Химические свойства альдегидов и кетонов. Присоединение кислородных нуклеофилов

Альдегиды и кетоны – их химические свойства. Двойная связь. Электронодефицитный и электроноизбыточный центр. Молекулы карбонильных соединений, имеющие несколько рекреационных центров. Образование ацеталей посредством присоединения спиртов. Нуклеофилы.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 01.02.2009
Размер файла 133,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

7

Химические свойства альдегидов и кетонов. Присоединение кислородных нуклеофилов

Двойная связь С=О, подобно связи С=С, представляет собой комбинацию - и -связей (они изоэлектронны). Однако, между этими двумя двойными связями имеются существенные различия:

- C=O значительно прочнее С=С;

- энергия связи С=О (179 ккал/моль) больше, чем энергия двух связей С-О (85.5 ккал/моль), в то время как энергия связи С=С (146 ккал/моль) меньше суммы энергий двух связей С-С (82.6. ккал/моль);

- связь С=О в отличие от С=С полярна.

При этом -связь поляризована сильнее, чем -связь. Таким образом, атом углерода карбонильной группы является электронодефицитным центром, а кислорода - электроноизбыточным.

Кроме тогo, карбонильная группа увеличивает кислотность атомов Н у соседнего атома С, приводя к увеличению кинетической кислотности (увеличению полярности связи С-Н из-за - I-эффекта карбонильной группы) и термодинамической кислотности (стабилизация образующегося карбаниона за счет мезомерного эффекта).

В молекулах карбонильных соединений имеется несколько реакционных центров.

Электрофильный центр карбонильный атом углерода, возникновение частичного положительного заряда на котором обусловлено полярностью связи С=О. Электрофильный центр участвует в реакциях нуклеофильного присоединения.

Основный центр атом кислорода с не поделенными парами электронов. С участием основного центра осуществляется кислотный катализ в реакциях присоединения, а также в процессе енолизации. Важно отметить, что альдегиды и кетоны являются жесткими основаниями Льюиса и координируются с жесткими кислотами: H+, BF3, ZnCl2, FeCl3 и т.д.

-СН-Кислотный центр, возникновение которого обусловлено индуктивным эффектом карбонильной группы. При участии СН-кислотного центра протекают многие реакции карбонильных соединений, в частности реакции конденсации.

Связь СН в альдегидной группе разрывается в реакциях окисления.

Ненасыщенные и ароматические углеводородные радикалы, подвергающиеся атаке электрофильными или нуклеофильными реагентами.

А. Присоединение воды

Альдегиды и кетоны обратимо присоединяют воду, давая гем-диолы, выделить которые, как правило, не удается. Например, формалин, используемый для консервации биологических объектов, представляет собой гидратную форму 40% -ного раствора формальдегида в воде.

(31)

формальдегидгидрат (>99%)

В формалине практически весь альдегид существует в гидратной форме. Альдегиды и кетоны, у которых по соседству с карбонильной группой находится электроноакцепторный заместитель, образуют устойчивые гидраты, например:

(32)

хлораль хлоральгидрат

Б. Присоединение спиртов образование ацеталей.

Спирты обратимо присоединяются к альдегидам с образованием полуацеталей. В спиртовых растворах альдегидов полуацетали находятся в равновесии с карбонильными соединениями. Так, в этанольном растворе ацетальдегида содержится около 30% полуацеталя (в расчете на альдегид).

(33)

1-этоксиэтанол

(полуацеталь)

Полуацетали обычно не выделяют из реакционной смеси из-за их неустойчивости. Исключение составляют циклические полуацетали, образующиеся самопроизвольно из - и -гидроксиальдегидов. Например, доля циклического полуацеталя в его равновесной смеси с 5-гидроксипентаналем составляет 94%.

(34)

5-оксипентаналь

(35)

4-оксипентаналь

Полуацетали при взаимодействии со второй молекулой спирта в присутствии сильных кислот и при условии удаления воды в результате реакции нуклеофильного замещения могут превращаться в полные ацетали.

(36)

1,1-диэтоксиэтан

(37)

Механизм образования ацеталей и кеталей на первом этапе AN, а на втором SN1.

(м 6)

Вместо двух молекул спирта можно использовать одну молекулу диола:

(38)

этилендиоксициклогексан

Ацетали обладают структурой простых эфиров и подобно простым эфирам устойчивы к щелочам и нуклеофильным реагентам, но гидролизуются водными кислотами, причем гораздо легче, чем простые эфиры: уже при комнатной температуре под действие разбавленных минеральных кислот:

Устойчивость ацеталей и кеталей к действию нуклеофильных реагентов позволяет защищать карбонильную группу при проведении реакции по другим группам с нуклеофильными реагентами. После чего карбонильную группу рекуперируют. Для такой защиты чаще всего используют этиленгликоль:

Присоединение серосодержащих нуклеофилов.

Атом серы тиолов является лучшим нуклеофилов, чем атом кислорода спиртов. Тиолы реагируют с карбонильными соединениями в кислой среде, образуя дитиоацетали.

(39)

1,1-ди(этилтио) этан (дитиоацеталь)

С этилендитио-1,2-диолом и 1,3-пропандитиолом образуются циклические тиоацетали.

При нагревании тиокеталей с никелем Ренея в спирте происходит десульфурирование, в результате чего исходная карбонильная группа превращается в метиленовую и таким образом достигается восстановление альдегидов и кетонов в углеводороды.

(40)

циклический тиокеталь

(41)

1,3-пропандитиол 1,3-дитиан

(циклический тиоацеталь)

Дитиоацетали обладают СН-кислотными свойствами (pKa 31), поэтому при действии сильных оснований, например, литийорганических соединений, они отщепляют протон, образуя карбанион, отрицательный заряд которого делокализуется при участии 3d-орбиталей атома серы. В результате происходит обращение полярности реакционного центра (Umpolung): карбонильный атом углерода (электрофильный центр) превращается в карбанион, обладающий нуклеофильными свойствами.

(42)

1,3-дитиан бутиллитий литиевая соль 1,3-дитиана

Далее карбанион алкилируется алкилгалогенидом, и после расщепления замещенного тиоацеталя образуется новое карбонильное соединение.

Дитиоацетали устойчивы к действию оснований и довольно трудно гидролизуются в кислой среде. Для их расщепления используют соединения ртути и кадмия.

(43)

Результатом всех этих превращений является превращение альдегида в кетон. Литиевая соль 1,3-дитиана реагирует и с альдегидами, давая в конечном итоге -оксикетон.

(44)

Упр. 11. Напишите структурные формулы соединений, обозначенных на схемах заглавными буквами.

(а)

(б)

Упр. 12. Каким образом показанные исходные продукты могут быть превращены в конечные с использованием 1,3-дитианов в качестве промежуточных продуктов?

(а) (б)

Г. Образование дисульфитных комплексов

Альдегиды и простейшие метилкетоны взаимодействуют с концентрированным раствором дисульфита натрия с образованием кристаллических веществ, обычно называемых дисульфитными производными альдегидов и кетонов. Дисульфитные производные плохо рстворимы и используются для отделения альдегидов и кетонов. Присоединение происходит в результате нуклеофильной атаки дисульфит-иона по карбонильному атому углерода с последующим присоединением иона водорода по карбонильному кислороду. Доказано, что дисульфит-анион реагирует местом с наибольшей нуклеофильной силой (по атому серы), а не местом с наибольшей электронной плотгностью (атом кислорода):

дисульфитное производное

(45)

1-гидроксипропан-1-сульфонат натрия

(46)

Подобно другим реакциям присоединения по карбонильной группе, эта реакция обратима. Нагревание дисульфитных комплексов с разбавленными кислотами или водным раствором карбоната натрия приводит к регенерации карбонильных соединений:

(47)

Реакция с гидросульфитом натрия используется для качественного определения альдегидов и кетонов, а также для их выделения и очистки. Следует, однако, заметить, что с гидросульфитом натрия реагируют только метилкетоны, имеющие группу СН3СО-. Решающую роль в реакциях расщепления дисульфитных производных играет то факт, что сульфогруппа является хорошей уходящей группой. Она может замещаться и на другие нуклеофильные группы, например:

(48)

Упр. 13. Напишите реакции дисульфита натрия с (а) уксусным альдегидом,

(б) бензальдегидом и (в) ацетоном и опишите их механизм. Напишите реакции образующихся дисульфитных производных с цианидом натрия.

Упр.14. Завершите реакции:

(и)


Подобные документы

  • Способы получения и свойства альдегидов и кетонов. Окисление, дегидрирование спиртов. Гидроформилирование алкенов. Синтез альдегидов и кетонов через реактивы Гриньяра. Присоединение воды и спиртов. Кислотный катализ. Присоединение синильной кислоты.

    реферат [158,8 K], добавлен 21.02.2009

  • Гомологический ряд и номенклатура алифатических альдегидов и кетонов, способы их получения: реакции восстановления, замещения, гидратации и гидролиза; введение альдегидной группы. Строение и химические свойства оксосоединений; присоединение нуклеофилов.

    контрольная работа [370,0 K], добавлен 05.08.2013

  • Классификация альдегидов, строение, нахождение в природе, биологическое действие, применение. Номенклатура кетонов, история открытия, физические и химические свойства. Реакции нуклеофильного присоединения. Химические методы идентификации альдегидов.

    презентация [640,8 K], добавлен 13.05.2014

  • Общие свойства карбонильных соединений, номенклатура альдегидов и кетонов, свойства альдегидов. Получение. Применение. Применение альдегидов в медицине. Альдегиды необходимы для получения пластмасс, лаков, красителей, уксусной кислоты.

    реферат [18,7 K], добавлен 14.09.2003

  • Реакции альдегидов и кетонов. Нуклеофильное присоединение и углеродных нуклеофилов. Присоединение реактивов Гриньяра. Присоединение литийорганических соединений. Присоединение ацетиленидов металлов. Циангидринный синтез. Реакция Реформатского.

    реферат [162,0 K], добавлен 01.02.2009

  • Общая формула альдегидов и кетонов, их активность, классификация, особенности изомерии и номенклатура, основные способы получения, реакционноспособность и химические свойства. Реакции окисления, присоединения, замещения, полимеризации и конденсации.

    реферат [41,2 K], добавлен 22.06.2010

  • Карбонилсодержащие или карбонильные соединения - альдегиды и кетоны. Подвижные жидкости. Температуры кипения. Растворимость низших кетонов и альдегидов в воде за счет образования водородных связей. Методы получения. Окисление углеводородов и спиртов.

    контрольная работа [131,2 K], добавлен 01.02.2009

  • Химические свойства альдегидов. Систематические названия кетонов несложного строения. Окисление альдегидов оксидом серебра в аммиачном растворе. Применение альдегидов в медицине. Химические свойства и получение синтетической пищевой уксусной кислоты.

    реферат [179,9 K], добавлен 20.12.2012

  • Характеристика альдегидов и кетонов, физические и химические свойства, получение в лабораторных условиях. Изомерия альдегидов. Реакция окисления аммиачным раствором оксида серебра - "серебряное зеркало" - качественная реакция на альдегиды, ее проведение.

    презентация [1,6 M], добавлен 14.06.2011

  • Сходство взаимодействия формальдегида с с вторичными аминами с его взаимодействием со спиртами. Механизм реакции. Нитрованием гексаметилентектрамина. Продукт конденсации формальдегида с этилендиамином. Получение бензоуротропина. Перегруппировка Бекмана.

    учебное пособие [213,0 K], добавлен 01.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.