Химия

Основные понятия и законы химии. Классификация неорганических веществ. Периодический закон и Периодическая система элементов Д.И. Менделеева. Основы термодинамических расчетов. Катализ химических реакций. Способы выражения концентрации растворов.

Рубрика Химия
Вид курс лекций
Язык русский
Дата добавления 24.06.2015
Размер файла 333,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

.

Позже было установлено, что все электролиты можно разделить на две группы: слабые и сильные. Сильные электролиты в водных растворах диссоциированны практически полностью. Понятие степени диссоциации к ним практически не применимо, а отклонение изотонического коэффициента от целочисленных значений объяснимо несколько иными причинами. Слабые электролиты диссоциируют в водных растворах лишь частично, и в растворе имеет место динамическое равновесие между недиссоциированными молекулами и ионами.

Для оценки состояния ионов в растворе вводят понятие активности - эффективной, условной концентрации иона, в соответствии с которой он действует при химических реакциях. Активность иона а равна его концентрации с, домноженной на коэффициент активности f: a=f·с. Коэффициенты активности различных ионов различны. Они изменяются при изменении условий, например, при изменении концентрации раствора.

Если f<1, то есть взаимодействие между ионами, приводящее к их взаимному связыванию.

Если f1, то взаимодействие между ионами носит слабый характер.

В разбавленных растворах природа ионов мало влияет на значения коэффициентов активности. Приближенно считают, что коэффициент активности данного иона зависит только от его заряда и от ионной силы раствора I, которая является полусуммой произведений концентраций всех находящихся в растворе ионов на квадрат их заряда:

I=0,5·.

Контрольные вопросы

1. Какие растворы называется электролитами?

2. Что такое электролитическая диссоциация и как диссоциируют растворы кислот , солей и оснований?

3. Теория Аррениуса, что такое степень и константа диссоциации?

Лекция №10. Гидролиз солей

Цель: Изучение видов гидролиза солей и определение рН растворов по молекулярно- ионной реакции соли.

Литература

1. Ахметова Н.С. Общая и неорганическая химия. Изд. «Химия», М. 1981 г.

2. Глинка Н.Л. Общая химия. Изд. «Химия», Ленинград, 1987г.

3. Некрасов В.Б. Основы общей химии. Изд. «Химия», М. 1971г

4. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. Изд. «Химия», М.1983г

5. Коржуков Н.Г. Неорганическая химия. Москва «МИСИС», 2001г

6. Савельев Г.Г., Смолова Л.М. Общая химия Изд. ТПУ. Томск 2003г.

7. Курнакова Н.С. Современные проблемы общей и неорганической химии. М. «Химия» М., 2004г.

Основное содержание

Гидролизом солей является процесс химического взаимодействия солей с водой. Таким образом, гидролизом называют взаимодействие вещества с водой, при котором составные части вещества соединятся с составными частями воды. Например, следующие реакции являются реакциями гидролиза:

KCN+H2O=HCN+KOH

AlCl3+H2O=Al(OH)Cl2+HCl

Гидролизу подвергаются следующие соли, образованные:

а) слабой кислотой и слабым основанием;

б) слабой кислотой и сильным основанием;

в) сильной кислотой и слабым основанием.

Соли же, образованные сильной кислотой и сильным основанием, не гидролизуются, а процесс нейтрализации в этом случае сводится к следующему:

Н++ОН- = Н2О. Следует учитывать, что обратная реакция диссоциации воды на ионы протекает в мизерной степени.

Слабыми кислотами являются: HNO2, H2SO3, H2O2, CH3COOH, H2SiO3, HF, H2CO3, HCN, H2S, H3PO4, NH4OH. Сильными кислотами являются: HNO3, H2SO4, HCl, HBr, HJ, НClO4, НMnO4. Cильными основаниями являются все щелочи кроме NH4OH (например КОН, NaOH, Ba(OH)2, Ca(OH)2).

Рассмотрим подробнее основные три случая гидролиза солей:

1. Гидролиз соли, образованной слабой кислотой и сильным основанием (на примере ацетата натрия):

CH3COONa+H2O=CH3COOH+NaOH

CH3COO- +H2O=CH3COOH+OH-

В данном случае гидролизуется анион соли, а реакция сопровождается образованием ионов ОН-. Реакция среды - щелочная.

2. Гидролиз соли, образованной слабым основанием и сильной кислотой:

NH4NO3+H2O=NH4OH+HNO3

NH4++H2O=NH4OH+H+

Здесь гидролизуется катион соли и реакция сопровождается образованием ионов Н+. Реакция среды - кислая.

3. Гидролиз соли, образованной слабой кислотой и слабым основанием:

CH3COONH4+H2O=CH3COOH+NH4OH

CH3COO + NH4+ +H2O=CH3COOH+NH4OH

Здесь гидролиз идёт и по катиону, и по аниону с образованием сразу двух слабых электролитов. Среда в растворах таких солей зависит от относительной силы образующихся в результате гидролиза кислоты и основания, но в целом близка к нейтральной.

4. Соль, образованная сильной кислотой и сильным основанием, не гидролизуется:

KNO3+H2O

KClO4+H2O

Гидролизу подвергается не вся соль, а лишь её часть, т.е. в растворе устанавливается равновесие между солью и образующими её кислотой и основанием. Поэтому часть вещества, подвергающаяся гидролизу, характеризуется степенью гидролиза. Степень гидролиза зависит от константы равновесия, температуры и концентрации соли, а также от её природы. Природа соли проявляется в величине константы гидролиза соли.

Константа гидролиза соли Кг характеризует способность данной соли подвергаться гидролизу. Чем больше Кг, тем в большей степени протекает гидролиз (при постоянстве Т и концентрации соли).

Константа гидролиза соли, образованной слабой кислотой и сильным основанием, равна:

Кг=,

где Ккислоты - константа диссоциации кислоты. Анализ уравнения показывает, что чем слабее кислота, тем в большей степени подвергаются гидролизу её соли.

Константа гидролиза соли, образованной сильной кислотой и слабым основанием, равна:

Кг=,

где Коснования - константа диссоциации основания. Анализ уравнения показывает, что чем слабее основание, тем в большей степени подвергаются гидролизу им образованные соли.

Константа гидролиза соли, образованной слабой кислотой и слабым основанием, равна:

Кг=.

Зависимость степени гидролиза от концентрации соли проявляется в том, что с разбавлением раствора степень гидролиза растёт. Влияние температуры на степень гидролиза вытекает из рассмотренного ранее принципа Ле Шателье: степень гидролиза растёт с повышением температуры. Поэтому для ослабления гидролиза растворы необходимо хранить концентрированными и при низких температурах. Для солей, образованных сильной кислотой и слабым основанием, фактором подавления гидролиза является подкисление раствора, а в случае соли, образованной слабой кислотой и сильным основанием, таковым фактором является подщелачивание раствора.

Процесс гидролиза может протекать ступенчато, например:

Na2CO3+H2O=NaHCO3+NaOH I ступень

CO32- +H2O=HCO3- +OH-

NaHCO3- +H2O=H2CO3+OH- II ступень

HCO3- +H2O=H2CO3+OH-

Как видно из уравнения реакции гидролиза, в первой ступени образуется гидрокарбонат ион, диссоциация которого характеризуется второй константой диссоциации угольной кислоты, а во второй ступени происходит гидролиз кислой соли с образованием угольной кислоты, диссоциацию которой характеризует первая константа её диссоциации. Поэтому можно связать константу гидролиза по первой ступени К1 со второй константой диссоциации кислоты К2 кисл, а константу гидролиза по второй ступени К2 с первой константой диссоциации кислоты К1 кисл:

К1=>К2=.

Гидролиз по первой ступени всегда протекает в большей степени, чем по второй. Аналогично протекает гидролиз соли, образованной слабым основанием многовалентного металла.

Особенно глубоко протекает гидролиз соли, образованной слабой кислотой и слабым основанием, т.к. константа гидролиза для этого случая обратно пропорциональна произведению констант диссоциации кислоты и основания, т.е. её значение крайне велико.

Согласно протонной теории кислот и оснований гидролиз можно представить как частный случай кислотно-основного равновесия: протон переходит от молекулы воды к данному иону или от данного иона к молекуле воды. Примером может служить гидролиз иона аммония:

NH4++H2O= H3О++NH3.

3. Для выражения кислотности или щелочности раствора используют величину водородного показателя (рН), равную десятичному логарифму концентрации ионов водорода [H+], взятому с обратным знаком:

рН=-lg[H+], где [H+]=[моль/л].

Таким образом, по характеру среду растворы можно подразделить на кислые (растворы, в которых концентрация ионов водорода больше концентрации гидроксид-ионов), щелочные (растворы, в которых концентрация ионов водорода меньше концентрации гидроксид-ионов) и нейтральные (растворы, в которых концентрация ионов водорода равна концентрации гидроксид-ионов).

Характер среды (раствора)

Величина рН

Концентрация [Н+], моль/л

кислая

<7

>10-7

нейтральная

7

10-7

щелочная

>7

<10-7

Существуют различные методы измерения рН. Приближенно реакцию среды возможно определить при помощи специальных реактивов, или индикаторов, окраска которых меняется в зависимости от концентрации ионов водорода. Наиболее распространёнными индикаторами являются: метиловый оранжевый, метиловый красный, фенолфталеин. В следующих таблицах даны характеристики основных применяемых индикаторов:

Таблица 1. Кислотно-основные индикаторы.

Размещено на http://www.allbest.ru/

Таблица 2. Важнейшие индикаторы

Название индикатора

Цвет индикатора в различных средах

в кислой

в нейтральной

в щелочной

Метиловый оранжевый

красный (рН<3,1)

оранжевый

(3,1<рН<4,4)

желтый

(рН>4,4)

Метиловый красный

красный (рН<4,2)

оранжевый

(4,2<рН<6,3)

желтый

(рН>6,3)

Фенолфталеин

бесцветный (рН<8,0)

бледно-малиновый

(8,0<рН<9,8)

малиновый

(рН>9,8)

Лакмус

красный (рН<5,0)

оранжевый

(5,0<рН<8,0)

желтый

(рН>8,0)

Для воды и разбавленных водных растворов при Т=const:

[Н+]·[ОН-]=const=KH2O,

где KH2O - ионное произведение воды.

При Т=298К (25С) для чистой воды [Н+]=[ОН-]=10-7 моль/л, поэтому:

KH2O=10-7·10-7=10 -14 или р[Н+]+р[ОН-]=14, т.е. р[Н+]=14 - р[ОН-].

Т.о. сумма водородного и гидроксильного показателей в водных растворах при 25С равна 14.

При увеличении температуры значение ионного произведения воды возрастает (например, при 100С оно достигает величины 5,5·10-13).

Однако следует учитывать, что каковой бы ни была величина реакции раствора (рН), произведение концентраций [Н+]·[ОН-] остаётся неизменным. Величина ионного произведения воды может измениться только при изменении температуры, но не при увеличении [Н+] или [ОН-].

Контрольные вопросы

1. Что такое гидролиз соли. Что такое водородный показатель рН?

2. Сколько существует видов гидролиза?

3. Что такое степень гидролиза и от чего она зависит?

4. Какие соли не гидролизуются?

Лекция №11. Окислительно-восстановительные реакции

Цель: Изучение окислительно- восстановительных реакций

Литература

1. Ахметова Н.С. Общая и неорганическая химия. Изд. «Химия», М. 1981 г.

2. Глинка Н.Л. Общая химия. Изд. «Химия», Ленинград, 1987г.

3. Некрасов В.Б. Основы общей химии. Изд. «Химия», М. 1971г

4. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. Изд. «Химия», М.1983г

5. Коржуков Н.Г. Неорганическая химия. Москва «МИСИС», 2001г

6. Савельев Г.Г., Смолова Л.М. Общая химия Изд. ТПУ. Томск 2003г.

7. Курнакова Н.С. Современные проблемы общей и неорганической химии. М. «Химия» М., 2004г.

Основное содержание

Окислительно-восстановительными называются химические реакции, сопровождающиеся изменением степени окисления атомов элементов. Степень окисления - это условный заряд атома в молекуле. Она вычисляется исходя из положения, что все связи между атомами ионные. Окислением называется процесс отдачи электронов, а восстановлением процесс принятия электронов. Окисление и восстановление взаимосвязаны. Окислителем называется вещество, атомы которого принимают электроны, при этом он восстанавливается. Восстановителем называется вещество, атомы которого отдают электроны, при этом он окисляется.

Все окислительно-восстановительные реакции классифицируют следующим образом:

1. Межмолекулярные реакции. Это реакции, в которых окислитель и восстановитель являются различными веществами.

,

где Mn+4 - окислитель, Cl-1 - восстановитель.

2. Реакции внутримолекулярного окисления. Это реакции, которые протекают с изменением степеней окисления атомов различных элементов одного и того же вещества.

,

где Mn+7 - окислитель, а O-2 - восстановитель.

3. Реакции диспропорционирования. В этих реакциях и окислителем и восстановителем является элемент, находящийся в промежуточной степени окисления в составе одного и того же вещества.

,

где Cl20 - окислитель и восстановитель.

О возможности того или иного вещества проявлять окислительные, восстановительные или двойственные свойства можно судить по степени окисления элементов, выполняющих эти функции.

Элементы в своей высшей степени окисления проявляют только окислительные свойства, а в низшей степени окисления проявляют только восстановительные свойства. Элементы, имеющие промежуточную степень окисления, могут проявлять как окислительные, так и восстановительные свойства. Основные окислители и восстановители приведены ниже.

Окислители

Схемы реакций

Простые вещества:

Галогены Г2

(НГ и их соли)

Кислород О2

(H2O, оксиды и их производные)

Неметаллы (S,P,N2)

(ЭНn и их соли)

Сложные вещества: HCl, H2SO4 (разбавленные) и т. п. (кроме НNO3).

H2SO4 конц.

(SO2, H2SO3 и её соли)

(S)

(H2S и её соли)

HNO3 конц.

HNO3 разб.

(NO2)

(N2O3, HNO2 и её соли)

(NO)

(N2O)

(N2)

(NH3, NH4+ и соответствующие соли)

Окислители

Схемы реакций

KMnO4

H2O2

Катионы металлов высшей степени окисления (Fe+3, Sn+4, и т. п.)

Восстановители

Схемы реакций

Простые вещества:

металлы (Ме)

Н2

(H2O)

Неметаллы (S,C,P,N2,…)

H2S и её соли, Na2S2O3

НГ и их соли

Катионы металлов в низших степенях окисления

(Fe+2, Sn+2, Sb+3, Cr+3 и т.д.)

HNO2 и её соли.

(HNO3 или ее соли).

H2SO3 и её соли.

(H2SO4 или ее соли).

H2O2

Контрольные вопросы

1.Перечислите все виды химических реакций?

2.Какие реакции называются окислительно-восстановительными?

3.В чём разница окис.-восст. Реакций от других видов реакций?

4.Назовите виды окислительно-восстановительных реакций?

5.Какие окислители и восстановители вы знаете?

Лекция №12. ЭЛЕКТРОЛИЗ РАСТВОРОВ. ЗАКОНЫ ФАРАДЕЯ. КОРРОЗИЯ МЕТАЛЛОВ

Цель: Дать знания студентам о электролизе растворов, законе Фарадея и о видах коррозии и методах её защиты.

Литература

1. Ахметова Н.С. Общая и неорганическая химия. Изд. «Химия», М. 1981 г.

2. Глинка Н.Л. Общая химия. Изд. «Химия», Ленинград, 1987г.

3. Некрасов В.Б. Основы общей химии. Изд. «Химия», М. 1971г

4. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. Изд. «Химия», М.1983г

5. Коржуков Н.Г. Неорганическая химия. Москва «МИСИС», 2001г

6. Савельев Г.Г., Смолова Л.М. Общая химия Изд. ТПУ. Томск 2003г.

7. Курнакова Н.С. Современные проблемы общей и неорганической химии. М. «Химия» М., 2004г.

Основное содержание

Электролиз -- это окислительно-восстановительный процесс идущий под влиянием электрического тока у растворов или расплавов электролита.

Здесь окислительно-восстановительный процесс идет принудительно, вследствие превращения электрической энергии в химическую энергию.

При прохождении электрического тока через раствор или расплав электролита, положительные ионы раствора стремятся к отрицательному полюсу, а отрицательные ионы стремятся к положительному полюсу. В электродах ионы разряжаются превращаясь в нейтральные атомы.

По мере происхождения электронного тока через раствор или расплав электролита электроны переходят от анода к катоду. Появление избытка электронов на катоде и недостатка их на аноде вызывает упорядоченное движение ионов в растворе или расплаве. Избыточные электроны катода переходят положительно заряженным раствора электролита превращая их в нейтральные атомы отрицательно заряженные ионы электролита у анода, отдавая свои электроны аноду разряжаются. Таким образом, на катоде происходит процесс восстановления и на аноде процесс окисления.

Электроны с анода уходят во внешнюю цепь. В зависимости от природы анода источником этих электронов является сам анод или анионы из раствора или расплава, в этом случае анод нерастворимый. В качестве нерастворимого анода можно принять графит, Запятая, Au.

Электролиз водных растворов электролитов с нерастворимыми электродами.

При электролизе водных растворов электролитов действию тока не только подвергаются ионы электролита, но ионы Н и ОН воды, образовавшиеся при диссоциации.

Поэтому на катоде могут разрядиться два иона, положительных ион электролита и Н иона. Какой из ионов разрядился, определяется положением металла в ряду напряжений, а также от концентрации ионов в растворе.

1. У катода ионы металла стоящие в ряду напряжения до Ал включительно в водном растворе разряжаться не могут, вместо них разряжаются ионы водорода от воды, т.е. электроны от катода принимает сама вода это объясняется тем, что разница между электродами потенциальна очень велика.

Литий, барий, K, Na, Приблизительно, Мг, Ал, МС, Цинк, Вишнево-красный, Fe, Cd, Co, Никель, Sn, H2, Cu, Ag, Гектограмм, Запятая, Au.

2. При электролизе раствор солей металлов состоящие от Ал до H2 в ряду напряжения у катода разряжаются ионы этих металлов и частично разряжаются ионы Н воды. Откуда видно что восстанавливаются ионы металлов более активных чем водород. Это связано с тем, что в водных растворах катионы электролита и ион Н воды находятся в одинаковых условиях по отношению их концентрации.

3. При электролизе растворов солей металлов состоящих в ряду напряжения после Н2 у катода разряжаются только ионы этих металлов.

У анода -- в первую очередь разряжаются ионы остатков без кислородных кислот так как они легко теряют свой заряд чем ион ОН воды, а ионы остатков кислородных кислот не способны разряжаться у анода, а место них окисляются ионы ОН воды.

Электролиз водных растворов солей с растворимыми электродами.

В этом случае электролиза, закономерности, отличные в отношение катодного процесса при нерастворимом аноде, сохраняют свою силу.

Особенности анодного процесса заключается в том, что источником

электроном является электрод, из которого сделан анод, т.е. анод растворяется и переходит в раствор в виде иона Ме+n.

Например: разберем электролиз водного раствора CuSO4 с медным анодом.

CuSO4 = Сu ++ + SO4-2

-K

Сu ++

Сu ++ + 2е = медь процесс восстановления

+A

SO4-2

CuO - 2е = Сu ++ процесс окисления

В этом случае происходит перенос Сu с анода на катод.

-К / Сu ++ + ОН-= Медь (О) 2 вторичный процесс

Электролиз с растворимым анодом широко используется для покрытия одних металлов другими.

Например: при никелировании предмета -- анодом служит Никель электрод, а катодом покрываемый предмет, в качестве электролита берут раствор соли никеля.

NiSO4 с Никель анодом и Fe (покрывающим материалом) - катод.

Н2O+NiSO4 = Никель ++ + SO4--

-K

Никель ++

Никель ++ + 2e = Никель

+A

SO4--

Никель-2e = Никель ++

Покрытие одного металла с другим с помощью электролиза называется гальваностегией. Этим же методом пользуются при получении из черновой меди чистую медь.

CuO + С = медь + СО

Из черновой меди делают анод. В первую очередь с анода в раствор переходит Цинк, Sn.

Электролиз расплавов с нерастворимым электродом.

Металлы стоящие в ряду напряжения до Ал включительно получают электролизом расплавов их солей, т.к. самым сильным восстановителем является электрический ток.

Например: электролиз расплава NaC1.

NаС1 Nа + + Сl-

-K

Nа +

Na + + е = Na процесс восстановления

+A

Сl-

Сl--е = Замкнутый + Замкнутый = Сl2 процесс окисления

Получение Na.

Na можно получить из NaC1 и NaOH. Тпл NaCl = 805o С, Тпл NaOH = 400o С

По Тпл выгодно использовать NaOH, но он является дорогим сырьем чем NаС1.

NaOH=Nа + + ОН-

-K

+

Na + + е = Na

+A

О-

2OH--2e = 2H2O + O: O+O = O2

Законы электролиза

Количественные стороны электролиза впервые были изучены английским физиком М. Фарадеем, который установил следующие законы.

1. Закон Фарадея.

Весовое количество выделяемого при электролизе вещества пропорционально количеству протекшего через раствор электричества и совершенно не зависит от других факторов.

2. Закон Фарадея

При пропускании равные количества электричества из различных химических соединений на электродах выделяются эквивалентные количества веществ.

Для выделения одного грамм-эквивалента любого вещества необходимо затратить 96500 кулон электричества.

Закон Фарадея можно выразить также следующим уравнением:

m = (QЭ) / F

m - масса выделяемого вещества, Э - эквивалент вещества, F - число Фарадея, Q - количество электричества.

Q = JJ-сила тока, А.

- продолжительность электролиза, сек.

m = (ЭJ) / F

Следующий опыт является наглядной иллюстрацией II закона Фарадея. Электрический ток, протекающий через растворы НСl, АgNО3, CuSO4, FePO4, SnC14. Растворы предварительно помещают в приборы, в которых по окончании опыта возможно определить количества выделявшегося веществ.

Электролит

HCl

AgNO3

CuSO4

FePO4

SnC14

Валентность

H +

Аг +

Cu+2

Fe+3

Sn+4

Количество Выделявшегося у катода металла

, г.

1

107,9

31,8

18,67

29,7

у анода, г

35,5

8

8

8

35,5

Атомный вес

металла, г.

1

107,9

63,5

56

118,7

Через некоторое время, когда у электродов находится достаточное количество продуктов электролиза прекращают пропускании тока и производят измерения. Оказывается, что за время, в течении которого из раствора НС1 выделяется 1 г Н2, те 1 г последнего, из остальных растворов выделяются указанные количества металлов. Сопоставления количества выделявшего у катода веществ с атомными весами показывают что вещества выделяются в количестве равной их эквивалентам к такому же результату приводит измерения количество веществ выделявшего у анода. В 1 и 5 выделения по 35,5 г осмора, в 2, 3, 4, выделяется по 8 г кислорода.

Например: сколько выделится меди если через водный раствор

CuSO4 пропускать ток силой 2а в течении 2 часа.

m-?

J = 2A

= 2 час = 7200сек

F = 96500

m = (Э J) / F

Э = (Ав) / В: CuSO4 Cu+2 + SO4--

m = (31,8 * 2 * 7200) / 96500 = 4,74 г.

Поляризация при электролизе.

Окислительные и восстановительные процессы, протекающие под действием электрического тока, могут вызвать существенные изменения электродов. Если вести электролиз воды раствор СиС1 с нерастворенным электродом.

Сu Сl2 = Сu ++ + 2 Замкнутый

Хлор адсорбируется на поверхности электрода Запятая и образуется слой Замкнутый Таким образом раствор СиС12 будет непосредственно соприкасаться не с пластиной а Са и Замкнутый.

Если теперь удалить источник тока и соединить внешней цепью через гальванометр концы электродов, то гальванометр покажет наличие в цепи электрического тока -- тока электрохимической поляризации, его направление окажется обратным тому которое давал источник тока. ЭДС образовавшегося гальванического элемента равна разности потенциалов электродов.

Медь / CuCl2 / С12 (Запятая)

c12 / замкнутый = + 1,36 Медь ++ / медь = 0,34

Если исходить из нормальных электродных потенциалов,

то ЭДС = c12 / замкнутый- Медь ++ / медь = 1,02

и это ток поляризации препятствует электролизу. Чтобы электролиз продолжал идти с нужной интенсивностью, к электродам надо прикладывать напряжение источника тока несколько выше, чем ЭДС тока поляризации.

Наименьшая разность потенциалов, необходимая для непрерывного электролиза, называется потенциалом разложения.

Потенциал разложения электролита всегда больше чем ЭДС поляризации.

Разность между потенциалом разложения и ЭДС поляризации называется перенапряжением.

Перенапряжение зависит от следующих факторов:

1. от материала, из которого сделаны электроды;

2. от состояния поверхности электродов;

3. от агрегатного состояния веществ, выделившихся на электродах;

4. от плотности тока и от температуры раствора.

Аккумуляторы

Введение поляризации электродов используется на практике в приборах, служащих для накопления химической энергии, легко превращаемой в нужный момент в электрическую энергию. Такие приборы называются аккумуляторами.

Аккумуляторы различаются между собой химической природой электродов и электролита, а также конструкцией. Практическое применение имеют главным образом кислотные и щелочные аккумуляторы.

Кислотные (свинцовые) аккумуляторы.

Свинцовый аккумулятор состоит из решетчатых свинцовых пластин, заполненных пастой из окиси свинца PbO и погруженных в 25 - 30% раствор H2SO4. В результате взаимодействия PbO с раствором H2SO4 на поверхности Pb пластины образуется слой трудно растворимого PbSO4.

РbО+ H2SO4 = PbSO4+ Н2О

Чтобы зарядить аккумулятор, т.е. накопить в нем химическую энергию, надо одну из его свинцовых пластин соединить с отрицательным, а другую с положительным полюсом источника тока. Происходящие при этом реакции можно выразить отрицательным полюсом катода.

- К PbSO4 + 2е = Pb + SO4--

PbSO4 - 2е + 2 Н2О = РbО2+ SO4-- + 4Н+

Как видно из уравнения на отрицательном полюсе ионы присоединяя по два электрона, превращается в металлический. На положительном полюсе окислительный процесс приводит к превращению PbO2.

Если сложить эти реакции, то общее выражение процесса примет

вид.

2 PbSO4+ Н2O = РbО2 + SO4-- + 4Н+

При заряде аккумулятора в реакцию вступает вода и образуется кислота.

Аккумуляторы заряжают до тех пор пока не начнется электролиз воды с энергичным выделением водорода на катоде и кислорода на аноде.

Итак при заряде аккумулятора электроды становятся химически различными и между ними появляется разность потенциалов.

Электрическая схема характеризующая полученных гальванический элемент, имеет вид.

- Pb / H2SO4 / PbO2 (Pb) +

Если соединить пластину заряженного аккумулятора проводником, то от пластины покрытой свинцом к пластине покрытой PbO2 будут перемещаться электроны, т.е. появляется электрический ток, аккумулятор работает как гальванический элемент. На его электродах происходят следующие реакции.

- Pb - 2е + SO4-2 = Pb S04

+ PbO2 + 2е = 4Н+ = SO4-2- = PbSO4+ 2Н2О

При разрядке расходуется H2SO4 и концентрация H2SO4 в растворе уменьшается. Уменьшение концентрация кислоты служит показателем степени разряженности аккумулятора.

ЭДС свинцового аккумулятора немного больше 2 В.

Щелочные аккумуляторы.

Из щелочных аккумуляторов наибольшее практическое применение нашли Fe - Ni, Cd - Ni, Ag - Zn аккумуляторы. В заряженном Fe - Ni аккумуляторе активной массой отрицательного электрода является порошкообразное железо, спрессованное с небольшим количеством окиси ртути, активная масса положительного электрода - Ni ( ОН )3 с небольшой примесью графита . электролитом служит 23 % КОН .

При разрядке происходят следующие процессы

А(-)Fе - 2е = Fe

K(+)Ni(OH)3 + е = Ni ( ОН )2

реакции протекающие при зарядке имеют обратное явление и общее уравнение заряд и разряд имеет общий вид

Fe + 2 Ni (ОН)3 Fe(ОН)2 + 2 Ni( ОН)2

ЭДС такого аккумулятора около 1,2 в.

Серебряно -- цинковый аккумулятор

схема этого аккумулятора следующая

(+) Ag2O/КОН/ Zn(-)

Ag - Zn аккумуляторы значительно превосходят рассмотренные выше кислотные и щелочные аккумуляторы по удельной энергии и удельной мощности.

Эти аккумуляторы отличаются весьма небольшим саморазрядом и возможностью использования их в широком интервале температуры - от 30 до 70 градусов Цельсия.

Использовать их в широком интервале температуры от - 30 до + 70 с.

В нем отрицательный электрод представляет собой прессованную смесь ZnO с порошком Zn, а положительный электрод представляет собой каркас из Ag проволоки спрессованной с Ag2O . Раствором электролита служит 39% КОН 1мл раствора ZnO .

Аg + ZnO + Zn ( ОН )2 2 Zn+ Н2О + 2 Аg

При заряде

электрод (+) 2Аg + 2 ОН - 2е = Ag2O+ Н20

(-) ZnO + 2е = Zn

оксид цинка превращается в цинковую губку.

ZnO + КОН + Н2О = K[Zn(OH)3]

К[Zn(ОН)3]+2е = Zn + КОН + 2ОН

ЭДС=1,856

КОРРОЗИЯ МЕТАЛЛОВ.

Большинство металлов, приходя в соприкосновение с окружающей средой, подвергаются с поверхности разрушение. Причиной этого является химическое взаимодействие металлов с находящимися в воздухе газами, с водой и растворенными в ней веществами. При этом в результате окислительных процессов образуется вещества, обладающие свойства, резко отличающимися от свойств исходного металла.

Всякий процесс химического разрушения металлов под действием окружающей среды называется коррозией.

Различают несколько форм проявления коррозии. Наиболее часто встречаются равномерная, местная и межкристаллитная.

Из них наиболее опасно межкристаллитная коррозия, она распространяется между кристаллитами, и может незаметно привести к поражению конструкции на большую глубину.

По механизму химических процессов различают два вида коррозии химическая и электрохимическая.

1. Химическая коррозия - это разрушение металла без возникновения в системе электрического тока (при непосредственном соприкосновении металла с окислителем).

Химическая коррозия подразделяется на:

а) газовая коррозия вызывается под воздействием сухих газов. Н:

O2, SO2, С12,F2, Вr2,СО2 и др.

Она наблюдается в основном при высокотемпературной обработке металлов, в двигателях внутреннего сгорания и т.д.

б) жидкостная химическая коррозия - протекает под действием органических жидкостей без участия воды: производная нефти, бензин, крезол, бензол, толуол и др.

в) электрохимическая коррозия-это разрушения металла в среде электролита с возникновением внутри системы электрического тока.

Электрохимическая коррозия подразделяется на:

1. Атмосферная.

2. Почвенная.

3. Коррозия под действием блуждающих токов.

Также как для работы гальванического элемента для гальвано-коррозии необходимо наличие двух различных электродов и раствора электролита. Из этого можно утверждать, что чистые металлы теоретически вообще не должны подвергаться электрохимической коррозии. Если, например, рассмотреть коррозию железа с включением меди во влажном воздухе(Fe+Cu) при этом образуется гальванический элемент

химия реакция катализ раствор

А - Fe/Н2О/Cu + К

Fe - анод, Си - катод, и в результате коррозируется.

Fe-2e=Fe

Эти электроны Fe2+ на

поверхности Сu(катоде) восстанавливают кислород воздуха

О2 +2Н2О+4е = 4ОН

Fe2+ + ОН- = Fе(ОН)2,

Железо во влажном воздухе быстро переходит в 3-х ионновое железо.

4Fe(OH)2 + О2 +2Н2О= 4Fe(OH)3

Из этого примера видно, что при образовании гальванического элемента коррозируется более активный металл.

Участок поверхности, с которой переходят ионы в раствор, т. е. где металл коррозирует, называется анодом, участок, на котором разряжаются катионы электролита, называется катодом.

Характер катодных процессов при коррозии определяется веществами, имеющимися в растворе. При сильно кислой среде восстанавливаются ионн-водороды:

2 Н+ + 2 С =Н2.

В атмосферной коррозии рН среды близка к нейтральной, и поэтому на катоде восстанавливается растворённый в воде кислород.

О2+2Н2О+4е=4ОН

Пластику чистого цинка погрузить в разбавленный раствор кислоты, то выделение водорода, действительно, почти не наблюдается. Отсутствие реакции можно объяснить тем что, ионы цинка, начинающие переходить в раствор, создают у поверхности пластины слой положительно заряженных гидрированных ионов.

Это слой является барьером, который препятствует ионам водорода подходить в плотную к цинковой пластине и получать от неё электроны и растворение цинка прекращается. Если коснуться к поверхности цинка каким то менее активным металлом (Cu) как в следствии образования гальванического элемента

А-Zn / К-ТА / Cu+K

начинается энергичное выделение водорода на поверхности менее активного метала

Zn-2е =Zn++

Эти электроны переходя к Сu ликвидируют у. поверхности Сu защитный барьер из её ионов, и ионн водорода беспрепятственно восстанавливаются

Металлы стоящие в ряду напряжения левее легко подвергаются коррозии. Чистые металлы, также Аu, Ag, Pt, не коррозируются. А следующие металлы: Mg, Al, Cu, Cr, Ni, при коррозии образуют плотную защитную окисную плёнку, что препятствует дальнейшей коррозии.

Почвенная коррозия-этот тип коррозии является сложной разновидностью коррозии металлов в почве. Здесь играют роль химические и физические свойства почв. Коррозия в этом случаи зависит от следующих факторов

1. Влажности и среды почвы.

2. От электро и воздухо проницаемости почвы.

3. От электродного потенциала металла в контакте с

почвой и др.

Коррозия под действием блуждающих токов.

Большую роль в процессах подземной коррозии играют блуждающие токи (токи посторонних источников)

В зоне К вблизи рельса восстанавливается кислород, растворенный во влаге грунта. В результате создается избыток ионов OH-.

Наличие этих ионов смещает равновесие, имеющееся у поверхности подземного металла, провода. Связывание ионов с ионами приводит к появлению в данном месте трубы повышенной концентрации избыточных электронов. Эти электроны начинают помещаться вдоль трубы. Одновременно на рельсе в зоне А протекает окислительный процесс. Металлы рельса разрушаются. Ионы металла переходят во влагу грунта. Этому способствуют ионы ОН-, образующиеся у поверхности трубы в зоне А под влиянием электронов, перешедших сюда из зоны К . Таким образом в зоне К коррозирует подземная труба, в зоне А - рельс.

Методы защиты металлов от коррозии.

Исходя из того, что наиболее распространенной является электрохимическая коррозия, различные методы защиты учитывают прежде всего этот тип коррозии .

Способы защиты металлов от коррозии многообразны, остановимся только на основных.

1. Изоляция металла от коррозионной среды.

Этот метод заключается в изоляции защищаемого металла от влаги, т.к. в отсутствии ее не возникает гальванический элемент, а значит и не будет коррозии.

Изолирующие покрытия могут быть самыми разнообразными: покрытия металлов с не металлическими веществами, т.е. маслом, лаком, красками.

2. Покрытие металлов с металлами. Различают два вида металлических покрытий, катодное и анодное. Примером анодного покрытия может служить покрытие Fe c Zn. В этом случаи защищающие металл Zn более активен, чем защищаемый Fe.

При нарушении целостности покрытия при доступе влаги возникает гальванический элемент А-Zn/H2О + O2/Fe, в котором анод Zn разрушается, а катод -- железо остается до тех пор, пока не будит разрушен весь защитный слой

Zn-2е =Zn

2H2O+O2+4e=4OH

Zn+2 + 2ОН- = Zn (ОН)2

Однако защиту иначе называют протекторной защитой, т.е. протектор является анодом. Этот метод защиты применяется, например, для защиты от коррозии лопастей турбин подводных частей корабля в большинстве случаев в качестве протекторов применяет Zn.

Катодная защита. Покрытие из менее активного металла называется катодным. В этом случаи при нарушении целостности покрытия усиленно коррозирует защищаемый металл.

Контрольные вопросы

1.Какой процесс происходит на катоде и на аноде во время электролиза?

2.Какие вы знаете электроды?

3.Назовите виды аккумуляторов.

4.Что такое химическая коррозия? Виды коррозии?

5.Как надо бороться с коррозией?

Лекция 13. ОБЩИЕ СВОЙСТВА МЕТАЛЛОВ. ХИМИЧЕСКИЕ СВОЙСТВА I - II ГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ

Цель: Научить студентов общим свойствам металлов, (физико-химическим свойствам).

Литература

1. Ахметова Н.С. Общая и неорганическая химия. Изд. «Химия», М. 1981 г.

2. Глинка Н.Л. Общая химия. Изд. «Химия», Ленинград, 1987г.

3. Некрасов В.Б. Основы общей химии. Изд. «Химия», М. 1971г

4. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. Изд. «Химия», М.1983г

5. Коржуков Н.Г. Неорганическая химия. Москва «МИСИС», 2001г

6. Савельев Г.Г., Смолова Л.М. Общая химия Изд. ТПУ. Томск 2003г.

7. Курнакова Н.С. Современные проблемы общей и неорганической химии. М. «Химия» М., 2004г.

Основное содержание

Большинство (около 80%) химических элементов является металлами. Если посмотреть периодическую систему элементов по все элементы I, II, Ш, VIII группы, а также элементы побочной подгруппы IV, V, VI, VII группы являются металлами.

Все металлы, кроме ртути представляют собой при обычной температуре твердые кристаллические вещества. Они обладают рядом характерных физических свойств. Металлы хорошие проводники тепла и электричества, причем с повышением температуры их электропроводность уменьшается, за счет колебания электро-нейтральных и ионизированных атомов металла в кристаллической решетки, и тем самым оказывают сопротивление движению свободных электронов.

Металлы

В технике и в быту, слово металлы обозначает определенный вид материалов, предназначенных для изготовления самых разнообразных предметов, от монет и посуды до электрических проводов и оружия. Тысячи всевозможных металлических материалов производятся одной из самых мощных отраслей современной промышленности - металлургией. Все эти материалы схожи по внешнему виду и ряду физических свойств. Их внешний вид, и свойства обусловлены тем, что они состоят из химических элементов, атомы которых соединены между собой металлической химической связью. Эти элементы называются тем же словом - металлы.

В химии, смысл слова металл не вполне совпадает с его обычным значением. В химии оно обозначает:

- большую группу химических элементов с определенным расположением в периодической системе и с похожими свойствами;

- простые вещества, которые соответствуют этим элементам

Пример. В химии, слово железо обозначает химический элемент № 26 со следующими свойствами:

этот элемент существует в виде нескольких изотопов со средней атомной массой 55,847 а. е. м.;

атом этого элемента содержит 26 электронов, в том числе, 8 валентных;

атомы железа соединяются между собой в кристаллы путем образования делокализованной многоэлектронной химической связи (металлической связи);

атомы железа соединяются с атомами других элементов, при этом их степень окисления либо не изменяется (металлы), либо увеличивается (неметаллы), т. е., железо проявляет свойства восстановителя;

в водный раствор атомы железа переходят в виде гидратированных простых катионов Fe2+ или Fe3+.

Первые два из указанных выше свойств, а также ряд других, специфичны для железа; а три последних - характерны для всех металлов.

В технике, смысл слова железо связан с практическим применением этого металла и ассоциируется, в основном, с физическими свойствами железа как простого вещества:

а) пластичный и тягучий материал, пригодный для изготовления жести, гвоздей и др. предметов;

б) основной компонент множества сплавов;

в) магнитный материал;

г) материал, имеющий высокую электропроводность и теплопроводность;

д) материал, способный отражать электромагнитные волны в широком диапазоне частот, в т. ч., световые волны, и т. д.

Все перечисленные физические свойства железа и все химические свойства предопределены двумя основными факторами, имеющими химическую природу:

строением атома железа;

характером химической связи между атомами.

Подавляющее большинство химических элементов - это металлы; в периодической таблице их более 80. Сходство свойств различных металлов является следствием сходного строения их атомов и одинаковым характером химической связи между атомами. Второй фактор, т. е., существование между атомами металлической химической связи, является необходимым условием таких неотъемлемых свойств любого металла, как пластичность, электропроводность, теплопроводность, металлический блеск. Отсутствие металлической связи делает невозможными эти свойства.

Пример. Элемент № 50, олово, имеет три аллотропные кристаллические формы, -, - и - олово, устойчивые, соответственно, при низкой, обычной и высокой температуре. В кристаллах - олова, атомы соединены ковалентными неполярными связями, - это хрупкое вещество серого цвета, с низкой электропроводностью; в кристаллах - олова и - олова, существует делокализованная металлическая химическая связь, - эти вещества имеют все физические свойства, характерные для металлов, - блестящие, очень пластичные, с высокой электро - и теплопроводностью.

Общие свойства металлов

В приведенных выше примерах железа и олова, имеется набор свойств, которые позволяют отнести их к металлам. Эти отличительные свойства (и химические, и физические) являются характерными не только для этих двух, но для всех металлов без исключения.

Физические свойства. Металлы (как вещества) являются хорошими проводниками тепла и электричества, ковкими и тягучими; они имеют высокую отражательную способность и своеобразный металлический блеск.

Атомы металлов обычно имеют низкие величины энергии ионизации и сродства к электрону, а поэтому и низкую электроотрицательность.

Химические свойства. Отличительные свойства металлов :

- способность образовывать одноатомные катионы;

- способность простых веществ в окислительно-восстановительных реакциях всегда быть восстановителями и никогда - окислителями.

особый вид химической связи, который называется металлической связью.

В соответствии со своим электронным строением, металлы делятся на: - s-металлы (типичные элементы первой и второй периодических групп); - p-металлы (которые принадлежат к главным подгруппам групп III - VI);

переходные металлы ( d - металлы и f-металлы)

Технические свойства. В прикладных и технических науках металл характеризуется набором параметров. Эти параметры количественно описывают его свойства, важные для того или иного применения. Наиболее важные механические и термические свойства - это прочность, твердость, пластичность, температура плавления, температура кипения и теплопроводность.

Важными электрическими свойствами являются электропроводность, контактная разность потенциалов, работа выхода электронов и др.

Механические свойства зависят от энергии межатомных связей в металле, а также и от некоторых других особенностей: примесей, дефектов кристаллической решетки, микротрещин и т. д. Чистые образцы бездефектных кристаллов имеют наиболее ценные качества.

Теплопроводность и электропроводность металла связаны между собой, потому что обе зависят от концентрации и подвижности валентных электронов металла (эти электроны обычно называются электронами проводимости).

Получение и очистка металлов

В земной коре большинство металлов, за исключением благородных металлов, находятся в виде соединений с другими элементами. Горные породы, содержащие данный металл, называются рудами этого металла. В руде, металл содержится в виде одного из своих минералов (самородного металла или природного химического соединения). При добыче металла, сначала ценный минерал отделяют от окружающей породы, а затем перерабатывают его для получения металла в чистом виде.

Минералы могут быть оксидами (Fe2O3, Fe3O4, TiO2, MnO2, SnO2), гидроксидами (AlO(OH), FeO(OH)), сульфидами (FeS2, CuS2.FeS2, MoS2, ZnS, PbS), карбонатами (FeCO3, CuCO3.Cu(OH)2, MgCO3), фосфатами (CePO4), силикатами (Be3Al2Si6O18), хлоридами (KCl, KCl.MgCl2.2H2O), и т. д.

Отрасль промышленности для производства металлов из руд называется металлургией. Каждый металл, а часто и каждая руда этого металла, требует разработки специальной технологии для его извлечения.

Существует несколько групп методов, которые используются в настоящее время в металлургии. Каждый метод имеет свои достоинства и недостатки, но все эти методы основаны на той или иной окислительно-восстановительной реакции, при этом металл получается путем восстановления руды.

Металлотермические методы. Металлотермические методы - это методы, в которых один металл восстанавливается другим, более активным, металлом или кремнием. Активные металлы (такие, как алюминий, магний, кальций и натрий) используют для получения более ценных металлов ( таких, как хром, титан, цирконий и т.д). Металлотермическими методами перерабатывают такие руды, как оксиды, галогениды (фториды, хлориды, бромиды, йодиды) и некоторые другие соли.

Примеры таких реакций:

TiO2 + 2Mg = Ti + 2MgO

3V2O5 + 10Al = 6V + 5Al2O3

2ScCl3 + 3Ca = 2Sc + 3CaCl2

KTcO4 + 7K = Tc + 4K2O.

Металл, который получили таким образом, требует дополнительной очистки и переплавки.

Восстановление металлов углеродом и водородом (пирометаллургия). Эти методы применяются для получения металлов средней и низкой активности (таких, как железо, цинк, медь и т. д.) при высокой температуре.

Эти методы нельзя применять, если нужно получить активные металлы (такие, как алюминий, щелочные и щелочноземельные металлы, лантаноиды и актиноиды).

Некоторые тугоплавкие металлы (W, Mo, Cr и Ni) не могут быть получены с помощью углерода, т. к. они не восстанавливаются углеродом, а образуют огнеупорные карбиды (карбиды с высокой температурой плавления). Поэтому, для восстановления вольфрама и молибдена используют водород. Хром, никель, марганец и многие другие металлы используют, главным образом, для получения специальных сортов стали; поэтому большую их часть получают одновременно с железом в виде углеродистых сплавов, называемых феррохром, ферромарганец, феррованадий, и т. д. Получаемая при дальнейшем сплавлении примесь карбида железа Fe3C, при определенном содержании, улучшает качество получаемого металла.

Электрометаллургия. Плавка в электрической печи позволяет полностью контролировать состав металла. Прямое нагревание печи электрическим током не вызывает никаких новых реакций. Это часто используется для того, чтобы исключить контакт металла с кислородом или с избытком углерода.

Электролиз. Любой металл, который имеет устойчивую соль, можно получить при электролизе этой соли в расплавленном состоянии. Этим методом обычно получают щелочные металлы, щелочноземельные металлы, алюминий и лантаноиды. Металлы, которые получают с помощью электролиза, не требуют дополнительной очистки.

Некоторые менее активные металлы (Cu, Ni, Zn) можно получить (либо очистить) при помощи электролиза из растворов их солей.

Очистка металлов. Существуют различные способы очистки металлов.

Химическую очистку исходных материалов применяют на первом этапе переработки сырья. Реагенты подвергают тщательной обработке, чтобы удалить (убрать) даже следы примесей. Это делают перед тем, как начать восстановление нужного металла, чтобы в результате получить металл высшей степени чистоты.

Перекристаллизацию расплавленного металла делают при электронно-лучевой переплавке; при этом, для извлечения примесей используют флюсы и шлаки. Затем монокристалл металла получают его медленным вытягиванием из расплавленного металла

Зонная плавка дает чрезвычайно чистые материалы, особенно полупроводники (такие как германий и кремний). Их используют для изготовления интегральных схем (чипов). Цилиндрический кристалл кремния ставят вертикально, а вокруг него помещают узкий кольцевой нагреватель. Нагреватель расплавляет тонкий слой кристалла и медленно движется вниз.

Когда нагреватель движется вниз, примеси растворяются в узкой расплавленной зоне и движутся вместе с ним, при этом кристалл становится чище. Это повторяют несколько раз, после этого кристалл кремния содержит менее 10-7 части посторонних атомов.


Подобные документы

  • Периодический закон и Периодическая система химических элементов Д.И. Менделеева как основа современной химии. Исследования, открытия, изыскания ученого, их влияние на развитие химии и других наук. Периодическая система химических элементов и ее роль.

    реферат [38,8 K], добавлен 03.03.2010

  • Основные классы неорганических соединений. Распространенность химических элементов. Общие закономерности химии s-элементов I, II и III групп периодической системы Д.И. Менделеева: физические, химические свойства, способы получения, биологическая роль.

    учебное пособие [3,8 M], добавлен 03.02.2011

  • Закон: Авогадро, Бойля-Мариотта, Гей-Люссака, объемных отношений, Кюри, постоянства состава вещества, сохранения массы вещества. Периодический закон и периодическая система Менделеева. Периодическая законность химических элементов. Ядерные реакции.

    реферат [82,5 K], добавлен 08.12.2007

  • Развитие периодического закона в XX веке. Периодические свойства химических элементов: изменение энергии ионизации, электроотрицательности, эффекты экранирования и проникновения. Изменение величин атомных и ионных радиусов. Общие сведения о неметаллах.

    презентация [155,9 K], добавлен 07.08.2015

  • Вклад Д.И. Менделеева в области химии: периодическая система химических элементов; история создания периодической системы; периодический закон. Вклад ученого в сельское хозяйство и промышленность. Д.И. Менделеев и таможенная политика России.

    реферат [1,1 M], добавлен 03.12.2007

  • Роль химии в развитии естественнонаучных знаний. Проблема вовлечения новых химических элементов в производство материалов. Пределы структурной органической химии. Ферменты в биохимии и биоорганической химии. Кинетика химических реакций, катализ.

    учебное пособие [58,3 K], добавлен 11.11.2009

  • Формулировка периодического закона Д. И. Менделеева в свете теории строения атома. Связь периодического закона и периодической системы со строением атомов. Структура периодической Системы Д. И. Менделеева.

    реферат [9,1 K], добавлен 16.01.2006

  • Зарождение химии в Древнем Египте. Учение Аристотеля об атомах как идейная основа эпохи алхимии. Развитие химии на Руси. Вклад Ломоносова, Бутлерова и Менделеева в развитие этой науки. Периодический закон химических элементов как стройная научная теория.

    презентация [1,8 M], добавлен 04.10.2013

  • Изучение периодического закона и периодической системы химических элементов Д.И. Менделеева как основы современной химии, которые относятся к научным закономерностям, отражают явления, реально существующие в природе. Основные сведения строения атомов.

    реферат [28,9 K], добавлен 18.01.2011

  • Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.

    реферат [74,3 K], добавлен 27.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.