Функциональные производные карбоновых кислот
Классификация и разновидности производных карбоновых кислот, характеристика, особенности, реакционная способность. Способы получения и свойства ангидридов, амидов, нитрилов, сложных эфиров. Отличительные черты непредельных одноосновных карбоновых кислот.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 21.02.2009 |
Размер файла | 56,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Функциональные производные карбоновых кислот. Двухосновные карбоновые кислоты. ,-Ненасыщенные кислоты
Производные карбоновых кислот
1. Галогенангидриды.
При действии галогенидов фосфора или хлористого тионила происходит образование галогенагидридов:
CH3COOH + PCl5 CH3COCl + POCl3 + HCl
Галоген в галогенангидридах обладает большой реакционной способностью. Сильный индукционный эффект определяет легкость замещения галогена другими нуклеофилами: -OH, -OR, -NH2, -N3, -CN и др.:
CH3COCl + CH3COOAg (CH3CO)2O уксусный ангидрид + AgCl
1. Ангидриды.
Ангидриды образуются при взаимодействии солей кислот с их галогенангидридами:
CH3COONa + CH3COCl NaCl + (CH3CO)2O
Ангидриды кислот обладают большой химической активностью и являются, как и галогенангидриды, хорошими ацилирующими агентами.
2. Амиды.
Амиды получают через галогенангидриды
CH3COCl +2 NH3 CH3CONH2 ацетамид + NH4Cl
или из аммонийных солей кислот, при сухой перегонке которых отщепляется вода и образуется амид кислоты. Также амиды кислот образуются как побочный продукт при гидролизе нитрилов. Процессы амидирования имеют важное значение в промышленности для производства ряда ценных соединений (N,N-диметилформамид, диметилацетамид, этаноламиды высших кислот).
4. Нитрилы. Важнейшими представителями нитрилов являются ацетонитрил CH3CN (применяется как полярный растворитель) и акрилонитрил CH2=CHCN (мономер для получения синтетического волокна нейрона и для производства дивинилнитрильного синтетического каучука, обладающего масло- и бензостойкостью). Основным способом получения нитрилов является дегидратация амидов на кислотных катализаторах:
CH3CONH2 CH3C-CN + H2O
5. Сложные эфиры. Сложные эфиры карбоновых кислот имеют важное практическое значение в качестве растворителей, гидравлических жидкостей, смазочных масел, пластификаторов и мономеров. Их получают этерификацией спиртов кислотами, ангидридами и галогенангидридами или взаимодействием кислот и алкенов:
CH3-CH=CH2 + CH3COOH CH3COOCH(CH3)2
Многие эфиры используются в качестве душистых веществ:
CH3COOCH2CH3 |
грушевая эссенция |
|
CH3CH2CH2COOCH2CH2CH2CH2CH3 |
ананасовая эссенция |
|
HCOOCH2CH3 |
ромовая эссенция |
Двухосновные насыщенные кислоты
Двухосновные предельные (насыщенные) кислоты имеют общую формулу CnH2n(COOH)2. Из них важнейшими являются:
НООС-СООН - щавелевая, этандикарбоновая кислота;
НООС-СН2-СООН - малоновая, пропандикарбоновая кислота;
НООС-СН2-СН2-СООН - янтарная, бутандикарбоновая кислота;
НООС-СН2-СН2-СН2-СООН - глутаровая, пентандикарбоновая кислота.
Способы получения
Общие методы получения двухосновных кислот аналогичны способам получения одноосновных кислот (окисление гликолей, гидролиз динитрилов, синтез Кольбе - см. Лекцию№27).
Окисление оксикислот:
OH-CH2CH2COOH HOCCH2COOH HOOC-CH2-COOH
Окисление циклоалканов.
Это промышленный способ получения адипиновой кислоты HOOC-CH2CH2CH2CH2-COOH из циклогексана.
Побочно образуются также янтарная и щавелевая кислоты. Адипиновая кислота применяется для синтеза волокна найлон 6,6 и пластификаторов.
Химические свойства
Двухосновные кислоты более сильные, чем одноосновные. Это объясняется взаимным влиянием карбоксильных групп, облегчающих диссоциацию:
В целом реакции дикарбоновых кислот и их монокарбоновых аналогов почти не различаются между собой. Механизм реакций образования диамидов, диэфиров и др. из карбоновых кислот тот же, что и для монокарбоновых кислот. Исключение составляют дикарбоновые кислоты, содержащие меньше четырех атомов углерода между карбоксильными группами. Такие кислоты, две карбоксильные группы которых способны реагировать с одной функциональной группой или друг с другом, обнаруживают необычное поведение в реакциях, протекающих с образованием пяти- или шестичленных замкнутых активированных комплексов или продуктов.
Примером необычного поведения карбоновых кислот могут служить реакции, протекающие при нагревании.
Декарбоксилирование.
При 150 оС щавелевая кислота разлагается на муравьиную кислоту и СО2:
HOOC-COOH HCOOH + CO2
Циклодегидратация.
При нагревании -дикарбоновых кислот, у которых карбоксильные группы разделены атомами углерода, происходит циклодегидратация, в результате чего образуются циклические ангидриды:
Синтезы на основе малонового эфира.
Двухосновные кислоты с двумя карбоксильными группами при одном углеродном атоме, т.е. малоновая кислота и ее моно- и дизамещенные гомологи, при нагревании несколько выше их температур плавления разлагаются (подвергаются декарбоксилированию) с отщеплением одной карбоксильной группы и образованием уксусной кислоты или ее моно- и дизамещенных гомологов:
HOOCCH2COOH CH3COOH + CO2
HOOCCH(CH3)COOH CH3CH2COOH + CO2
HOOCC(CH3)2COOH (CH3)2CHCOOH + CO2
Атомы водорода метиленовой группы, находящейся между ацильными группами диэтилового эфира малоновой кислоты (малоновый эфир), обладают кислотными свойствами и дают натриевую соль с этилатом натрия. Эту соль - натрий-малоновый эфир - алкилируют по механизму нуклеофильного замещения SN2. На основе натрий-малонового эфира получают одно- и двухосновные кислоты:
[CH(COOCH2CH3)2]-Na+ + RBr RCH(COOCH2CH3)2 + 2 H2O
R-CH(COOH)2 алкилмалоновая кислота R-CH2COOH алкилуксусная кислота + CO2
4. Пиролиз кальциевых и бариевых солей.
При пиролизе кальциевых или бариевых солей адипиновой (С6), пимелиновой (С7) и пробковой (С8) кислот происходит отщепление СО2 и образуются циклические кетоны:
Непредельные одноосновные карбоновые кислоты
Непредельные одноосновные кислоты этиленового ряда имеют общую формулу CnH2n-1COOH, ацетиленового и диэтиленового рядов - CnH2n-3COOH. Примеры непредельных одноосновных кислот:
CH2=CHCOOH |
акриловая кислота, пропеновая кислота |
|
CH2=CHCH2COOH |
винилуксусная кислота, 3-бутеновая кислота |
|
CH3CH=CHCOOH |
кротоновая кислота, 2-бутеновая кислота |
|
CH2=C(CH3)COOH |
-метилакриловая кислота, метакриловая кислота, метилпропеновая кислота |
|
CHCCOOH |
пропиоловая (пропиновая) кислота |
|
CH3CH2CH=CHCH2CH=CH(CH2)7COOH |
линоленовая кислота |
Непредельные одноосновные кислоты отличаются от предельных большими константами диссоциации. Ненасыщенные кислоты образуют все обычные производные кислот - соли, ангидриды, галогенангидриды, амиды, сложные эфиры и др. Но за счет кратных связей они вступают в реакции присоединения, окисления и полимеризации.
Благодаря взаимному влиянию карбоксильной группы и кратной связи присоединение галогенводородов к ,-непредельным кислотам происходит таким образом, что водород направляется к наименее гидрогенизированному атому углерода:
CH2=CHCOOH + HBr BrCH2CH2COOH -бромпропионовая кислота
Этиленовые кислоты типа акриловой кислоты и их эфиры значительно легче подвергаются полимеризации, чем соответствующие углеводороды.
отдельные представители
Акриловую кислоту получают из этилена (через хлоргидрин или оксид этилена), гидролизом акрилонитрила или окислением пропилена, что более эффективно. В технике используются производные акриловой кислоты - ее эфиры, особенно метиловый (метилакрилат). Метилакрилат легко полимеризуется с образованием прозрачных стекловидных веществ, поэтому его применяют в производстве органического стекла и других ценных полимеров.
Метакриловая кислота и ее эфиры получают в больших масштабах методами, сходными с методами синтеза акриловой кислоты и ее эфиров. Исходным продуктом является ацетон, из которого получают ацетонциангидрин, подвергают дегидратации и омылению с образованием метакриловой кислоты. Этерификацией метиловым спиртом получают метилметакрилат, который при полимеризации или сополимеризации образует стекловидные полимеры (органические стекла) с весьма ценными техническими свойствами.
Двухосновные ненасыщенные кислоты
Наиболее простые ненасыщенные двухосновные кислоты - фумаровая и малеиновая - имеют одну и ту же структурную формулу HOOCCH=CHCOOH, но разную пространственную конфигурацию: фумаровая - транс-, малеиновая - цис-. Малеиновая кислота (лабильная форма) под действием брома, йода, азотистой кислоты легко переходит в устойчивую (стабильную) форму - фумаровую кислоту. Обратный переход осуществляется под действием ультрафиолетовых лучей. Малеиновая кислота в технических масштабах получается каталитическим окислением бензола и нафталина кислородом воздуха.
Обе кислоты способны образовывать соли, сложные эфиры, амиды и некоторые другие производные кислот. Однако, малеиновая кислота, в отличие от фумаровой, легко образует циклический ангидрид, так как обе карбоксильные группы расположены по одну сторону от двойной связи (цис-изомер). Малеиновый ангидрид служит характерным реактивом для обнаружения 1,3-диеновых соединений: он легко вступает в реакцию диенового синтеза и во многих случаях дает ценные продукты. Малеиновый ангидрид широко применяется при производстве полиэфирных смол и сополимеров со стиролом, акриловым и метакриловым эфирами. Гидратацией малеинового ангидрида получают яблочную кислоту, применяемую в пищевой промышленности.
Монокарбоновые кислоты ароматического ряда
Ароматическими карбоновыми кислотами называются производные бензола, содержащие карбоксильные группы, непосредственно связанные с ароматическим ядром. Кислоты, содержащие карбоксильные группы в боковой цепи, рассматриваются как жирноароматические. По количеству карбокисльных групп ароматические кислоты делятся на одно-, двухосновные и т.д. Название кислоты производится от ароматического углеводорода (бензойная кислота, п-толуиловая кислота).
Способы получения
1. Окисление ароматических углеводородов.
Для синтеза ароматических кислот наиболее подходят метильные гомологи бензола, радикально-цепное окисление которых протекает через стадии первичного гидропероксида и альдегида:
ArCH3 + O2 ArCH2OOH ArCHO+ O2 ArCOOH
Жидкофазным окислением метилбензолов кислородом воздуха в промышленности получают моно- и дикарбоновые ароматические кислоты.
2. Окисление спиртов, альдегидов и кетонов.
Ароматические спирты, альдегиды и кетоны окисляются легче, чем углеводороды. Окисление обычно ведут с помощью гипохлоритов по схеме:
C6H5-CO-CH3 + 4 NaOCl C6H5-COOH + NaCl + H2O + CO2
3. Гидролиз галогенпроизводных.
Этот способ широко применяется в технике.
C6H5CCl3 + 2 H2O C6H5COOH + 3HCl
При хлорировании толуола получают три вида галогенпроизводных: хлористый бензил для производства бензилового спирта; хлористый бензилиден - для получения бензальдегида; бензотрихлорид перерабатывается на бензойную кислоту.
4. Синтез Гриньяра.
C6H5Li + CO2 C6H5COOLi + LiBr
Химические свойства
В водных растворах монокарбоновые кислоты обнаруживают большую степень диссоциации, чем алифатические кислоты (Ка бензойная к-та =6,610-5, Ка уксусная к-та =1,810-5). Большая степень диссоциации бензойной кислоты обусловлена электрофильным характером бензольного кольца:
Кислотность ароматических кислот почти не зависит от резонансных эффектов.
Ароматические кислоты вступают во все те реакции, которые свойственны и кислотам жирного ряда. За счет карбоксильной группы образуются различные производные кислот: действием кислот на щелочи и карбонаты получаются соли, эфиры - нагреванием смеси кислоты и спирта в присутствии минеральной кислоты.
Если заместителей в орто-положении нет, то этерификация карбоксильной группы происходит так же легко, как и в случае алифатических кислот. Если одно из орто-положений замещено, то скорость этерификации сильно уменьшается, а если заняты оба орто-положения, то этерификация не идет.
Эфиры орто-замещенных бензойных кислот могут быть приготовлены при реакции серебряных солей с галогеналканами. Они с трудом подвергаются гидролизу. Такое явление носит название пространственных (стерических) затруднений. Группы, большие, чем водород, в такой степени заполняют пространство вокруг углеродного атома карбоксильной группы, что затрудняет переход в промежуточное состояние при образовании или омылении эфира.
Хлорангидриды получаются действием на кислоты хлористого тионила или пятихлористого фосфора:
C6H5COOH + SOCl2 C6H5COCl + HCl + SO2
Ангидриды получают перегонкой смеси кислоты с уксусным ангидридом или действием хлорангидридов на соли:
C6H5COCl + NaOOCC6H5 (C6H5CO)2O + 2 NaCl
При сплавлении соли ароматической карбоновой кислоты со щелочью карбоксильная группа замещается на водород:
C6H5COONa + NaOH ArH + Na2CO3
Важнейшие представители
1. Бензойная кислота. Основными способами получения бензойной кислоты являются окисление толуола и декарбоксилирование фталевой кислоты. Применяется в качестве консерванта в пищевой промышленности вследствие сильного антисептического действия, а также в производстве красителей и душистых веществ. Очень важным производным бензойной кислоты является ее хлорангидрид - хлористый бензоил. Это жидкость с характерным запахом и сильным лакриматорным действием.
п-трет-Бутилбензойная кислота получается в промышленных масштабах окислением трет-бутилтолуола в присутствии растворимой соли кобальта в качестве катализатора. Применяется в производстве полиэфирных смол.
Дикарбоновые ароматические кислоты
Известно три бензолдикарбоновых кислоты: фталевая (о-изомер), изофталевая (м-изомер) и терефталевая (п-изомер). Терефталевая кислота является кристаллическим веществом (Т возг. 300оС), по сравнению с изомерными кислотами наименее растворима в воде и органических жидкостях. Терефталевая кислота и ее диметиловый эфир играют важную роль в производстве синтетического волокна лавсан (терилен) - продукта их поликонденсации с этиленгликолем. Терефталевую кислоту получают окислением п-ксилола.
Изофталевая кислота применяется для производства полиэфиров. Ее получают аналогично терефталевой кислоте - жидкофазным окислением м-ксилола.
Подобные документы
Ознакомление с классификацией и разновидностями карбоновых кислот, их главными физическими и химическими свойствами, сферах практического применения. Способы и приемы получения карбоновых кислот, их реакционная способность. Гомологический ряд и гомологи.
разработка урока [17,9 K], добавлен 13.11.2011Ацильные соединения - производные карбоновых кислот, содержащие ацильную группу. Свойства кислот обусловлены наличием в них карбоксильной группы, состоящей из гидроксильной и карбонильной групп. Способы получения и реакции ангидридов карбоновых кислот.
реферат [174,1 K], добавлен 03.02.2009Общее определение сложных эфиров алифатичеких карбоновых кислот. Физические и химические свойства. Методы получения сложных эфиров. Реакция этерификации и ее стадии. Особенности применения. Токсическое действие. Ацилирование спиртов галогенангидридами.
реферат [441,9 K], добавлен 22.05.2016Резонансные структуры производных карбоновых кислот. Галогенангидриды, их главные свойства. Ангидриды и кетены, амиды. Нитрилы как органические соединения с тройной связью. Сложные эфиры, реакции a-углеродного атома. Свойства ацетоуксусного эфира.
контрольная работа [627,9 K], добавлен 05.08.2013История открытия производных карбоновых кислот, в которых атом водорода карбоксильной группы замещен на углеводородный радикал. Номенклатура и изомерия, классификация и состав сложных эфиров. Их физические и химические свойства, способы получения.
презентация [1,6 M], добавлен 14.09.2014Ангидриды карбоновых кислот представляют собой продукты отщепления молекулы воды от двух молекул кислоты. Кетены - внутренние ангидриды монокарбоновых кислот. Способы получение и реакции нитрилов. Цианамид представляет собой амид синильной кислоты.
лекция [152,8 K], добавлен 03.02.2009Карбоновые кислоты — более сильные кислоты, чем спирты. Ковалентный характер молекул и равновесие диссоциации. Формулы карбоновых кислот. Реакции с металлами, их основными гидроксидами и спиртами. Краткая характеристика физических свойств кислот.
презентация [525,6 K], добавлен 06.05.2011Моно-, ди- и оксокарбоновые кислоты, гидроксикислоты: номенклатура, изомерия, систематические и тривиальные названия, способы получения, физические и химические свойства, виды реакций. Функциональные производные, их общая формула, ацилирующая способность.
презентация [1,2 M], добавлен 22.12.2014Объединение соединений с функциональной группой карбоксила в класс карбоновых кислот. Совокупность химических свойств, часть из которых имеет аналогию со свойствами спиртов и оксосоединений. Гомологический ряд, номенклатура и получение карбоновых кислот.
контрольная работа [318,7 K], добавлен 05.08.2013Классификация, свойства, распространение в природе, основной способ получения эфиров карбоновых кислот путем алкилирования их солей алкилгалогенидами. Реакции этерификации и переэтерификация. Получение, восстановление и гидролиз сложных эфиров (эстеров).
лекция [151,9 K], добавлен 03.02.2009