Аминокислоты
Классификация аминокислот и виды их изомерии. Химические свойства аминокислот, зависящие от наличия карбоксила, аминогруппы, совместного наличия карбоксильной и аминогруппы. Окислительно-восстановительные процессы, протекающие с участием кислот.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 22.06.2010 |
Размер файла | 42,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Содержание:
Введение
Классификация аминокислот
Виды изомерии аминокислот
Двухосновные моноаминокислоты
Одноосновные диаминокислоты
Оксиаминокислоты
Серосодержащие аминокислоты
Гетероциклические аминокислоты
Способы получения аминокислот
Химические свойства аминокислот:
А) Свойства аминокислот, зависящие от наличия карбоксила.
Б) Свойства аминокислот, зависящие от наличия аминогруппы.
В) Свойства аминокислот, зависящие от совместного наличия карбоксильной и аминогруппы
Окислительно-восстановительные процессы, протекающие с участием аминокислот.
Связывание минерального азота аминокислотами.
Список использованной литературы
Введение
Аминокислоты - такие кислоты, которые помимо карбоксильной группы содержат аминогруппу NH2.
Классификация аминокислот
1) по углеводородному радикалу (предельные, непредельные, ароматические, циклические, гетероциклические.)
2) по числу карбоксильных групп (одноосновные, двухосновные и тд.)
3) по числу аминогрупп (моноамино, диамино и тд.)
4) по наличию других функциональных групп (оксиаминокислоты, серосодержащие аминокислоты)
Виды изомерии аминокислот
1) изомерия углеродного скелета
2) изомерия положения аминогруппы: 2,в, г и б
В природных условиях, как правило, встречаются б-аминокислоты. Они образуют мономерные звенья белковых молекул, то есть входят в состав белка.
3) оптическая изомерия. Аминокислоты, которые встречаются в природе L-ряда. Рассмотрим оптическую изомерию на примере б-аминопропионовой кислоты.
СH3 - *CH - C = O б-аминопропионовая кислота, или аланин.
NH2 OH
Оптические изомеры:
ОН OH
С = О C = O
Н - С - NH2 H2N - C - H
CH3 CH3
D-изомер(-) L- изомер (+)
L - изомеры отличаются от D - изомеров вкусом. D-изомеры сладкие, а L- изомеры горькие или безвкусные. Природные аминокислоты это L- изомеры. В биологическом отношении аминокислоты очень важные соединения, так как из их остатков строятся белковые молекулы. В состав белков входят 20-25 аминокислот. Это следующие:
1) СH2 - C = O аминоуксусная кислота, или глицин
NH2 OH
2)CH3 - CH - C = O б- аминопропионовая кислота, аланин
NH2 OH
3) СH3 - CH - CH - C = O валин
CH3 NH2 OH
4) CH3 - CH - CH2 - CH - C = O лейцин
CH3 NH2 OH
5) CH3 - CH2 - CH - CH - C = O изолейцин
CH3 NH2 OH
6) C6H5 - CH2 - CH - C = O фенилаланин
NH2 OH
Двухосновные моноаминокислоты
1) O = C - CH - CH2 - C = O аспарагиновая кислота
HO NH2 OH
Амид этой кислоты называется аспарагин. Причем на аминогруппу замещается гидроксил наиболее удаленный от аминогруппы:
O = C - CH - CH2 - C = O - аспарагин
HO NH2 NH2
2) O = C - CH - CH2 - CH2 - C = O - глутаминовая кислота
HO NH2 OH
O = C - CH - CH2 - CH2 - C = O - глутамин (амид глутаминовой кислоты)
HO NH2 NH2
Одноосновные диаминокислоты
1) CH2 - CH2 - CH2 - CH - C = O - орнитин
NH2 NH2 OH
2) CH2 - CH2 - CH2 - CH2 - CH - C = O - лизин
NH2 NH2 OH
3) NH = C - NH - CH2 - CH2 - CH2 - CH - C = O -аргинин, в процессе обмена преобразуется в к-ту цитруллин
NH2 NH2 OH
4) NH2 - C - NH - CH2 - CH2 - CH2 - CH - C = O -цитруллин
O NH2 OH
Оксиаминокислоты
1) СH2 - CH - C = O - серин
OH NH2 OH
2) CH3 - CH - CH - C = O - треонин
OH NH2 OH
3) HO -C6H4 - CH2 - CH - C = O - оксифенилаланин или тирозин
NH2 OH
Серосодержащие аминокислоты
1) CH2 - CH - C = O - цистеин
SH NH2 OH
2) CH2 - CH - C = O - цистин
S NH2 OH
S
CH2 - CH - C = O
NH2 OH
3) CH3 - S - CH2 - CH2 -CH - C = O метионин
NH2 OH
Гетероциклические аминокислоты
1) H2C CH2 2) OH - HC CH2
OH
H2C CH - C = O H2C CH - C =O
NH OH NH
пролин оксипролин
3) N C - CH2 - CH - C = O 4) CH NH2 OH
NH2 OH HC C C - CH2 - CH - C = O
HC CH HC C CH
NH CH NH
гистидин триптофан
Среди всех аминокислот 9 являются незаменимыми, то есть они в тканях синтезироваться не могут и должны поступать с пищей. Это кислоты:
1) Валин;
2) Лейцин;
3) Изолейцин;
4) Фенилаланин;
5) Лизин;
6) Треонин;
7) Метионин;
8) Гистидин;
9) Триптофан.
Способы получения аминокислот
1.Аминокислоты получаются при гидролизе белка, который протекает при нагревании белковых веществ при температуре равной 1000С , в присутствии серной кислоты в течении 24-48 часов. Этот способ применяется при количественном и качественном определении аминокислот в белке, как правило, методом хроматографии.
2.Действие аммиака на галогенкислоты:
CH2 - C = O + NH3 HCL + CH2 - C = O
CL OH NH2 OH
хлоруксусная глицин
кислота
3. Присоединение аммиака к непредельным кислотам (таким способом получают в-аминокислоты).
CH2 = CH - C = O + HNH2 CH2 - CH2 - C = O
OH NH2 OH
акриловая к-та в - оксипропионовая к-та
Присоединение водорода идет против правила Марковникова, так как сопряженные двойные связи.
4.Восстановительное аминирование. Протекает в растительных и животных организмах. Это способ связан с введением аминогруппы в кетокислоту. Протекает в два этапа:
ОН OH ОН
С = О +NH3 C = O +2H. С = O
С = О -H2O C = NH СH - NH2
СН3 CH3 CH3
пировино- иминокислота аланин
градная к-та
Химические свойства аминокислот:
Они зависят от наличия:
1)карбоксильной группы
2)аминогруппы
3)от совместного наличия двух этих групп.
А) Свойства аминокислот, зависящие от наличия карбоксила.
Аминокислоты, как и любые кислоты, способны образовывать: а)соли; б)галогенангидриды; в)сложные эфиры; г)амиды; д)ангидриды; е)подвергаются декарбоксилированию.
R - CH - C = O + H2O - соль
NH2 ONa NH2 CL
R - CH - C = O -хлорангидрид
R - CH - C = O R - CH - C = O + H2O
NH2 OH NH2 O - CH3 - сложный эфир
R - CH - C = O + H2O
NH2 NH2 - амид
R - CH2 - амин
NH2
Реакция декарбоксилирования аминокислот протекает в присутствии ферментов декарбоксилаз, а также при разложении белковых соединений, в результате таких реакций образуются амины (низшие амины содержатся в кишечных газах и имеют неприятный запах).
NH2 - CH2 - CH2 - CH2 - CH2 - CH - C = O -CO2 NH2 - (CH2)5 - NH2
лизин NH2 OH диамин пептаметилендиамин (кадаверин)
Б) Свойства аминокислот, зависящие от наличия аминогруппы.
1) Реакции ацилирования (ацил- радикал кислоты). По этой реакции один водород аминогруппы замещается на радикал кислоты - ацил. Примером может служить реакция обезвреживания бензойной кислоты в организме животных:
C6H5 - C = O + HNH2 - CH2 - C = O C6H5 - C = O OH
OH OH NH - CH2 - C = O
бензойная к-та глицин гиппуровая к-та
2) Реакция аминирования (амин- углеводородный радикал). По этой реакции один водород аминогруппы замещается на углеводородный радикал - амин (такие реакции проводятся в лаборатории, когда надо протитровать аминокислоту, то есть количественно определить аминокислоту).
OH
CH3 - CH - C = O + CH3 - I HI + CH3 - CH - C = O
NH2 OH NH - CH3
аланин пористый
метил
По этой реакции аминогруппа как бы зажимается в тиски, блокируется и становится нереакционноспособной. Реакционноспособной становится только карбоксильная группа.
3) Реакции дезаминирования. Дезаминирование- это отщепление аминогруппы в виде аммиака. Такие реакции протекают в обменных процессах, а часто и при нарушении обмена. Они ведут к распаду аминокислот. Различают четыре вида дезаминирования:
а) окислительное дезаминирование.
OH OH OH
C = O +O C = O +H2O C = O + NH3
CH - NH2 ОКИСЛЕНИЕ C = NH C = O
CH3 CH3 CH3
аланин иминокислота кетокислота (пировиноградная)
Окислительное дезаминирование - процесс, обратный восстановительному аминированию.
б) восстановительное дезаминирование. Протекает под действием водорода:
OH OH
C = O +2H C = O + NH3
CH - NH2 CH2
CH3 CH3
аланин пропионовая(предельная) к-та
в) гидролитическое дезаминирование. Протекает под действием воды. При этом из аминокислоты образуются оксикислоты:
OH OH
C = O +HOH C = O + NH3
CH - NH2 CH - OH
CH3 CH3
аланин оксикислота (молочная)
г) внутримолекулярное дезаминирование:
R R
CH2 CH
CH - NH2 ПРОТЕКАЕТ В ОСНОВНОМ В МИКРООРГАНИЗМАХ CH + NH3
C = O C = O
OH OH
непредельная к-та
Основной путь дезаминирования - это окислительное дезаминирование. Этот вид дезаминирования преобладает у животных, растений и большинства микроорганизмов. Происходит под действием ферментов дегидрогеназ. Однако, активность дегидрогеназы тканей животных для большинства аминокислот очень низкая. Активна только дегидрогеназа глутаминовой кислоты. Поэтому большинство аминокислот в организме животных дезаминируются непрямым путем. Непрямое окислительное дезаминирование характеризуется предварительным переаминированием аминокислот с б- кетоглутаровой кислотой:
COOH COOH
R CH2 R CH2
CH - NH2 + CH2 C = O + CH2
COOH C = O COOH CH - NH2
COOH COOH
амино- б-кетоглутаровая кетокис- глутаминовая
кислота к-та лота кислота
Образующаяся при этом глутаминовая кислота затем дезаминируется под действием глутаматдегидрогеназы до б-кетоглутаровой кислоты, которая может снова участвовать в непрямом дезаминировании других аминокислот.
COOH COOH COOH
CH2 CH2 CH2
CH2 -2H CH2 +H2O CH2 + NH3
CH - NH2 C = NH C = O
COOH COOH COOH
глутаминовая иминокислота б-кетоглутаовая к-та
к-та
В) Свойства аминокислот, зависящие от совместного наличия карбоксильной и аминогруппы
1)Амфотерные свойства одноосновных моноаминокислот. Реакция водных растворов таких аминокислот на лакмус нейтральна. Это объясняется тем, что карбоксильная группа обладает кислотными свойствами, а аминогруппа - основными. Эти группы взаимодействуют с образованием, так называемых внутренних солей. Внутренние соли - это соли, образующиеся в результате взаимодействия кислотных и основных групп, находящихся в пределах одной и той же молекулы. При образовании внутренних солей аминокислот ион водорода отщепляется от карбоксильной группы и присоединяется к аминогруппе, которая превращается как бы в ион замещенного аммония. Например, для аланина:
CH3 - CH - C = O CH3 - CH - C = O -
NH2 OH +NH3 O
внутренняя соль (имеет два полюса + и -).
ОН
Такие аминокислоты ( с одной - С = О и одной NH2) обладают амфотерными свойствами, они могут реагировать как с кислотами, так и с основаниями, образуя при этом комплексные соли. Взаимодействие аминокислоты с кислотой:
CH3 - CH - C = O + H+CL- CH3 - CH - C = O +
+NH3 O- NH3 OH CL-
комплексная соль, где аминокислота является катионом
Взаимодействие со щелочью:
CH3 - CH - C = O + NaOH CH3 - CH - C = O -
+NH3 O- NH2 O- Na+ + H2O
комплексная соль, где аминокислота является анионом
2) Образование ди- три и полипептидов. Эта реакция протекает в организме под действием ферментов пептидаз. Она ведет к образованию первичной структуры белка. При образовании дипептида две аминокислоты связываются пептидной связью. При этом одна аминокислота реагирует карбоксильной группой , а другая - аминогруппой.
CH3 - CH - C = O + HNH - CH2 - C = O -H2O CH3 - CH - C - NH - CH2 - C = O
NH2 OH OH NH2 O OH
аланин глицин дипептидаланинглицин
- С = О -пептидная связь
NH
Та аминокислота, от которой уходит гидроксил карбоксильной группы, то есть остается кислотный радикал - ацил, меняет окончание «ин» на «ил».
3) Особое поведение аминокислот при нагревании, в присутствии водоотнимающих веществ.
а) б- аминокислоты при нагревании образуют циклические амиды - дикетопиперазины. взаимодействуют две молекулы :
H3C H3C
CH - C = O CH - C = O
H2N OH -2H2O NH NH
HO NH2 O = C - HC
O = C - CH CH3
CH3 дикетопиперазин (2, 5 -диметил - 3, 6 дикетопиперазин)
Для разных кислот радикалы при группе - СН могут быть разными, а ядро дикетопиперазина одно и то же. По мнению русских ученых Землинского, Садикова дикетопиперазины содержатся в полипептидных цепях. Они связывают остатки аминокислот также, как и пептидные связи.
б) в-аминокислоты при нагревании теряют молекулу аммиака и превращаются в непредельные кислоты.
CH3 - CH - CH2 - C = O -NH3 CH3 - CH = CH - C = O
NH2 OH OH
В-аминомасляная к-та кротоновая к-та
в) г-аминокислоты при нагревании, выделяя воду , образуют внутримолекулярные циклические амиды, так называемые лактамы:
CH2 - CH2 - CH2 - C = O H2C - CH2
NH2 OH H2C C = O - лактам г-аминомасляной к-ты
г-аминомасляная к-та NH
Лактам капроновой кислоты при полимеризации образует волокно-капрон.
Окислительно-восстановительные процессы, протекающие с участием аминокислот.
Эти процессы протекают в организмах растений и животных. Имеются такие соединения, которые способны либо выделять водород, либо поглощать его (присоединять). При биологическом окислении идет отщепление двух атомов водорода, а при биологическом восстановлении - присоединение двух томов водорода. Рассмотрим это на примере цистеина и цистина.
CH2 - CH - C = O CH2 - CH - C = O
HS NH2 OH -2H S NH2 OH
HS NH2 OH +2H S NH2 OH
CH2 - CH - C = O CH2 - CH - C = O
цистеин цистин
восстановленная форма окисленная форма
Две молекулы цистина, теряя два атома водорода, образуют окисленную форму - цистеин. Этот процесс обратимый, при присоединении двух атомов водорода к цистину образуется цистеин - восстановленная форма. Аналогично протекает процесс окислительно- восстановительный на примере трипептида - глутатиона, который состоит из трех аминокислот: глутаминовой, глицина и цистеина.
цистеин
O = C - NH - CH - CH2 - SH O = C - NH - CH - CH2 - S - S -CH2 - CH - NH - C = O
CH2 C = O -2Н CH2 C = O C = O CH2
CH2 NH +2Н CH2 NH NH CH2
CH - NH2 CH2 глицин CH - NH2 CH2 CH2 CH - NH2
C = O C = O C = O C = O C = O C = O
OH OH OH OH OH OH
(2 молекулы)
трипептид восстановленная форма гексапептид - окисленная форма
При окислении отщепляется 2 атома водорода и соединяются две молекулы глутатиона и трипептид превращается в гексапептид, то есть окисляется.
Связывание минерального азота аминокислотами.
У растений при избытке азота в почве аминокислоты (аспарагиновая и глутаминовая) способны связывать его в виде аммиака с образованием амидов - глутамина и аспарагина.
OH NH2
C = O C = O
CH2 CH2
CH2 + NH3 CH2
CH - NH2 CH - NH2
C = O C = O
OH OH
глутаминовая к-та глутамин
Аналогично идет образование аспарагина. В организмах животных также образуются амиды аспарагиновой и глутаминовой кислот, которые являются резервом (депо) азота.
Аммиак, который образуется при дезамиировании аминокислот, может связываться аспарагиновой и глутаминовой кислотами. При этом образуются амиды аспарагин и глутамин.
Список использованной литературы:
1) Овчинников Ю.А. Биоорганическая химия / Ю.А. Овчинников. - М.: Просвещение, 1987.
2) Яковишин Л.А. Избранные главы биоорганической химии / Л.А. Яковишин. - Севастополь: Стрижак-пресс, 2006.
3) Филиппович Ю.В. Основы биохимии. - М., 2007
4) Нейланд О.Я. Органическая химия.- М., 1990
Подобные документы
Физико-химические свойства аминокислот. Получение аминокислот в ходе гидролиза белков или как результат химических реакций. Ряд веществ, способных выполнять некоторые биологические функции аминокислот. Способность аминокислоты к поликонденсации.
презентация [454,9 K], добавлен 22.05.2012Общая формула и характеристика аминокислот как производных кислот. Протеиногенные кислоты, входящие в состав белков. Классификация аминокислот по взаимному расположению и количеству функциональных групп. Физические и химические свойства аминокислот.
презентация [1,7 M], добавлен 22.01.2012Химические свойства и характеристика аминокислот, изомерия. Классификация стандартных a-аминокислот по R-группам и по функциональным группам. Кислотно-основное равновесие в растворе a-аминокислот. Использование нингидриновой реакции для их обнаружения.
реферат [207,9 K], добавлен 22.03.2012Аминокислота - любое соединение, которое содержит одновременно карбоксильную и аминогруппу. Способы ее получения. Химические и кислотно-основные свойства. Реакции аминокислот: образование сложных эфиров и амидов по карбоксильной группе и по аминогруппе.
реферат [106,4 K], добавлен 21.02.2009Биохимические свойства аминокислот - органических соединений, в молекулах которых один или несколько атомов водорода углеродной цепи замещены на группу -NH2. Аминокислоты как пищевая добавка. Аминокислотные препараты. Биологическая роль аминокислот.
презентация [3,0 M], добавлен 27.02.2017Класс органических соединений, содержащих карбоксильные и аминогруппы, обладают свойствами и кислот, и оснований. Участвуют в обмене азотистых веществ всех организмов (исходное соединение при биосинтезе гормонов, витаминов, алкалоидов).
доклад [20,6 K], добавлен 06.10.2006Номенклатура аминов, их физические и химические свойства. Промышленные и лабораторные способы получения аминов. Классификация аминокислот и белковых веществ. Строение белковых молекул. Катализ биохимических реакций с участием ферментов (энзимов).
реферат [54,1 K], добавлен 01.05.2011Аминокислоты (аминокарбоновые кислоты) - органические соединения, в молекуле которых содержатся карбоксильные, а также аминные группы. Открытие аминокислот в составе белков. Оптическая изомерия. D-аминокислоты в живых организмах. Карбоксильная группа.
презентация [1,1 M], добавлен 23.05.2012Определение класса аминокислот как гетерофункциональных соединений, которые содержат две функциональные группы (карбоксильную и аминогруппу), связанные с углеводородным радикалом. Классификация, изомерия, свойства, получение и применение аминокислот.
презентация [204,2 K], добавлен 10.04.2013Понятие и общая характеристика представителей алифатических аминокислот. Ароматические аминокислоты: сущность, применение, методика получение. Реакции по карбоксильной группе. Анализ белковых молекул. Пространственное строение данных соединений.
контрольная работа [685,1 K], добавлен 05.08.2013