Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами
Синтез новых сополимеров различного состава на основе акрилат- и метакрилатгуанидинов. Проведение радикальной полимеризации и сополимеризации водорастворимых мономеров: кинетические особенности реакций непредельных кислот в водных и органических средах.
Рубрика | Химия |
Вид | диссертация |
Язык | русский |
Дата добавления | 27.12.2009 |
Размер файла | 4,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Реакцию сополимеризации проводили по схеме 6 :
Изучение реакции сополимеризации в данных условиях показало, что реакционные растворы были гомогенны во всем интервале составов, а образующиеся сополимеры хорошо растворялись в воде.
Как известно [156], при гополимеризации АГ и МАГ наблюдается микрогетерогенность реакционного раствора при степенях превращения более 5%. Особенно, данное явление выражено для МАГ. Авторы [156] объясняют обнаруженную при полимеризации МАГ в Н2О гетерогенность реакционной среды конформационными превращениями ПМАГ, проявляющимися в сворачивании цепи - аналогично хорошо известным процессам денатурации ряда белков, а также синтетических полимеров - аналогов белка (например, поли N-винилпирролидона, ПВП), о чем подробно сообщалось в ряде работ [157-161]. Интересно, что для ПВП, как следует из этих работ, эффективным денатурирующим агентом являются низкомолекулярные соли гуанидина. Авторы полагают, что именно наличие двух аминогрупп в молекуле гуанидина, способных конкурировать с карбонильной группой С=О, блокируя дальнейшее взаимодействие ее с молекулами растворителя (вода), вызывает резкое сворачивание цепи ПВП. Так, в присутствии гуанидингидрохлорида характеристическая вязкость ПВП в спиртовых растворах заметно падает. Особенно резко меняется К[]2, т.е. величина, характеризующая взаимодействие между полимером и молекулами растворителя, при этом молекулы ПВП, почти полностью растворимые в спирте, становятся нерастворимыми в присутствии гуанидингидрохлорида, что является следствием блокирования кислорода пирролидонового цикла молекулами гуанидинхлорида, приводящего к увеличению сил межмолекулярной ассоциации колец ПВП посредством гидрофобных взаимодействий. Моравец и другие авторы [157-159], подробно изучавшие влияние различных факторов на денатурацию белка, установили что различные соли гуанидина оказывают сильный денатурирующий эффект на белковые молекулы при введении их в раствор даже в небольших концентрациях ~1% (см. рис. 7).
Рис. 7. Изменение формы клубка ПАГ и ПМАГ в присутствии собственного мономера или гуанидингидрохлорида
Весьма примечательно, исходя из вышесказанного, что при сополимеризации МАГ с АА удается нивелировать «денатурирующее» действие гуанидинсодержащего мономера МАГ реакция сополимеризации до высоких степеней превращения (60%) протекает в гомогенных условиях.
Это означает, что, как и в случае природных белковых молекул, введение звеньев «чужого» «нейтрального» мономера в сополимер (каким в нашем случае является АА), приводит к нарушению тактичности (изомерного состава) полимерной цепи, и чем больше количество таких “включений” в цепь ПМАГ, тем менее выражено влияние гуанидинсодержащего мономера на гетерогенность процесса полимеризации МАГ.
Таблица 8
Скорости сополимеризации АА с МАГ в водных растворах (рН 7) а
№ п/п |
Исходный состав сополимера АА-МАГ |
[M], моль л-1 |
Инициатор, 510-3 мольл-1 |
Vр105, мольл-1с-1 |
Микро-гетеро-генность |
|
1 |
50:50 |
1,0 |
ПСА |
1,0 |
- |
|
2 |
50:50 |
2,0 |
ПСА |
26,9 |
- |
|
3 |
50:50 |
0,5 |
ПСА |
0,36 |
- |
|
4 |
70:30 |
2,0 |
ПСА |
5,7 |
- |
|
5 |
70:30 |
1,0 |
ПСА |
0,73 |
- |
Состав сополимеров АА:АГ определяли по данным элементного анализа так как химические сдвиги протонов -СН2-СН= в ЯМР 1Н спектрах сомономеров близки и перекрываются.
Таблица 9
Данные элементного состава сополимеров АА:АГ
Исх. состав АГ:АА |
%С 0,20 |
%N 0,40 |
%H 0,20 |
в сополимере |
|
80:20 |
38,85 |
29,33 |
6,90 |
0,755 |
|
50:50 |
41,99 |
26,62 |
6,96 |
0,634 |
|
40:60 |
41,85 |
26,74 |
6,80 |
0,639 |
|
20:80 |
44,15 |
24,77 |
7,30 |
0,561 |
|
10:90 |
47,37 |
22,31 |
7,00 |
0,471 |
Для расчета содержания сомономеров использовали соотношение содержания азота и углерода в сополимере R = %N/%C, исходя из соображения, что
NСП = NАГ x + NАА(1 - x), (1)
CСП = CАГ x + CАА(1 - x), (2)
где NАГ и CАГ - содержание в АГ; NАА и CАА - содержание в АА; x - доля АГ в сополимере и (1 - x) - доля АА в сополимере.
Отсюда имеем уравнение:
. (3)
Решая это уравнение и подставив значения для содержания азота и углерода в соответствующих сомономерах, получаем выражения для расчета х, т.е. доли АГ в сополимере.
Расчет состава сополимеров АА с МАГ проводили по данным ЯМР 1Н спектроскопии, используя интегральную интенсивность сигнала метильной группы сомономера МАГ, который проявляется в самом сильном поле и не перекрывается никакими другими сигналами. Треть его интегральной интенсивности будет равна величине условного протона для звена МАГ - «1Н (М2)». Протоны, относящиеся к сигналам CH2-групп цепи сополимера, проявляются для обоих сомономеров вместе в области химических сдвигов 1,5-1,8, поэтому для определения условного протона звена АА «1Н (М1)» из общей интегральной интенсивности этих протонов (I) вычитали вклад двух протонов звена МАГ и оставшуюся величину делили на 2 (уравнение (4)):
. (4)
Из полученных результатов определяли мольное содержание сомономеров в сополимере, выраженное в мол.% (уравнения 5 и 6):
МПААм = [«1Н (М1)» : («1Н (М1)» + «1Н (М2)»)]100% (5)
МПМАГ = [«1Н (М2)» : («1Н (М1)» + «1Н (М2)»)]100% (6)
Как видно по кривым на рис. 8, при всех исходных мольных соотношениях сомономеров, сополимер обогащен звеньями акрилатного сомономера, причем, системе МАГ-АА свойственно большее обогащение сомономером МАГ, в отличие от системы АГ-АА. Это свидетельствует о большей реакционной способности МАГ в реакции радикальной сополимеризации и соответствует данным о параметрах реакционной способности акриловой (АК) и метакриловой (МАК) кислоты, имеющимися в литературе. Большая в сравнении с АГ реакционноспособность мономера МАГ обусловлена, возможно, большей делокализацией заряда карбоксильной группы в молекуле мономера, на что указывает смещение сигналов винильных протонов МАГ в более сильное поле по сравнению с АГ в ЯМР1Н спектрах.
Рис. 8. Зависимость состава образующихся сополимеров в системах:
АГ-АА (кривая 1) и МАГ-АА (кривая 2)
от состава исходного реакционного раствора
Меньшая реакционная способность акриламида по сравнению с АГ и МАГ может быть обусловлена со специфическим строением ионогенных мономеров, в которой имеется электростатическое притяжение между положительно заряженным атомом аммонийного азота и карбонильным атомом кислорода остатка метакриловой кислоты, электронная плотность у которого повышена (схема 7).
где R= H, СН3
Схема 7. Цвиттер-ионная делокализованная структура АГ и МАГ
Это притяжение обуславливает делокализацию отрицательного заряда по связям карбоксилат-аниона акриловой и метакриловой кислоты. Вследствие такой делокализации относительная стабильность соответствующих радикалов выше по сравнению с акриламидом. В случае МАГ наблюдается более высокая делокализация электронов по связи С-О- в метакрилатанионе по сравнению с АГ, что подтверждается большим обогащением сополимеров сомономером МАГ по сравнению с АГ.
Для определения констант сополимеризации в бинарной системе на практике используются различные методы, в основе которых лежит уравнение состава сополимера (7) [162]:
, (7)
где [M1] и [M2] - концентрации мономеров в исходной смеси; r1 и r2 - константы сополимеризации, r1=k11/k12 и r2=k22/k21.
Одни методы могут применяться только к низким конверсиям мономера (до 8%), в них делается допущение, что на начальной стадии сополимеризации сохраняется постоянство величин М1 и М2. Поэтому соотношение скоростей расходования мономеров можно заменить соотношением мольных концентраций мономерных звеньев [m1] и [m2] в сополимере:
. (8)
Это, например, метод «пересечения прямых» Майо-Льюиса [163], аналитический метод вычисления констант сополимеризации [164] и др.
Разработаны методы расчета констант сополимеризации, которые позволяют определять состав мономерной смеси или сополимера практически при любой конверсии мономеров, т.к. уравнения состава решаются в интегральной форме. Наиболее простым из них является метод Файнемана-Росса [165].
Так как нами исследовалась сополимеризация на малых степенях конверсии, то для расчета констант сополимеризации мы использовали аналитический метод.
Основное уравнение аналитического метода, предложенного А.И.Езриелевым, Е.Л.Брохиной и Е.С.Роскиным [210] имеет следующий вид:
, (9)
где x = [M1]/[M2]; k = [m1][M1]/[m2][M2], а [mi] и [Mi] - концентрации i-ого компонента в полимере и исходной мономерной смеси. Уравнение (9) уже симметрично относительно величин r1 и r2, поэтому обе константы определяются с одинаковой точностью.
Это уравнение также удобно для вычисления констант сополимеризации методом наименьших квадратов (МНК). В последнем случае соответствующие уравнения имеют вид:
,
где
; ; ; ,
а n - число опытов.
Тогда выражение для относительных активностей мономеров записывается как:
и
Аналитический метод позволяет рассчитать среднеквадратичную ошибку определения констант сополимеризации
; ,
где дает среднеквадратичную ошибку опыта, т.е.
Значения констант, рассчитанные этим методом, представлены в табл. 10.
Так как нами исследовалась сополимеризация на малых степенях конверсии, то для расчета констант сополимеризации использовали аналитический метод и значения констант, рассчитанные этим методом, представлены в табл. 10.
Таблица 10
Значение эффективных констант сополимеризации в системах
АГ(МАГ) (М1) -АА (М2)
([М]сум = 2 мольл-1; [ПСА] = 5Ч10-3 мольл-1; 60 С, Н2О)
№ пп |
Сополимеризационная система |
r1 |
r2 |
r1r2 |
|
1 |
АГ-АА |
0,73 0,07 |
0,27 0,01 |
0,197 |
|
2 |
МАГ-АА |
0,94 0,05 |
0,77 0,04 |
0,723 |
Приведенные в табл. 10 значения r1 1 и r2 1 свидетельствуют о предпочтительном взаимодействии макрорадикалов с «чужим», чем со «своим» мономером в обеих сополимеризационных системах. Значения произведения r1Чr2 1 говорит о выраженной тенденции к чередованию в обеих сополимеризационных системах. Кроме того, r1 r2, что подтверждает, что вероятность присоединения радикалов сомономеров к мономерной молекуле МАГ и АГ несколько выше, чем к молекуле АА. Близость относительных активностей к единице при сополимеризации МАГ-АА указывает на то, что скорости роста цепей в этой системе контролируется скоростью диффузии молекул мономеров в макромолекулярные клубки, причем скорости диффузии сомономеров мало отличаются между собой.
Таким образом, радикальная сополимеризация АА с АГ и МАГ позволяет получать сополимеры с высоким содержанием ионогенных групп.
Однако несмотря на то, что полученные нами значения относительных активностей указывают на более низкую реакционную способность мономера АА по сравнению с МАГ и АГ, изучение сополимеризации указанных сомономеров в водных растворах показало, что по мере увеличения концентрации ионогенных сомономеров АГ и МАГ в исходной реакционной значения характеристической вязкости снижаются.
Для понимания механизма сополимеризации АГ и МАГ с АА исследовали скорость данного процесса в водном растворе дилатометрическим методом. Для инициирования использовали персульфат аммония (ПСА).
Изучение кинетики в данных условиях показало, что реакция сополимеризации АГ и МАГ с АА протекает только в присутствии радикальных инициаторов и полностью подавляется при введении в реакционный раствор эффективного радикального ингибитора 2,2,6,6-тетраметил-4-оксилпиридил-1-оксила. Спонтанная реакция - полимеризация в отсутствии радикального инициатора - также не наблюдается.
Реакционные растворы были гомогенны во всем интервале составов, а образующиеся сополимеры хорошо растворялись в воде.
Показано, что в изучаемой реакции зависимость степени конверсии от продолжительности реакции в выбранных условиях (водная среда; суммарная концентрация сополимеров [М] = 2мольл-1; [ПСА] = 510-3 мольл-1; 60 С) характеризуется линейным участком кинетической кривой до конверсии 5-8 % .
Изучение кинетики сополимеризации показало, что с увеличением содержания ионогенного мономера в исходной мономерной смеси значения начальной скорости полимеризации v0 и [] симбатно уменьшаются при сополимеризации АА с АГ и МАГ, причем для первой системы (при полимеризации с АГ) ход данной зависимости выражен более резко. Полученные результаты хорошо согласуются с известными данными, полученными в работах [6, 7] при изучении кинетики сополимеризации ДАДМАХ с АК и МАК в водных растворах. В этих системах установлено также, что скорость сополимеризации уменьшается с увеличением содержания ДАДМАХ в исходном реакционном растворе, причем для АК это увеличение выражено в большей степени, чем для МАК.
Рис.9. Зависимость начальной скорости сополимеризации (1,4) и характеристической вязкости (2,3) сополимера МАГ с АА (1,2) и АГ с АА (3,4) от содержания ионогенного мономера в исходной реакционной смеси.
Из рис. 9 следует также, что наиболее высокомолекулярные образцы сополимеров (суждение по значениям []) получаются в мономерных смесях, обогащенных АА.
Наиболее вероятная причина наблюдаемого уменьшения константы скорости роста цепей с увеличением концентрации ионогенного сомономера заключается в том, что концентрация сильно гидратированных акрилат- и метакрилатанионов в относительно гидрофобных незаряженных клубках макрорадикалов оказывается ниже их средней концентрации в растворе, косвенным подтверждением чему является снижение приведенной вязкости раствора сополимера с увеличением содержания звеньев АГ и МАГ.
Уменьшение [] логичнее связать со структурирующим действием ионов АГ и МАГ на молекулы воды, которое приводит к уменьшению объемных эффектов, т.е. качество воды как растворителя для ПААм ухудшается.
Очевидно, что явления, наблюдаемые при радикальной сополимеризации с участием ионизующихся мономеров АГ и МАГ, не могут быть объяснены только на основании классических представлений и параметры r1 и r2 могут служить лишь в качестве условных величин, отражающих влияние тех или иных факторов на поведение данного мономера при сополимеризации.
Таким образом, наблюдаемые особенности и различия в ряду рассматриваемых мономеров объясняются сложным характером вкладов различных физико-химических процессов, определяющих протекание реакции сополимеризации акриламида с гуанидинсодержащими мономерами акрилового ряда. Вместе с тем, основной вклад в изменение эффективной реакционноспособности полимеризующихся частиц вносят, ассоциативные взаимодействия между гуанидиновыми и карбоксильными группами (как внутри- так и межмолекулярные) и структурная организация соответствующих мономеров и полимеров в процессе сополимеризации.
Для установления уравнения общей скорости сополимеризации АА с АГ и МАГ проводили опыты для переменных концентраций АА, АГ, МАГ и компонентов инициирующей системы при сохранении постоянства концентраций остальных компонентов реакционной системы и условий реакции.
3.2 Радикальная сополимеризация мономалеината гуанидина с акрилат- и меткрилатгуанидином в водных средах
Ионообменные сорбенты, коагулянты и флоккулянты, биоциды, разделительные мембраны, структураторы почв, модели биополимеров, полимерные носители различного рода функциональных фрагментов - таков далеко не полный перечень практического применения синтетических полиэлектролитов. Один и распространенных и перспективных путей получения полиэлектролитов - радикальная полимеризация и сополимеризация мономеров, ионизующихся в водных растворах.
В настоящей работе рассматривается синтез биоцидного сополимера на основе акрилат- и метакрилатгуанидина с мономалеинатом гуанидина. Радикальная гомополимеризация и сополимеризация гуанидинсодержащих соединений является объектом исследования многих авторов [166-170], главным образом в связи с возможностью получения полимерных материалов с комплексом специфических свойств, в том числе и биоцидных. Однако в литературе мало сведений относительно изучения процессов радикальной сополимеризации ионогенных мономеров, содержащих одинаковые функциональные группы. В связи с этим, изучение процессов сополимеризации гуанидинсодержащих ионогенных мономеров представляется нам весьма актуальным. Известно [170], что малеинаты в силу симметричности строения, пространственных факторов и высокой положительной полярности винильной группы не образует гомополимеров в присутствии радикальных инициаторов. Экспериментальные результаты, полученные в данной работе также показали, что гомополимеризация мономалеината гуанидина (ММГ) в исследованных условиях затруднена. Так, например, степень превращения мономера ММГ в полимер в условиях ([ММГ] = 2 мольл-1; 60 С; [ПСА] = 510-3 мольл-1; H2O; время полимеризации 72 часа) составляет около 3% ([з] = 0,03 длг-1). Все эти факты говорят о существенном вкладе указанных выше факторов в процесс гомополимеризации исследованной нами системы.
Вместе с тем, существенно отметить, что при исследовании реакции радикальной сополимеризации ММГ с метакрилатом гуанидина (МАГ) был получен ряд сополимеров различного состава с достаточно высокими характеристическими вязкостями, и, следовательно, молекулярными массами.
Радикальную сополимеризацию исследовали в водных (бидистиллят), водно-метанольных и метанольных растворах, в качестве инициаторов использовали радикальные инициаторы персульфат аммония (ПСА) и динитрил азобисизомасляной кислоты (ДАК) ([I] = 10-2-10-3 мольл-1) в интервале температур 20 - 60 С.
Предварительно было установлено, что в отсутствии инициатора полимеризация не происходит.
Приготовленную реакционную смесь дегазировали в ампулах на вакуумной установке (10-3 мм рт. ст.), после чего ампулы отпаивали и помещали в термостат. В случае распада инициатора при низких температурах (20 С, УФ) реакционный раствор переносили в кварцевые кюветы (в вакууме).
Сополимеризацию проводили до различных степеней конверсии (исследование полимеризации и сополимеризации до глубоких степеней конверсии может дать важные в практическом отношении результаты), и были выявлены следующие закономерности. Во всех случаях наблюдается образование сополимеров, обогащенных звеньями АГ и МАГ по сравнению с исходной смесью сомономеров (табл. 11), что указывает на большую реакционную способность МАГ в реакциях роста цепи.
Таблица 11
Зависимость состава сополимера от исходного состава реакционного раствора при сополимеризации АГ (МАГ) (М1) и ММГ (М2) M1 + M2] = 2,00 моль/л; [ПСА]= 5·10-3 моль·л-1; Н2О; 60 С.
№ п/п |
Исходные сомономерыМ1:М2, мол.% |
СополимерыаМ1:М2, (мол. %)/ []б, дл/г |
||||
АГ-ММГ |
МАГ-ММГ |
|||||
1 |
40:60 |
90:10 |
0,35 |
75:25 |
0,15 |
|
2 |
50:50 |
95:5 |
0,55 |
68:32 |
0,20 |
|
3 |
70:30 |
75:25 |
0,88 |
90:10 |
0,27 |
|
4 |
80:20 |
97:3 |
0,93 |
96:4 |
0,41 |
|
5 |
90:10 |
98:2 |
0,98 |
98:2 |
0,53 |
Примечание. а) Определялось по данным ЯМР1H и ИК-спектроскопии.
б) Определялась при 30 С в 1н водном растворе NaCl.
На основании исследований радикальной сополимеризации МАГ и ММГ можно сделать вывод, что сополимеризация происходит только при избытке метакрилата гуанидина. Если в избытке находится мономалеинат гуанидина, то ни сополимеризация, ни гомополимеризация метакрилата гуанидина не наблюдается.
Состав синтезированных полимерных продуктов подтвержден методами ЯМР1Н и ИК-спетроскопии.
Преобладающий вклад стерического фактора в реакционную способность мономалеината гуанидина в реакции сополимеризации с АГ и МАГ подтверждается значениями констант сополимеризации, которые представлены в табл..
Таблица 12
Значение эффективных констант сополимеризации в системах
АГ(МАГ) (М1) - ММГ (М2)
([М]сум = 2 мольл-1; [ПСА] = 5Ч10-3 мольл-1; 60 С, Н2О)
№ пп |
Сополимеризационная система |
r1 |
r2 |
r1r2 |
|
1 |
АГ-ММГ |
7,82 0.04 |
0,08 0,03 |
0,625 |
|
2 |
МАГ-ММГ |
8,97 0.05 |
0,10 0,07 |
0,897 |
3.3 Физико-химические свойства синтезированных сополимеров
Исследования методом ЯМР1Н и ИК-спектроскопии синтезированных в представленной работе полимерных соединений подтвердили предполагавшуюся структуру объектов исследования. Изучение спектров ЯМР 1Н синтезированных сополимеров позволило определить сомономерный состав анализом интегральных интенсивностей различных сигналов.
3.3.1 ИК-спектральные исследования синтезированных сополимеров
Анализ ИК-спектральных характеристик проводился сравнением спектров мономерной гуанидисодержащей соли и акриламида, взятыми в качестве моделей, а также сравнением спектров полимерных соединений, которые должны были подтвердить соответствующие изменения в спектрах при переходе от мономеров к сополимерам. ИК спектры всех соединений регистрировали в твердом виде в таблетках KBr.
ИК-спектральные характеристики исходных гуанидинсодержащих мономеров приведены в табл. 13.
Таблица 13
ИК спектральные данные акриловых производных гуанидина а
Мономер |
Гуанидиновый фрагмент |
||||
н (NH)валентные |
н (C=N)валентные |
н (NH2)деформац. |
н (CNH)углов. дефор. |
||
МАГ |
3100,3385 |
1680 |
1656 |
520,544 |
|
АГ |
З091,3418 |
1674 |
1660 |
529,544 |
|
Мономер |
Винильный фрагмент |
||||
н (CH)валентные |
н (C=O)валентные |
н (RC=)скелет. деф. |
н (CH2=C-)неплоск. деф. |
||
МАГ |
2928,2960 |
1528 |
1240, 1384,1408, 1456 |
938,1008 |
|
АГ |
2929,2960 |
1524 |
1275, 1359,1419 |
956,988 |
а Положение пиков соответствующих сигналов приведено в см-1.
При исследовании ИК-спектров сополимеров АГ и МАГ и АА найдено, что в образовавшихся сополимерах присутствуют полосы поглощения характерные для деформационных колебаний связи N-H в акриламиде 1665 см-1 и интенсивные полосы скелетных деформационных колебаний в узле СН3-С= метакрилатгуанидина при 1470 и 1380 см-1. Причем, в зависимости от состава сополимера интенсивность этих полос меняется. В силу близости строения АА и АГ характеристические полосы сомономеров накладываются и ИК спектры для данной пары недостаточно информатины. В спектрах присутствует также полоса поглощения карбоксилат-иона (1560-1520 см-1). Полосы валентных колебаний N-H связей сильно сдвинуты в сторону длинных волн (3130 и 3430 см-1) и являются достаточно интенсивными. В спектре сополимера присутствует интенсивная широкая полоса с максимумом при 1648 см-1, которая, конечно, искажена поглощением деформационных колебаний воды в этой области, но интенсивность ее и наличие нескольких перегибов на плечах свидетельствует о том, что в данном соединении присутствует и связь N=C и NH2 группа.
Характерные для углеводородных цепей с полярными концевыми группами крутильные колебания СН2-групп проявляются в области 1180- 1320 см-1.
Для определения содержания СН3- групп использовали полосу поглощения 1380 см-1, относящуюся к симметричным деформационным колебаниям. Другие полосы, характеризующие метакрилатный анион, также хорошо проявляются в спектре: 2960, 2928 см-1 (валентные колебания CH связей) (рис. 10-13).
Рис. 10. ИК-спектр полиметакрилатгуанидина
Рис. 11. ИК-спектр сополимера АА-МАГ (50:50)
Рис. 12. ИК-спектр сополимера АА-МАГ(90:10)
Рис. 13. ИК-спектр сополимера АА-МАГ (30:70)
ИК-спектры сополимеров ММГ с МАГ характеризуются наличием полосы поглощения 1170 см-1 характерной для малеинатов и полосы 1630 см-1 монозамещенного гуанидиния. Две интенсивные полосы 1680 см-1 и 1656 см-1 связаны с C=N валентными колебаниями и смешанными с ними деформациями NH2 групп. Колебания карбонильной группы монозамещенной малеиновой кислоты появляются на спектре в области 1730 см-1, ярко выражены полосы поглощения метильных групп (1380-1460 см-1) интенсивность которых также меняется в зависимости от состава сополимера.
3.3.2 ЯМР-спектральные характеристики сополимеров акриламида и метакрилата гуанидина
В данном разделе приводятся ЯМР-спектральные характеристики синтезированных сополимеров. При изучении спектров протонного магнитного резонанса в качестве модельных соединений использовали метакриловую кислоту, акрилат и метакрилат гуанидина, акриламид.
Спектры ЯМР 1Н акриловой кислоты (АК) и ее гуанидиновой соли АГ относятся к АВС типу, характеристики сигналов суммированы в табл.14.
Отметим небольшое смещение в более сильное поле сигналов метиленовых протонов (3С) АГ в сравнении с АК. По всей видимости, это связано с тем, что для АГ в воде (схема 13) более характерна структура односвязанного водородного комплекса и (или) димера, что лишь в незначительной степени снижает дезэкранирующее действие карбоксильной группы. С другой стороны, сигналы протона у 2С в спектре АГ смещены в слабое поле по сравнению с АК; вероятно, это может быть связано с изменением в растворе конформации АГ в сравнении с АК, и протон у 2С переместится из положительной области конуса анизотропии С=О группы в отрицательную область.
Таблица 14
Спектральные характеристики акрилатных производных а,б.
Соединение |
Растворитель |
3Ha |
3Hb |
2H |
NH |
|||||||
д 3a |
n |
J 3a,. 2 |
J 3a,. 3b |
д 3б |
n |
J 3a, 2 |
д 2 |
n |
д |
|||
АК |
D2О |
5,94 |
4 |
9,63 |
1,05 |
6,36 |
4 |
17,13 |
6,11 |
4 |
- |
|
АГ |
D2О |
5,91 |
4 |
9,64 |
2,14 |
6,27 |
4 |
17,67 |
6,41 |
4 |
- |
|
АГ |
ДМСО |
5,28 |
4 |
9,64 |
3,21 |
5,79 |
4 |
17,14 |
5,96 |
4 |
7,74 |
Примечания: а Основные сокращения: д - величина химического сдвига соответствующих протонов, в м.д.; n - число линий в сигнале данного типа протонов; Jij - константы спин-спинового взаимодействия соответствующих протонов, в Гц. б Число протонов по интегральным интенсивностям согласуется с предполагаемой структурой: по 1Н для всех протонов винильной системы и 6Н для гуанидинового противоиона (проявляется уширенным синглетом).
Схема 8
Спектры ЯМР 1Н метакриловой кислоты и ее гуанидиновой соли МАГ относятся к АВХ3 типу, характеристики сигналов суммированы в табл. 15; во всех случаях не наблюдалось полного расщепления сигналов, т.е. имелся вырожденный АВХ3 тип спектров.
Таблица 15
Спектральные характеристики метакрилатных производных а,б.
Соединение |
Растворитель |
CH3 |
3Ha |
3Hb |
NH |
|||||||
д |
n |
J Me,3a |
J Me, 3b |
д 3a |
n |
J 3a,Me |
д 3b |
n |
д |
|||
МАК |
D2О |
2,10 |
3 |
1,62 |
1,05 |
5,90 |
3 |
1,62 |
6,31 |
1 |
- |
|
МАГ |
D2О |
2,08 |
3 |
2,13 |
1,08 |
5,53 |
1 |
- |
5,86 |
1 |
- |
|
МАГ |
ДМСО |
1,77 |
1 |
- |
- |
5,04 |
3 |
1,62 |
5,60 |
2 |
7,67 |
Примечания: а Основные сокращения: д - величина химического сдвига соответствующих протонов, в м.д.; n - число линий в сигнале данного типа протонов; Jij - константы спин-спинового взаимодействия соответствующих протонов, в Гц. б Число протонов по интегральным интенсивностям согласуется с предполагаемой структурой: по 1 Н - для метиленовых протонов, 3Н - для метильных протонов и 6Н для гуанидинового противоиона (проявляется уширенным синглетом).
Рисунок 14. ЯМР1Н спектр метакрилатгуанидина в D2O
Рисунок 15. ЯМР1Н спектр метакрилатгуанидина в ДМСО-d6
Отметим, что во всех случаях не наблюдалось полного расщепления сигналов, т.е. имелся вырожденный АВХ3 тип спектров. Это может быть связано с сильным влиянием СООХ группы (особенно в случае МАГ).
Спектры ЯМР1Н новых сополимеров АГ и МАГ с ААм характеризуются уширенными, неразрешенными (обычными для полимерных структур) сигналами СН2 - и СН-групп цепи и боковых СН3 - групп в случае МАГ. В случае АГ в связи с близостью химических сдвигов протонов СН2-СН= в обоих сомономерах, то разделить их вклад по сомономерам не удается (рис. 16,17).
Рисунок 16. ЯМР1Н спектр сополимера АГ-ААм (80:20) в D2O
Рисунок 17. ЯМР1Н спектр сополимера АГ-ААм (40:60) в D2O
В сополимерах, обогащенных акриламидным сомономером, сигналы звеньев МАГ смещаются в более слабое поле. В сополимерах, обогащенных сомономером МАГ, сигналы звеньев АА смещаются в более сильное поле. Это можно объяснить образованием внутри- и межмолекулярных водородных связей между боковыми группами амидной и гуанидиновым противоионом. Это усиливает дезэкранирование для звеньев МАГи экранирование для звеньев АА.
Таблица 16
Спектральные характеристики сополимеров АА(М1) - МАГ (М2) и соответствующих гомополимеров (ПААм и ПМАГ), измеренные в D2O (в м. д.).
Соединение |
Исходный состав m1 : m2, мол% |
M1 |
M2 |
|||
CH2 |
CH |
CH3 |
CH2 |
|||
ПАА |
100 : 0 |
1,58; 1,73; 1,85 |
2,27; 2,42 |
- |
- |
|
ПМАГ |
0 : 100 |
- |
- |
1,01; 1,05 |
1,74 |
|
СП |
90 : 10 |
1,57; 1,73; 1,85 |
2,28; 2,42 |
1,11 |
закрыт |
|
СП |
80 : 20 |
1,57; 1,73; 1,85 |
2,27; 2,40 |
1,09 |
закрыт |
|
СП |
50 : 50 |
1,69 |
2,19 |
1,06 |
1,69 |
|
СП |
30 : 70 |
1,49; 1,65 |
2,22 |
1,02 |
1,80 |
|
СП |
10 : 90 |
- |
- |
1,06 |
1,76 |
Расчет состава сополимеров проводили, используя интегральную интенсивность сигнала метильной группы сомономера МАГ (рис. 18, 19), который проявляется в самом сильном поле и не перекрывается никакими другими сигналами по методике, указанной выше.
Рис. 18. ЯМР1Н спектр сополимера МАГ-АА (10:90) в D2O
Рис. 19. ЯМР1Н спектр сополимера МАГ-АА (70:30) в D2O
ЯМР1H-спектры сополимеров АГ и МАГ с мономалеинатом гуанидина (рис. 20, 21) свидетельствуют об обогащении сополимеров АГ и МАГ.
Рис. 20. ЯМР1Н спектр сополимера АГ-ММГ (70:30) в D2O
Рис. 21. ЯМР1Н спектр сополимера МАГ-ММГ (70:30) в D2O
3.3.3 Термические свойства синтезированных сополимеров
Стойкость соединений, в том числе полимерных, к воздействию различных температур является важной характеристикой веществ, которые предполагается использовать в составе различных композиций.
Для изучения термофизических свойств синтезированных продуктов и исходных реагентов использовали программно-аппаратный комплекс с пакетом компьютерных программ, предназначенных для количественной обработки дериватограмм (кривых Г, TG, DTG, DTA), разработанный в Институте химии растворов РАН (г. Иваново) для измерения и регистрации выходных сигналов от датчиков дериватографа 1000D (MOM, Венгрия).
На рис. 22 представлены ТГ-кривые сополимера АА с МАГ 50:50 на воздухе. Потеря веса сополимером наблюдаются при температуре 150 С; по-видимому, это связано с потерей воды и удалением летучих примесей. Уменьшение массы на 10% наблюдается при температуре 150 єС. Скорость термического и термоокислительного разложения сополимера заметно возрастает при температуре 210 С. Выше этой температуры можно отметить две стадии разложения: 250-300 С и 300-390 С; эндотермический эффект при температуре 390 С, который при 520 єС переходит в экзоэфект, отражающий термоокислительную деструкцию полимера. Выше 600 єС происходит удаление коксовой массы и остается 8% твердого остатка. Общее падение массы составляет 80 %.
Рис.22. Зависимость потери массы от температуры сополимера АА-МАГ (50:50)
а)
б)
Рис. 23. Кривые ДТА(а) и ДТГ (б) сополимера АА-МАГ (50:50)
Рассмотрим термостабильность сополимера с большим содержанием метакрилата гуанидина МАГ-АА (90:10)
Как видно на кривой ТГ, потеря массы, связанная с удалением воды и летучих примесей из образца, наблюдается в области температур от 150 до 240 єС, при этом потеря массы составляет до 15 %. Далее идет стремительное уменьшение массы до температуры 570 єС. На этом участке происходит разложение гуанидиновых остатков, в результате дальнейшее разложение идет с образованием летучих продуктов, что приводит к вспениванию исследуемых образцов. При этой температуре на кривой ДТА наблюдается экзотермический эффект, показывающий полное термоокисление полимера. После удаления коксовой массы остается 20 % твердого остатка.
Рис. 24. Зависимость потери массы от температуры сополимера АА-МАГ (90:10)
При анализе кривых ТГ выявлено, что масса твердого остатка выше в образцах с большим содержанием МАГ.
По данным ДСК оказалось, что в образцах гомо- и сополимеров, взятых для исследований, воды около 20%, т.е. такая характеристика термостабильности соединений, как потеря 10% массы, требует корректировки данных ДТА для полимерных соединений. При этом следует отметить, что вода в сополимерах связана прочнее, чем в ПМАГ: при исследовании методом ДСК прогрев образцов ПМАГ до температуры 150 С с последующим охлаждением и новым нагревом показал, что вода из данного соединения удалена полностью, чего не удалось добиться для сополимеров.
Наиболее стабильными оказались образцы сополимеров, содержащих большее количество акриламида. Например, потеря 30 % массы для сополимера АА-МАГ (90:10) наблюдается при 300 С, а для сополимера 30:70 - при 280 С. Это, вероятно связано с более сложным строением сополимеров с большим содержанием метакрилата гуанидина. По данным работы [171] при термоокислении производных мочевины, в том числе и гуанидина, могут выделяться водород, угарный газ, углекислый газ, метан.
а)
б)
Рис. 25. Кривые ДТА(а) и ДТГ (б) сополимера АА-МАГ (10:90)
С учетом возможного термолиза гуанидина с образованием карбамида суммарная реакция термодеструкции гуанидинового остатка упрощенно может быть представлена следующей реакцией:
72СО(NH2)2 > 45NH3 + 15CO + 15H2O + 5N2+ 4CO2 + 17(NH2)2(CO)2NH +19NH2CN
Сополимеры акриламида оказались более термостабильными, чем полиакриламид. Полиакриламид термически устойчив до 130 С, а потеря 30% массы наблюдается уже при температуре 170 С. При более высоких температурах начинается деструкция полимера, которая, как известно [172], сопровождается выделением аммиака, образованием имидных групп, возникновением внутри- и межмолекулярных связей по типу:
Таким образом, при сравнении термостабильности полимерных продуктов можно отметить, что более стабильными во всем интервале температур оказались сополимеры в сравнении с гомополимерами.
Данные термофизических исследований синтезированных сополимеров АГ и МАГ с ММГ суммированы в табл. 17 и 18.
Таблица 17
Термофизические свойства исходных мономеров и сополимеров МАГ-ММГ
Сополимеры МАГ: ММГ |
кривая ДТА, T пл |
кривая. ДТГ интервал разложен. |
Ум-е массы на 10% |
Ум-е массы на 20% |
Ум-е массы на 30% |
Мост. |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
90:10 |
200 350 500 540 |
80 280 400 520 |
110 |
270 |
300 |
5% |
|
60:40 |
370 500 550 |
80 260 280 350 410 515 |
100 |
250 |
290 |
7% |
|
50:50 |
310 370 490 540 |
80 270 340 400 520 |
100 |
250 |
290 |
8% |
|
10:90 |
150 550 640 |
80 550 |
200 |
410 |
470 |
12% |
|
МАГ |
167 168 |
202-242 270-357 |
222 |
320 |
370 |
9% |
|
ММГ |
110 150 175 240 290-390 610 740 |
75-155 155-170 170-240 240-550 |
150 |
180 |
230 |
6% |
Таблица 18
Термофизические свойства исходных мономеров и сополимеров АГ - ММГ
Образец |
кривая ДТА T пл |
кривая ДТГ интервал разложен. |
Уменьшение массы на 10% |
Уменьшение массы на 20% |
Уменьшение массы на 30% |
Мост. |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
АГ |
90 270 370 540 640 |
90-160 160-205 205-260 260-350 350-450 450-570 |
70 |
100 |
230 |
6% |
|
ММГ |
110 150 175 240 290-390 610 740 |
75-155 155-170 170-240 240-550 |
150 |
180 |
230 |
8% |
|
АГ-ММГ 50:50 |
170 270 350 600 |
90-185 185-265 265-330 330-520 |
150 |
110 |
250 |
12% |
|
АГ-ММГ 70:30 |
270 360 560 600 |
170-200 200-250 250-440 440-560 |
100 |
200 |
250 |
10% |
Таким образом, исследование термостабильности сополимеров показало, что их термические свойства зависят от состава и значительно выше термических характеристик исходных сомономеров и гомополимеров.
3.4. Исследование бактерицидных и токсикологических свойств новых сополимеров акрилат- и метакрилатгуанидина
В настоящий момент трудно найти группу материалов, на которую микроорганизмы не оказывают разрушающего действия. Жизнедеятельность различных патогенных микробов вызывает не только нежелательные изменения структурных и функциональных характеристик материалов и изделий, но они также реализуют свое губительное действие внутри живых клеток организма. В связи с этим, разработка новых биоцидных препаратов, несомненно, является актуальной задачей.
Учитывая, что под собственной физилогической активностью полимеров обычно понимают активность, которая связана с полимерным состоянием и не свойственна низкомолекулярным аналогам или мономерам [174], механизмы проявления собственной физиологической активности могут включать в себя как важнейшую составляющую физические эффекты, связанные с большой массой, осмотическим давлением, конформационными перестройками и др., а также могут быть связаны с межмолекулярными взаимодействиями и с биополимерами организма. Многие биополимеры организма являются полианионами (белки, нуклеиновые кислоты, ряд полисахаридов), а биомембраны также имеют суммарный отрицательный заряд. Взаимодействие между противоположно заряженными полиэлектролитами протекают кооперативно, причем образующиеся в результате поликомплексы достаточно прочны. Известно, что наибольшее значение имеют при таких взаимодействиях плотность заряда и молекулярная масса [174]. Если же говорить о биоцидных свойствах, то важную роль в этом случае играет знание механизма действия.
Последовательность элементарных актов летального действия полиэлектролитов на бактериальные клетки может быть представлена следующим образом [194]:
1) адсорбция поликатиона на поверхности бактериальной клетки;
2) диффузия через клеточную стенку;
3) связывание с цитоплазматической мембраной;
4) разрушение или дестабилизация цитоплазматической мембраны;
5) выделение из клетки компонентов цитоплазмы;
6) гибель клетки.
В первую очередь, это касается поликатионов, так как биомембраны имеют отрицательный суммарный заряд, хотя, отрицательно заряженные в целом клеточные мембраны имеют изолированные поликатионные области, на которых могут сорбироваться полианионы [195].
Все вышесказанное свидетельствует о перспективности и принципиальной возможность использования в качестве биоцидных препаратов синтезированных нами гуанидинсодержащих полимерных веществ. Отметим, что эти полимеры отвечают ряду требований, которые предъявляются к современным препаратам подобного рода: хорошая растворимость в воде и физиологическом растворе (1%-е растворы полимеров имеют рН =6,5-7,0); растворы бесцветны, не имеют запаха, не вызывают разрушения обрабатываемых материалов, а также полимерная природа этих соединений способствует отсутствию ингаляционной токсичности и образованию на обработанных поверхностях длительно сохраняющейся полимерной пленки, обеспечивающей пролонгированный биоцидный эффект.
Как известно, радикальная сополимеризация акриламида с виниловыми мономерами используется для получения сополимеров, которые обладают лучшими потребительскими свойствами по сравнению с полиакриламидом, который является промышленным флоккулянтом и используется в самых разных отраслях промышленности.
Предполагалось, что сополимеры АА, содержащие гуанидиновые группы будут обладать не только флоккулирующими, но биоцидными свойствами.
Биоцидную активность определяли по методикам подсчета выросших колоний после обработки воды флоккулянтами и методом диффузии в чашке (см. экспериментальную часть).
В результате исследований было выявлено, что полученные сополимеры обладают значительной биоцидной активностью по отношению к кишечной палочке, при этом биоцидная активность повышается с увеличением содержания гуанидинового фрагмента.
Таблица 19
Полимеры и сополимеры* |
Число колоний, выросших на 1 см3 воды |
Качественная оценка биоцидности |
|
1 |
1206 |
неудовлетворительная |
|
2 |
31 |
хорошая |
|
3 |
35 |
хорошая |
|
4 |
103 |
удовлетворительная |
*Примечание. 1-полиакриламид, 2-сополимер АА: МАГ (70:30),
3-сополимер АА: АГ (80:20), сополимер АА:МАГ (90:10).
Таблица 20
Полимеры и сополимеры* |
Диаметр зоны задержки роста (мм) |
Качественная оценка биоцидности |
|
1 |
2 |
неудовлетворительная |
|
2 |
15 |
отлично |
|
3 |
10 |
хорошая |
|
4 |
6 |
удовлетворительная |
Как видно из полученных результатов, синтезированные гуанидинсодержащие сополимеры проявляют бактерицидную активность в отношении изученных клеточных структур, причем у сополимеров с большим содержанием гуанидиновых групп наблюдается наиболее выраженная биоцидная активность.
На бактериологической стации ГСЭН КБР исследована также биоцидная активность сополимеров относительно золотистого стафилококка и патогенной грибковой микрофлоры Candida albicans.
Выявлено, что наибольшей биоцидной активностью по отношению к золотистому стафилококку обладает сополимеры АА-МАГ (70:30), (50:50), (10:90). Видно, что биоцидная активность зависит от количества МАГ в макромолекулярной цепи. По отношению к Candida albicans наиболее активным оказались образцы АА-МАГ (10:90) и АА-АГ (20:80). АА-МАГ (10:90).
Одним из важных показателей для применения реагента в качестве флоккулянта являются его токсикологические характеристики, так как для очистки воды могут применяться полимеры, не действующие на человека, животных, фауну и флору водоемов.
Методы биотестирования на ветвистоусых ракообразных занимают ведущее положение в системе экологического мониторинга природных вод, а биотест на дафниях Daphnia magma Strauss является наиболее стандартизованным из всех известных [196-198]. При биотестировании природных вод на зоопланктоне регистрируют поведенческие реакции, патологические нарушения, метаболические (биохимические) показатели, физиологические функции, окраску тела, скорость выедания корма и др., но наиболее чувствительной и надежной считается тест-реакция, в которой регистрируется процессы размножения - выживаемость и плодовитость.
Для определения токсичности ряда гомо- и сополимеров использовали методику определения токсичности воды с помощью дафний Daphnia magma Strauss. Дафний в количестве 20 штук высаживали в чашки Петри с исследуемыми образцами. Контроль проводили визуально и с применением бинокуляра, контролируя количество выживших дафний, причем учитывались изменения в движении и размножении рачков. Параллельно ставили контрольный опыт с природной водой. Наблюдения проводили 96 часов, дафний во время эксперимента не кормили. По окончании эксперимента проводили учет выживших дафний, выжившими считаются дафнии, если они свободно передвигаются или всплывают со дна.
Коэффициент токсичности в % рассчитывали по формуле:
, (10)
где, Х1 и Х2 среднее арифметическое количество выживших дафний в контроле и опыте.
Проба воды оценивалась как обладающая острой токсичностью, если за 96 часов биотестирования в ней гибло 50% и более дафний по сравнению с контролем.
Токсикологические характеристики сополимеров исследовали в зависимости от состава и концентрации при постоянной температуре. В качестве модельных образцов были взяты соответствующие гомополимеры - полиакриламид и полиметакрилат гуанидина.
Растворы гомополимеров и сополимеров без разбавления оказывают угнетающее действие на весь процесс размножения дафний (рис. 26), задерживает рост, наступление половой зрелости и появление первого помета, уменьшает количество пометов и плодовитость, повышает выброс молоди и яиц. При разведении в отношении 1:2 токсичность сополимеров снижается. Наименее токсичными являются растворы сополимеров с концентрацией от 0,1 до 0,01 %. Токсичность образцов зависит также от состава сополимеров; с увеличением содержания метакрилата гуанидина токсичность снижается.
Анализ экспериментальных данных по исследованию токсичности сополимеров показывает, что растворы сополимеров МАГ:АА (20:80) и МАГ:АА (30:70) с концентрацией 0,1% и 0,01% практически не влияют на плодовитость дафний, но на 15% сокращают длительность жизни. Отметим, что гомополимер ПМАГ снижает плодовитость и длительность жизни у исследуемых дафний всего на 7%, а полиакриламид на 30 %. Выявлено, что токсичность полиакриламида выше, чем у сополимеров, т.е. даже небольшое содержание метакрилата гуанидина в сополимерах уже снижает токсичность полиакриламидного флоккулянта.
Рис. 26. Зависимость коэффициента токсичности гомо- и сополимеров от состава и концентрации.
Как известно, результаты биотестирования зависят от чувствительности тест-организмов. Поэтому помимо D. magna, для токсикологической оценки водных растворов полимерных флоккулянтов использовали также личинок комаров - звонцов Chironomus dorsalis. Результаты анализа показали, что наименее токсичными в исследованных условиях являются сополимеры АА с МАГ по сравнению с ПАА, причем наименее токсичным образцом для данных тест-культур оказался сополимер АА:МАГ (70:30), в растворе которого наблюдался переход личинок в куколки, а затем превращение в имаго. Исследование токсичности АА с АГ показало, что данные сополимеры обладают еще меньшей токсичностью по сравнению с МАГ, что хорошо согласуется с литературными данными о меньшей токсичности акриловой кислоты по сравнению с метакриловой.
Учитывая полученные данные можно варьировать состав сополимеров для достижения максимального эффекта биоцидного действия при минимальных проявлениях токсичности. Наличие же в структуре синтезированных сополимеров химически активных гуанидиновых групп открывает возможность осуществления на их основе макромолекулярного дизайна, что расширит области практического применения исследуемых сополимеров.
Таблица 21
Данные по биоцидности и токсичности сополимеров АГ и МАГ с ММГ и ряда модельных полимеров а
№ пп |
Соединение |
М1:М2 (исходный состав) |
It |
E. coli |
St.aureus |
Candida albicans |
МПК 103 д |
|
1 |
ПМАК |
- |
93,2 |
--- |
--- |
--- |
- |
|
2 |
ПАГ |
- |
76,1 |
--- |
-++ |
--- |
- |
|
3 |
ПМАГ |
0:100 |
104,6 |
--- |
-++ |
--- |
9,2 |
|
4 |
АГ-ММГ |
50:50 |
88,7 |
--- |
--- |
+++ |
2,2 |
|
5 |
МАГ-ММГ |
70:30 |
101,5 |
--- |
---- |
++++ |
2,7 |
|
6 |
МАГ-ММГ |
50:50 |
119,1 |
--- |
---- |
++++ |
1,4 |
Примечания. Escherichia coli - кишечная палочка, представитель грамотрицательной бактерии и Stophil. Aureus 906 - золотистый стафилококк, представитель грамположительной бактерии; (+++) - сплошной лизис бактериальной клетки, полностью задерживает рост данного штамма, (--+) - - частичный лизис клетки, наблюдаются зоны подавления роста через 48 часа (--+) - частичный лизис клетки, наблюдаются зоны подавления роста через 72 часа, (---) - не активен. дМинимальная подавляющая концентрация в вес%.
Сополимеры АГ и МАГ с ММГ не активны по отношению к изученным микроорганизмам, но обладают высокой фунгицидной активностью по отношению к патогенной грибковой микрофлоре Candida albicans, примечательно, что соответствующие гомополимеры проявляют бактерицидную активность, а фунгицидной активностью не обладают. Так, наибольший противогрибковый эффект был получен для образцов сополимеров МАГ с ММГ с исходным составом сомономеров 50:50 и 70:30.
Таким образом, сочетание в полученных сополимерах высокой противогрибковой активности (за счет содержания гуанидиновых групп) с повышенной способностью связываться с бактериальными клетками, благодаря звеньям гуанидина, позволило нам синтезировать новые эффективные гуанидинсодержащие биоцидные полимеры.
3.5 Исследование флоккулирующих свойств новых сополимеров акриламида
Одним из наиболее широко применяемых методов снижения количества взвеси является седиментация под воздействием сил тяжести частиц. Поскольку частицы взвеси, обусловливающие мутность природных вод, отличаются малыми размерами, их осаждение происходит крайне медленно; кроме того, наличие примесей коллоидного характера еще более осложняет процесс седиментации.
Для интенсификации процесса осаждения и повышения его эффективности применяется обработка воды коагулянтами. Несмотря на большую эффективность, технология очистки воды, основанная на применении коагулянтов, обладает рядом недостатков. Важнейший из них - малая прочность хлопьев, образующихся при коагуляции, не позволяющая работать при высоких скоростях потока воды и приводящая к выносу загрязнений из фильтующей загрузки [173]. При применении высокомолекулярных флоккулянтов устраняются основные недостатки коагулирования, повышается прочность хлопьев и ускоряется процесс их образования. Это позволяет увеличить эффективность осветления воды: сократить время отстаивания, повысить производительность осветлителей с взвешенным осадком, увеличить грязеемкость фильтров и контактных осветлителей.
В настоящее время сополимеры акриламида являются наиболее распространенными флоккулянтами. В связи с этим синтез и исследование флоккулирующих свойств новых сополимеров акриламида является, несомненно, актуальной задачей.
Обычно определение эффективности флоккулянтов по отношению к определенному виду загрязняющих воду веществ заключается в определении концентрации этих веществ в воде до и после обработки флоккулянтами.
Для оценки флоккулирующей активности полиэлектролитов необходимо использование модельных систем. В качестве моделей чаще всего используют водные суспензии каолина, охры и бентонита. Причем именно на суспензиях каолина описаны закономерности флоккулирующего действия большого числа катионных полиэлектролитов [174-177, 179-181]. В литературе также отмечается [182], что при концентрации каолина ~ 0,8 % и ниже частицы суспензии способны осаждаться в свободном режиме, и в этих условиях результаты экспериментов могут использоваться для изучения закономерностей флоккуляции.
Так как на флоккулирующую способность оказывает влияние величина заряда макромолекулы, то для исследования выбрали сополимеры с различной степенью содержания звеньев метакрилата гуанидина в макромолекулярной цепи. В качестве объекта сравнения использован полиакриламид. Флоккулирующую активность исследовали как в присутствии и отсутствии коагулянтов. В качестве коагулянта использовали органомодифицированную глину месторождения Герпегеж.
На рис. 27. показано влияние концентрации флоккулянтов разного состава на флоккулирующий эффект (F), который рассчитывали по формуле (11)
F = (n0 - n) / n , (11)
где n0 и n - соответственно оптическая плотность воды (определена турбидиметрическим методом) в отсутствие и в присутствии флоккулянта (и коагулянта).
Рис.27. Зависимость флоккулирующего эффекта F от концентрации и состава сополимеров 1- ПАА; 2- АГ-АА (20:80); 3- АГ-АА (40:60); 4- МАГ-АА (20:80); 5- МАГ-АА (40:60); 6- МАГ-АА (30:70)
Опыты, проведенные на одной партии природной воды (мутность 4,2 мг·л-1, цветность 48,5 градусов) показали увеличение флоккулирующего эффекта с ростом концентрации сополимера для всех флоккулянтов. Это следствие увеличения концентрации макромолекулярных мостиков, образованных при адсорбции макромолекул на поверхности частиц дисперсной фазы, что формировало крупные агрегаты из частиц дисперсной фазы и макромолекул и снижало устойчивость системы.
Подобные документы
Теоретические основы процесса комплексно-радикальной полимеризации. Особенности полимеризации индена и кумарона. Методика очистки мономеров и растворителей. Анализ зависимости и состава продуктов сополимеризации инденовой фракции с малеиновым ангидридом.
дипломная работа [386,6 K], добавлен 22.10.2010Практическое проведение эмульсионной полимеризации и сополимеризации акриловых мономеров, скорость и кинетика реакции, влияющие факторы. Способ предварительного создания концентрированной эмульсии, образование микроэмульсии и анализ ее дисперсности.
статья [244,2 K], добавлен 22.02.2010"Живая" контролируемая радикальная полимеризация. Характеристики получаемого полимера. Признаки протекания полимеризации в контролируемом режиме. Метод диаграмм Фишера. Радикальная "живая" полимеризация гидрофильных мономеров. Анализ продуктов термолиза.
дипломная работа [2,0 M], добавлен 17.10.2013Зависимость изменения термодинамических величин от температуры. Метод Сато, Чермена Ван Кревелена, Андрена-Байра-Ватсона. Реакция радикальной сополимеризации. Определение температуры полураспада полиизопрена. Термодинамический анализ основной реакции.
курсовая работа [1,8 M], добавлен 28.05.2012Характеристика, этапы и необходимые условия для образования сетки при трехмерной гомо- или сополимеризации бифункциональных мономеров. Химическое строение растворимого сополимера и содержание в нем микрогеля. Сущность метода Ланге и его применение.
статья [116,4 K], добавлен 22.02.2010Импульсное электромагнитное излучение, возникающее при нагружении композитов. Исследование методом инфракрасной спектроскопии процессов полимеризации и сополимеризации в полимерных составах для органических стекол. Зависимость содержания гель-фракции.
краткое изложение [149,6 K], добавлен 05.04.2009Изучение основных реакций, обусловливающих формирование молекулярной цепи полиизопрена, и их количественная оценка. Участие молекул мономера и непредельных фрагментов полиизопрена в определении концентрации активных центров в процессе полимеризации.
реферат [513,2 K], добавлен 18.03.2010Основные типы сополимеров. Реакции в системе полимер-мономер. Радикальная полимеризация (одностадийный, двухстадийный метод). Ионная полимеризация, механохимический синтез. Реакции в системе полимер-полимер. Введение функциональных групп в макромолекулы.
реферат [710,9 K], добавлен 06.06.2011Электронная теория кислот и оснований Льюиса. Теория электролитической диссоциации Аррениуса. Протонная теория, или теория кислот и оснований Бренстеда. Основность и амфотерность органических соединений. Классификация реагентов органических реакций.
презентация [375,0 K], добавлен 10.12.2012Диссоциирование кислот на катион водорода (протон) и анион кислотного остатка в водных растворах. Классификация кислот по различным признакам. Характеристика основных химических свойств кислот. Распространение органических и неорганических кислот.
презентация [442,5 K], добавлен 23.11.2010