,30

0,37

0,35

0,11

0,20

0,41

Патока с низким содержанием глюкозы и высоким содержанием мальтозы (43 экв. глюкозы)

БХ

6,8

34,4

17,2

9,4

2,3

2,6

2,4

4,0

20,0

ТСХ

7,3

35,1

17,5

8,5

2,5

2,4

2,0

2,8

21,6

Станд. отклонение для ТСХ

1,25

4,36

3,10

0,66

0,70

1,10

0,77

0,65

1,33

Патока с высоким содержанием глюкозы и мальтозы (70 экв. глюкозы)

БХ

41,1

41,4

3,2

4,8

3,8

1,8

2,4

-

1,6

ТСХ

40,8

42,1

3,5

3,1

2,7

1,5

2,4

-

3,1

Станд. отклонение для ТСХ

1,25

1,62

1,28

0,65

0,26

0,37

0,78

-

0,32

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ (косвенный метод) Однородную суспензию 100 г восстановленной боргидридом микрокристаллической целлюлозы в 430 мл воды наносят при помощи аппликатора слоем толщиной 0,5 мм на стеклянные пластинки размером 20х20x0,4 см. Пластинки сушат при 25 °С примерно 12 ч, после чего на них шприцем наносят по 1,25 мкл растворов сахаров. Если требуется нанести больший объем, операцию проводят в несколько приемов, подсушивая пластинку в промежутках, до тех пор, пока в пятне не окажется от 10 до 150 мкг сахара. После высушивания пластинку проявляют в течение 75 мин смесью этилацетат - пиридин - вода (2:1:2). Проявленную хроматограмму снова высушивают и равномерно опрыскивают раствором кислого анилинфталата (1,66 г о-фталевой кислоты и 0,91 мл чистого анилина растворяют в смеси 48 мл м-бутанола, 48 мл эфира и 4 мл воды). Пластинку выдерживают 5--7 мин при 105--110°С. (Внимание! Эфир.) Прямоугольные участки слоя вокруг пятен вырезают острой лопаточкой и сорбент количественно переносят с пластинки в пробирку. Размер вырезанных участков должен быть одинаковым для всех пятен одного и того же сахара. На уровне пятна сахара с пластинки берут пробу сорбента для холостого опыта. В пробирки добавляют по 0,5 мл раствора кислого анилинфталата и выдерживают 1 ч при 105--110°С. (Внимание! Эфир.) После охлаждения твердый остаток растирают тонкой стеклянной палочкой, добавив к нему 4 мл элюирующей смеси (4 мл концентрированной соляной кислоты в 100 мл ацетона). Пробирки закрывают тефлоновыми пробками и оставляют на 1 ч, периодически встряхивая. Осадок отделяют центрифугированием (3 мин), супернатанты переносят шприцем в кварцевые кюветы с l =1 см и на спектрофотометре измеряют оптическую плотность растворов относительно раствора холостого опыта при 390 нм для гексоз и 360 нм для пентоз. Зависимость оптической плотности от концентрации D-глюкозы, D-галактозы, D-маннозы, 6-дезокси-L-маннозы (L-рамнозы), D-арабинозы и D-ксилозы имеет линейный характер. Для D-ксилозы и D-глюкозы линейность сохраняется в интервале от 0 до 150 мкг. Количество сахара в образце определяют по калибровочной кривой, построенной для известных сахаров, которые были нанесены на ту же пластинку, что и анализируемая смесь. Для смесей, содержащих 20--100 мкг каждого сахара, точность определения составляет 3%.

4. ПРЕПАРАТИВНАЯ ТОНКОСЛОЙНАЯ ХРОМАТОГРАФИЯ

Препаративное разделение 0,05--1 г веществ методом ТСХ становится возможным при применении толстого слоя сорбента (0,5--5 мм). Этот метод используется для выделения индивидуальных сахаров в количествах, достаточных для исследования их свойств. По сравнению с колоночной хроматографией препаративная ТСХ обладает рядом преимуществ:

а) большой скоростью разделения;

б) малым количеством проявителя;

в) легкостью подбора подходящего проявителя путем пробных делений на маленьких пластинках;

г) четкостью зон и простотой их обнаружения;

д) легкостью элюирования соединений.

В препаративной ТСХ применяются те же сорбенты, что и в качественной ТСХ. Для выделения углеводов чаще всего используют силикагель, целлюлозу, кизельгур и окись алюминия. Как правило, оптимальная толщина слоя составляет 1--2 мм. Было показано, что прибавление к сорбенту различных сложных эфиров целлюлозы низкой степени замещения, а также добавление метанола к суспензии сорбента перед нанесением его на пластинку позволяют избежать появления трещин. Однако если сорбент содержит флуоресцентный индикатор, добавление метанола приводит к неравномерному окрашиванию фона. В тех случаях, когда в сорбенте присутствуют примеси, мешающие вымыванию веществ, перед изготовлением суспензии необходимо промыть сорбент хлороформом.

Образец можно нанести на пластинку несколькими способами. Чаще всего разделяемую смесь наносят в виде концентрированного раствора при помощи микропипеток и капилляров с тонким концом или шприцев. Количество смеси зависит от размера пластинки, толщины слоя, типа сорбента (например, для микрокристаллической целлюлозы 0,05 г/мм). Ширина полосы нанесенного образца не должна превышать 0,5 см. Если же она слишком велика, в ряде случаев целесообразно сконцентрировать вещество на расстоянии 1 см от линии старта путем кратковременного проявления пластинки в растворителе, в котором растворимы все компоненты смеси.

Систему растворителей для проявления выбирают на основании предварительных данных по разделению методом качественной ТСХ. Количество повторных проявлений зависит от подвижности компонентов смеси. Если хроматографирование проводится на силикагеле или окиси алюминия, обычно достаточно однократного проявления, в то время как в случае микрокристаллической целлюлозы часто требуется многократное проявление.

ОБНАРУЖЕНИЕ. Для установления положения зон на хроматограмме предложен ряд методов:

а) опрыскивание пластинки реагентами, не разрушающими сахаров, например иодом, родамином В, бромтимоловым синим, 2/,7/-дихлорфлуоресцеином или водой;

б) добавление к сорбенту флуоресцентных индикаторов и обнаружение зон в ультрафиолетовом свете;

в) опрыскивание части слоя, перенесенного с хроматограммы на липкую ленту или пластинку, реагентами, вызывающими деструкцию сахаров;

г) опрыскивание части пластинки деструктивными реагентами, например серной кислотой (предварительно большую часть хроматограммы защищают).

Последний метод применяется редко, так как, во-первых, при этом теряется существенное количество вещества, а во-вторых, как правило, приходится прокаливать пластинку.

После того как положение зон установлено, их соскабливают с пластинки шпателем или собирают «вакуум-очистителем». Можно также элюировать соединение с хроматограммы на фильтровальную бумагу. Далее к сорбенту добавляют растворитель и осадок отделяют фильтрованием или центрифугированием. Для экстракции вещества можно пользоваться аппаратом Сокслета. По возможности следует избегать употребления полярных растворителей, поскольку некоторые сорбенты в них растворяются.

Разделение сахаров методом препаративной ТСХ рассматривается на примере разделения смеси аномерных метил-2,3,6-три-О-бензил-4-О-этил-,-D-глюкопиранозидов.

МЕТОДИКА

ПРИГОТОВЛЕНИЕ ПЛАСТИНКИ. Суспензию 25 г силикагеля Н в 66 мл дистиллированной воды перемешивают в стакане стеклянной палочкой в течение 5 мин (до получения однородной массы) и выливают на чистую пластинку размером 20х20 см. Держа пластинку в руках, наклоняют ее в разные стороны так, чтобы суспензия равномерно распределилась по всей поверхности. Пластинку сначала помещают на горизонтальную подставку и выдерживают 2 ч при 25 °С, а затем переносят на подставку для хранения, где она сушится примерно 12 ч на воздухе. Пластинку активируют 2 ч при 130°С и медленно охлаждают до ~25°С. После того как края слоя выровнены шпателем, можно наносить образец. Толщина слоя сорбента 2 мм.

НАНЕСЕНИЕ ОБРАЗЦА. В кончик пипетки помещают тонкий ватный тампон таким образом, чтобы часть его (3--5 мм) оставалась снаружи. Раствор 0,3--0,5 г смеси аномерных метил-2,3,6-три-O-бензил-4-O-этил-D-глюкопиранозидов в 1--2 мл хлороформа засасывают в пипетку и наносят в виде полосы на пластинку на расстоянии 2 см от ее нижнего края и 3 см от боковых краев. Чтобы полоса получилась узкой (0,5 см), необходимо между нанесениями дать хлороформу испариться.

При разделении смесей рассматриваемого типа в центре пластинки, пока она еще не высохла, отчетливо видны две полосы, расположенные на расстоянии 1 см. Эти полосы, соответствующие - и -D-гликозидам, видны также на сухой пластинке в длинноволновом УФ-свете.

Обнаруженные зоны собирают с пластинки, используя «вакуум-очиститель». Последний представляет собой стеклянную трубку диаметром 25 мм; на одном конце трубки имеется отверстие диаметром 6 мм, через которое засасывается сорбент. Другой конец трубки присоединен к вакуум-насосу. Для улавливания сорбента в трубку помещают кусок стеклянной ваты. К попавшему в трубку сорбенту добавляют хлороформ (20 мл), осадок отфильтровывают и промывают 20 мл хлороформа. Фильтрат упаривают при пониженном давлении и остаток повторно растворяют в хлороформе, чтобы удалить все следы сорбента. Из нижней зоны выделяют в виде бесцветного сиропа метил-2,3,6-три-О-бензил-4-О-этил--D-глюкопиранозид.

Из верхней зоны выделяют метил-2,3,6-три-O-бензил-4-O-этил--D-глюкопиранозид.

5. РАСПРЕДЕЛИТЕЛЬНАЯ ХРОМАТОГРАФИЯ НА ИОНООБМЕННЫХ СМОЛАХ

Впервые разделение углеводов методом распределительной хроматографии на ионообменных смолах в смесях растворителей различной полярности было описано в 1952 г. В последние годы метод был значительно усовершенствован. В качестве элюента при разделении сахаров и их производных наиболее пригоден водный спирт, и далее речь будет идти только об этом элюенте.

Одним из основных факторов, обусловливающих сорбцию сахаров точно так же, как и других полярных неэлектролитов в данном виде хроматографии, является неодинаковое распределение компонентов элюирующей смеси между смолой и внешним раствором. В случае водного спирта относительное количество воды в неподвижной фазе выше, чем в подвижной, и этим объясняется тот факт, что смолой преимущественно удерживаются полярные вещества. На состав подвижной и неподвижной фаз существенное влияние оказывает также взаимодействие смола - растворитель и смола - растворенное вещество. При

смене противоиона порядок элюирования некоторых сахаров может измениться.

Коэффициенты распределения веществ возрастают с увеличением концентрации спирта и уменьшаются с повышением температуры. За редким исключением, коэффициенты распределения растут с увеличением числа гидроксильных групп в молекуле. Введение в молекулу неполярных групп, например метильных, приводит к уменьшению коэффициента распределения. Величина последнего зависит также от положения заместителей.

В табл.5 приведены коэффициенты распределения ряда свободных сахаров.

Распределительная хроматография на ионообменных смолах была с успехом применена для разделения моно- и олигосахаридов, альдитов и производных сахаров, не содержащих ионогенных группировок, например гликозидов и частично метилированных сахаров. Этот метод можно использовать как в аналитических, так и в препаративных целях.

Таблица 5. Коэффициенты объемного распределения (Dv) некоторых моносахаридов и ангидросахаров при различных температурах и концентрациях спирта

Сахара

Пористая смола (SO42-)

75°С

Смола малой

Емкости (SO42-)

75 °С

Дауэкс (SO42-)

90°С

Дауэкс (Li+)

75 °С

Амберлит IR-120 (Li+)

75 °С

100 °С

Концентрация этанола, %

88

86

90

86

92,4

92,4

Эритроза

3,08

1,9

Треоза

3,84

1,4

Рибоза

6,55

4,06

5,80

4,98

4,0

3,1

Арабиноза

10,1

6,26

9,79

7,56

3,8

3,0

Ксилоза

12,5

7,38

12,1

9,19

2,7

3,0

2,4

Фруктоза

13,5

8,04

13,8

10,3

5,6

4,3

Сорбоза

8,93

15,6

11,0

4,6

3,7

Манноза

16,4

9,37

16,9

11,8

5,3

4,4

Галактоза

23,4

13,0

24,4

16,1

5 7

6,8

5,3

Глюкоза

28,1

14,9

29,5

19,5

4 8

5,4

4,4

Альтроза

16,6

4 2

Рамноза

4,75

2,80

4,11

3,54

1.4

1,2

Фукоза

3,25

4,96

4,19

2,4

1,8

На рис.4 приведена принципиальная схема прибора, используемого для разделения сахаров. Элюент (спирт -- вода) помещают в колбу Мариотта и обезгаживают кипячением, чтобы предотвратить появление пузырьков воздуха в колонке. За колбой расположена открытая градуированная трубка, обычно заполненная элюентом. Скорость движения элюента в системе регулируют, перекрывая выходное отверстие колбы. Элюент подается в колонку поршневым насосом из нержавеющей стали который помещают ниже остальных аппаратов системы элюирования..

Рис. 4 Аппаратура для проведения хроматографического разделения и автоматического анализа сахаров орциновым методом.

Давление измеряют манометром Бурдона, снабжённым прерывателем. Последний отключает насос и нагреватель, если давление в системе превышает норму (80 атм) и также если оно падает из-за утечки жидкости. Анализ можно проводить на колонках, имеющих пористое дно и тефлоновое уплотнение на верхнем конце колонки. Если работа ведется при высоком давлении, не рекомендуется пользоваться колонками со стеклянными фланцами. Вместо них можно использовать стеклянные трубки с приклеенными эпоксидной смолой муфтами из поливинилхлорида.

Чтобы в колонке поддерживалась требуемая температура(70-90 °С), по рубашке колонки циркулирует вода из термостата. Повышение температуры колонки приводит к сужению зон вымываемых веществ и снижению рабочего давления.

Смолы, применяемые в распределительной хроматографии, представляют собой сильноосновные аниониты или сильнокислые катиониты, основу которых составляет сополимер стирола и дивинилбензол. В аналитических колонках, диаметр которых равен 2--6 мм, а скорости элюирования высокие (8--20 мл-см-2мин-1), рекомендуется использовать мелкозернистые смолы с размером частиц 8--13 или 10--15 мкм. Для препаративнго разделения сахаров на широких колонках (диаметр 12--25 мм) и при меньшей скорости элюирования можно применять более грубые смолы.

Колонку промывают элюентом до тех пор, пока не образуется однородный слой ионита. После этого растворитель, находящийся над слоем смолы, отсасывают, в колонку переносят новую порцию суспензии и операцию повторяют. Перед хроматографическим разделением заполненную колонку приводят в состояние равновесия с элюентом данного состава, промывая ее элюентом не менее 16 ч.

АНАЛИЗИРУЮЩАЯ СИСТЕМА. Определение сахаров и их различных производных в элюате удобно проводить автоматически орциновым методом. Раствор реагентов хранят в бутыли из темного стекла, откуда он и подается в систему при помощи поршневого насоса. Между насосом и тройником, в котором происходит смешение элюата с раствором красителя, расположено устройство для гашения (демпфирования) пульсаций давления (рис. 4). Смесь элюата с раствором красителя пропускают через змеевик длиной 20 м и диаметром 1,2 мм, погруженный в термостатируемую полигликолевую баню (100°С). Время нахождения смеси в змеевике около 10 мин. Интенсивность окраски раствора определяется спектрофотометрически при 420 нм проточных кюветах с l 2--15 мм. Удобно пользоваться системой из двух последовательно соединенных кювет разной длины: если на более длинной кювете самописец «зашкаливает», измерения проводят на более короткой кювете. На колонке диаметром 4 мм удается разделить и проанализировать от 2 до 20 мкг веществ. На колонках меньшего или большего диаметра можно проанализировать соответственно меньшее или большее количество смеси.

Достоинством вышеописанной схемы анализа является высокая точность количественного определения и отсутствие необходимости в частом построении калибровочных кривых (при постоянстве условий анализа). Если удается достичь полного разделения компонентов, отклонение от среднего значения в двух аналогичных анализах составляет 1енее 1%. Однако весь элюат расходуется за одно определение, и потому не удается провести дополнительное исследование фракций.

Если проводится препаративное разделение или если проводимые исследования требуют повторного разделения и дополнительных анализов компонентов смеси, то для разделения потока элюата и введения растворов реагентов следует использовать перистальтический насос. Такая схема анализа (рис. 5) отличается большей гибкостью, однако недостатком ее является более низкая точность количественных определений в связи с тем, что соединительные трубки насоса быстро изнашиваются и их приходится менять через 14 дней.

Рис. 5. Двухканальный анализатор для одновременного определения восстанавливающих сахаров и альдитов.

М- сместители; Р1 и Р2 - гасители пульсации; L - флуоресцентная лампа трубки; А - орционный канал: 16-ти % водный раствор орциона, 60% серная кислота; В - периодат-формальгидный канал: 0,015Мметапериодат натрия, содержащий 5 мл конц. соляной кислоты на литр

На рис.5 приведена схема анализа с применением перистальтического насоса. Элюат делится на три потока и одновременно анализируется орциновым (А) и периодат-формальдегидным (В) методами. Третий поток подается на коллектор фракций или отбрасывается. В элюате дополнительно определяют содержание восстанавливающих сахаров периодатным или феррицианидным методом. Выделенные ациклические альдиты анализируются автоматически периодат-формальдегидным методом. В кислой среде они окисляются периодатом с образованием формальдегида, который определяют до реакции с пентандионом-2,4 в растворе ацетата аммония. Избыток периодата предварительно восстанавливают арсенитом. В условиях анализа при окислении большинства альдитов образуется с высоким выходом формальдегид, в то время как при окислении большей части альдоз формальдегид образуется лишь в незначительных, с трудом детектируемых количествах. Исключение составляет D-фруктоза, ее можно достаточно точно определить этим методом. Периодат-формальдегидегидный метод в совокупности с орциновым используется для анализа сложных смесей сахаров и альдитов. Точность его сравнима с точностью орцинового метода.

6. ИСПОЛЬЗОВАНИЕ ХРОМАТОГРАФИИ НА БУМАГЕ ДЛЯ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ САХАРОВ В РАСТИТЕЛЬНОМ МАТЕРИАЛЕ

В последнее время хроматографию на бумаге все чаще начинают использовать в качестве самостоятельного количественного метода. При этом весьма широкое распространение получает количественная хроматография углеводов: моно-, ди- и олигосахаридов, а также продуктов гидролиза крахмала, целлюлозы и других полимеров. Количественное определение индивидуальных веществ, разделяемых на хроматограммах, производится различными способами. Существует ряд методов, при помощи которых можно определить концентрацию разделенных веществ непосредственно на бумаге. Это методы: визуальное сравнение (полуколичественный), измерение площади пятен, измерение интенсивности окраски пятен, определение максимальной плотности окраски пятен. В случае работы с радиоактивными веществами можно легко установить активность этих соединений при помощи счетчика Гейгера -- Мюллера.

Однако более широко применяемым и, по-видимому, наиболее точным методом является элюирование отдельных соединений с последующим колориметрированием или определением поглощения в ультрафиолетовой области. При работе с радиоактивными веществами можно производить измерение общей или удельной активности элюируемого вещества.

Точность методов количественного хроматографического анализа равна 10%.

7. ГАЗОЖИДКОСТНАЯ ХРОМАТОГРАФИЯ ТРИМЕТИЛСИЛИЛЬНЫХ ПРОИЗВОДНЫХ САХАРОВ

Газожидкостная хроматография (ГЖХ) триметилсилиловых эфиров (ТМС) производных углеводов представляет собой хорошо отработанный метод, который в течение ряда лет используется для анализа сложных смесей сахаров, таких, как кукурузная патока или в общем случае гидролизаты полисахаридов. С совершенствованием методов силилирования создавалась новая хроматографическая аппаратура и изыскивались новые жидкие фазы. Все это позволило не только улучшить разделение сложных смесей сахаров, но и расширить область применения ГЖХ вплоть до разделения гептасахаридов. Бробст и Лотт разработали метод, позволяющий проводить анализ образцов, содержащих небольшие количества воды, и, используя его, смогли определить олигосахаридный состав кукурузной патоки вплоть до тетрасахаридов. Позднее в качестве силилирующего агента стал использоваться N-(триметилсилил) имидазол и смесь его с пиридином, ставшая коммерческим реактивом. Показано, что данный реактив обладает хорошими растворяющими свойствами и может использоваться для силилирования влажных образцов сахаров.

Этот метод не только допускает наличие в образце до 40 мг воды, но и существенно увеличивает устойчивость триметилсилиловых эфиров, так как в смеси присутствует большой избыток реагента. Поэтому стандартная калибровочная смесь устойчива в течение нескольких месяцев, что весьма важно для хранения контрольных образцов редких олигосахаридов.

8. ГАЗОЖИДКОСТНАЯ ХРОМАТОГРАФИЯ МЕТИЛИРОВАННЫХ САХАРОВ

Газожидкостная хроматография представляет собой надежный и широко распространенный метод качественного и количественного анализа сахаров. Разделение методом ГЖХ метиловых эфиров сахаров и их производных приобрело особенно большое значение при исследовании структуры олиго- и полисахаридов. Восстанавливающие метилированные сахара нельзя изучать методом ГЖХ в первую очередь потому, что они прочно сорбируются на неподвижной фазе или носителе, и их, как правило, переводят в метилгликозиды. Последние либо непосредственно анализируют на газовом хроматографе, либо, если время удерживания метилгликозидов слишком велико, предварительно ацетилируют или силилируют.

Иногда разрешающая способность колонки недостаточна для разделения аномеров пиранозных и фуранозных форм некоторых метилированных гликозидов или их производных. В таком случае метилированные сахара анализируют в виде ацетатов или триметилсилиловых эфиров альдитов.

Как было установлено, детекторы дают различный отклик на различные метилированные сахара, содержащиеся в одинаковых концентрациях. Однако пока не известно, является ли это следствием особенностей, присущих детекторам, или следствием потерь некоторых компонентов при подготовке образца к анализу и преимущественной сорбции их на колонке. Твердые правила выбора колонки еще не выработаны. Тем не менее изучение литературных данных показывает, что большинство исследователей предпочитают полярные фазы, которые, по-видимому, дают лучшее разрешение всех типов производных метилированных сахаров. Обычно время удерживания соединения выражают по отношению ко времени удерживания стандарта. Это позволяет избежать расхождений, наблюдаемых для абсолютных значений времени удерживания и обусловленных нестандартностью условий анализа. Результаты определения относительного времени удерживания на одной и той же колонке воспроизводятся с точностью до ±2%, а на разных колонках с одинаковыми неподвижными фазами - с точностью до ±5%.

Время удерживания многих производных углеводов достаточно велико, что приводит к плохому разделению смесей, обусловливает низкую концентрацию элюируемых компонентов в газе-носителе, и в итоге приводит к увеличению ошибки при определении содержания компонентов в смесях. Поэтому при проведении разделения метилированных сахаров желательно подбирать такие производные и такие условия работы, при которых все компоненты смеси элюировались бы с колонки в течение 70--90 мин с момента их введения. Если детектирование не сопровождается разрушением сахаров, их можно собирать на выходе с хроматографа.

Заключение

Хроматографические методы при разделении и очистке полисахаридов, так же как и в других областях химии природных соединений, играют исключительно важную роль. Однако вследствие своеобразия полисахаридов далеко не все разновидности хроматографии используются в равной мере. Наличие даже в очищенных полисахаридах набора полимерогомологов с близкой хроматографической подвижностью и близкими сорбционными свойствами, их коллоидный характер, а также склонности к ассоциациям - все это обусловливает малую эффективность таких видов хроматографии, как бумажная, распределительная и адсорбционная хроматография.

Вместе с тем ионообменная хроматография имеет исключительно важное значение при разделении и очистке полисахаридов.

Широко применяемые ДЭАЭ-целлюлоза и эктеолацеллюлоза позволяют легко отделить нейтральные и кислые полисахариды: нейтральные обычно не задерживаются или мало задерживаются на названных анионитах, кислые, в зависимости от своей природы, более или менее прочно удерживаются и элюируются растворами солей, буферными растворами или щелочами. На анионитах разделяются различные кислые полисахариды в зависимости от степени их кислотности. Применение ДЭАЭ-целлюлозы в боратной форме позволяет разделять и нейтральные полисахариды. Недавно были разделены нейтральные полисахариды (гликоген) при помощи ДЭАЭ-целлюлозы на фракции, отличающиеся величиной частиц./3/

Для разделения сахаров применяются следующие методы:

1. Хроматография на колонках с углем применяется для разделения углеводов на классы в зависимости от степени их полимеризации (моносахариды, дисахариды, трисахариды т. д.).

2. Хроматография на колонке с целлюлозой имеет широкую область применения, что нет необходимости рассматривать частные примеры его использования.

3. Качественная тонкослойная хроматография применяется для разделения углеводов, в том числе незамещенных моно- и олигосахаридов и различных производных сахаров и сложных эфиров, циклических ацеталей и др.

4. Количественная тонкослойная хроматография сахаров может применяться в случае смесей, компоненты которых можно полностью разделить

5. Препаративная тонкослойная хроматография сахаров используется для разделения смеси аномерных сахаров( метил-2,3,6-три-О-бензил-4-О-этил-,-D-глюкопиранозидов).

6. Газожидкостная хроматография используется для разделения триметилсилильных производных сахаров, метилированных сахаров.

Из своей теоретической работы я могу сделать следующие выводы:

- для идентификации олигосахаридов наилучшим методом считается бумажная хроматография

- для разделения сахаров наилучшим методом считается тонкослойная хроматография.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

1. Чмутов К.В. Хроматография, ее теория и применение. - М.: Издательство Академии наук СССР -1960г.

2. Хомченко Г.П. Химия для поступающих в вузы: Учеб. пособие. 2-е изд., -М.: В. ш., 1995г.

3. Степаненко Б.Н. Химия и биохимия углеводов (полисахариды): Учеб. пособие для вузов. - М.: Высш. школа, 1978г.

4. Жуховицкий А.А. Руководство по газовой хроматографии. - М.: Мир, 1969г.

5. Кочетков Н.К. Методы химии углеводов. - М.: Мир, 1967г.

6. Хорлин А.Я.Методы исследования углеводов.- М.:Мир, 1975г


Подобные документы

  • Газовая хроматография - один из наиболее перспективных физико-химических методов исследования, бурно развивающийся в настоящее время. Классификация хроматографических методов. Различные характерные признаки процесса. Сущность методов хроматографии.

    реферат [30,3 K], добавлен 25.01.2010

  • Жидкостно-адсорбционная хроматография на колонке. Высокоэффективная жидкостная хроматография. Ионообменная жидкостная хроматография. Тонкослойная хроматография. Хроматография на бумаге. Гельпроникающая (молекулярно-ситовая хроматография).

    реферат [746,2 K], добавлен 28.09.2004

  • Общие принципы препаративной химии белков, особенности их выделения. Удаление небелковых примесей, разделение между собой собственно белковых компонентов. Характерные свойства белков, на которых основано разделение, гель-хроматография (гель-фильтрация).

    научная работа [1,8 M], добавлен 17.12.2009

  • Возникновение и развитие хроматографии. Классификация хроматографических методов. Хроматография на твердой неподвижной фазе: газовая, жидкостная (жидкостно-адсорбционная). Хроматография на жидкой неподвижной фазе: газо-жидкостная и гель-хроматография.

    реферат [28,1 K], добавлен 01.05.2009

  • Хроматография - это метод разделения компонентов смеси, основанный на различии в равновесном распределении их между двумя несмешивающимися фазами, одна из которых неподвижна, а другая подвижна. Размер частиц сорбента, проницаемость и эффективность.

    контрольная работа [252,5 K], добавлен 07.01.2010

  • Механизмы окислительной конверсии фенолов в водных объектах, источники поступления загрязнителей и очистка природной среды. Природа адсорбционной и каталитической активности бентонитов. Хроматографическое разделение и количественное определение фенолов.

    дипломная работа [946,0 K], добавлен 13.02.2011

  • Знакомство с классификацией адсорбентов по их геометрической структуре. Газоадсорбционная хроматография как метод разделения и анализа смесей газо- или парообразных веществ, основанный на их различной адсорбции твердыми адсорбентами, анализ преимуществ.

    презентация [999,8 K], добавлен 18.05.2016

  • Хроматографический метод разделения и анализа сложных смесей был открыт русским ботаником М.С. Цветом. Хроматография - многократное повторение актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента.

    курсовая работа [1,7 M], добавлен 13.03.2011

  • Хроматографическая система - метод разделения и анализа смесей веществ. Механизм разделения веществ по двум признакам. Сорбционные и гельфильтрационные (гельпроникающие) методы. Адсорбционная, распределительная, осадочная и ситовая хроматография.

    реферат [207,8 K], добавлен 24.01.2009

  • Жидкостная хроматография как метод разделения веществ в растворе. Вопросы, на которые отвечает хроматография. Многоканальное фотометрическое детектирование в хроматографии. Задача сравнения хроматограмм, особенности обработки аналитических данных.

    реферат [692,0 K], добавлен 24.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.