Цветные металлы и сплавы
Алюминий и его сплавы: деформируемые, нормальной, высокой прочности и жаропрочные, сплавы для ковки и штамповки. Особенности термообработки сплавов алюминия с магнием (магналин), спекание с цинком и кремнием (цинковый силумин). Медь и её сплавы.
Рубрика | Строительство и архитектура |
Вид | реферат |
Язык | русский |
Дата добавления | 28.12.2009 |
Размер файла | 14,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Реферат
Дисциплина: материаловедение
Тема: Цветные металлы и сплавы
2009
Введение
Многие цветные металлы и их сплавы обладают рядом ценных свойств: хорошей пластичностью, вязкостью, высокой электро- и теплопроводностью, коррозионной стойкостью и другими достоинствами. Благодаря этим качествам цветные металлы и их сплавы занимают важное место среди конструкционных материалов.
Из цветных металлов в автомобилестроении в чистом виде и в виде сплавов широко используются алюминии, медь, свинец, олово, магний, цинк, титан.
1. Алюминий и его сплавы
Алюминий -- металл серебристо-белого циста, характеризуется низкой плотностью 2,7 г/см3, высокой электропроводностью, температура плавления 660"С. Механические свойства алюминия невысокие, поэтому в чистом виде как конструкционный материал применяется ограниченно.
Для повышения физико-механических и технологических свойств алюминий легируют различными элементами (Си, Mg, Si, Zn). Железо и кремний являются постоянными примесями алюминия. Железо вызывает
снижение пластичности и электропроводности алюминия. Кремний, как и медь, магний, цинк, марганец, ипколь и хром, относится к легирующим добавкам, упрочняющим алюминий.
В зависимости от содержания постоянных примесей различают:
--- алюминий особой чистоты марки А 999 (0,001 % примесей);
-- алюминий высокой чистоты -- А 935, А 99, А 97, Л 95 (0,005-0,5 % примесей);
---- технический алюминий -- А 85, А 8, А 7, А 5, А О (0,15--0,5 % примесей).
Алюминий выпускают в виде полуфабрикатов для дальнейшей переработки в изделия. Алюминий высокой чистоты применяют для изготовления токопроводящих и кабельных изделий.
И автомобилестроении широкое применение получили сшиты на основе алюминия. Они классифицируются: - по технологии изготовления; по степени упрочнения после термической обработки;
---- по эксплуатационным свойствам.
Деформируемые сплавы
К. неупрочияемым термической обработкой относятся сплавы;
алюминия с марганцем марки АМц;
алюминия с магнием, марок АМц АМгЗ, АМг5В;
АМгЗП, АМгб.
Эти сплавы обладают высокой пластичностью, коррозионной стойкостью, хорошо штампуются и свариваются, но имеют невысокую прочность. Из них изготовляют бензиновые баки, проволоку, заклепки, а также сварные резервуары для жидкостей и газов, детали вагонов.
В группе деформируемых алюминиевых сплавов, упрочняемых термической обработкой, различают сплавы:
-- нормальной прочности;
-- высокопрочные сплавы;
-- жаропрочные сплавы;
-- сплавы для ковки и штамповки.
Сплавы нормальной прочности. К ним относятся сплавы системы Алюминий + Медь + Магний (дюралимины), которые маркируются буквой «Д». Дюралюмины (Д1, Д16, Д!8) характеризуются высокой прочностью, достаточной твердостью и вязкостью. Для упрочнения сплавов применяют закалку с последующим охлаждением в воде. Закаленные дуралюмины подвергаются старению, что способствует увеличению их коррозионной стойкости.
Дюралимины широко используются в авиастроении: из сплава Д1 изготовляют лопасти винтов, из Д16 -- несущие элементы фюзеляжей самолетов, сплав Д18 -- один из основных заклепочных материалов.
Высокопрочные сплавы алюминия {В93, В95, В96) откосятся к системе Алюминий + Цинк + Магний + *г Медь. В качестве легирующих добавок используют марганец и хром, которые увеличивают коррозионную стойкость и эффект старения сплава. Для достижения требуемых прочностных свойств сплавы закаливают с последующим старением.
Высокопрочные сплавы по своим прочностным показателям превосходят дуралюмины, однако менее пластичны и более чувствительны к концентраторам напряжений (надрезам). Из этих сплавов изготовляют высоконагруженные наружные конструкции в авиастроении -- детали каркасов, шасси и обшивки.
Жаропрочные сплавы алюминия (АК 4--1, Д 20) имеют сложный химический состав, легированы железом, никелем, медью и другими элементами. Жаропрочность сплавам придает легирование, замедляющее диффузионные процессы.
Детали из жаропрочных сплавов используются после закалки и искусственного старения и могут эксплуатироваться при температуре до 300°С.
Сплавы для ковки и штамповки (АК 25 АК 4Э АК 6, АК 8) относятся к системе Алюминий + Медь + Магний с добавками кремния. Сплавы применяют после закалки и старения для изготовления средне нагруженных деталей сложной формы (АК 6) и высоконагруженных штампованных деталей -- поршни, лопасти винтов, крыльчатки насосов и др.
Литейные сплавы. Для изготовления деталей методом литья применяют алюминиевые сплавы систем Al-Si, Al-Cu, Al-Mg. Для улучшения механических свойств сплавы легируют титаном, бором, ванадием. Главным достоинством литейных сплавов является высокая жидкотекучесть, небольшая усадка, хорошие механические свойства.
Применяют следующие виды термической обработки литейных алюминиевых сплавов:
-- искусственное старение: для улучшения прочности и обработки резанием;
-- отжиг с охлаждением на воздухе: для снятия литейных и остаточных напряжений и повышения пластичности;
-- закалка и естественное (или искусственное) старение: для повышения прочности;
-- закалка и смягчающий отпуск: для повышения пластичности и стабильности размеров.
Сплавы алюминия с кремнием (силумины) получили наибольшее распространение среди алюминиевых литейных сплавов в силу своих высоких литейных свойств и хороших механических и технологических характеристик. Силумины (марок АЛ2, АЛ4, АЛ9) обладают высокой жидкотекучестью, хорошей герметичностью, достаточной прочностью, хорошо обрабатываются резанием, хорошо свариваются, сопротивляются коррозии и устойчивы к образованию горячих трещин.
Сплав АЛ2 применяется для изготовления тонкостенных деталей сложной формы при литье в землю: корпуса агрегатов и приборов.
Сплав АЛ4 -- высоконагруженные детали ответственного назначения: корпуса компрессоров, блоки двигателей, поршни цилиндров и др.
Сплав АЛ9 -- изготовление деталей средней нагруженно, но сложной конфигурации, а также для деталей, подвергающихся сварке.
Сплавы алюминия с магнием (магналины) -- АЛ 8, АЛ13, АЛ27, АЛ29 обладают наиболее высокой коррозионной стойкостью и более высокими механическими свойствами после термической обработки по сравнению с другими алюминиевыми сплавами, но литейные свойства их низкие.
Сплавы АЛ 8 и АЛ 13 являются наиболее распространенными, из них изготовляют подверженные коррозионным воздействиям детали морских судов, а также детали, работающие при высоких температурах (головки цилиндров мощных двигателей воздушного
Ставы алюминия с медью -- АЛ7, АЛ12, АЛ19 обладают невысокими литейными свойствами и пониженной коррозионной стойкостью, но высокими механическими свойствами.
Сплав АЛ7 применяют для изготовления отливок несложной формы, работающих-с большими напряжениями (головки цилиндров маломощных двигателей воздушного охлаждения).
Сплавы алюминия, меди и кремния -- АЛЗ, АЛ4, АЛб характеризуются хорошими литейными свойствами, но коррозионная стойкость их невысокая.
Сплав АЛЗ широко применяют для изготовления отливок корпусов, арматуры и мелких деталей.
Сплав АЛ4 используется для отливок ответственных деталей, требующих повышенной теплоустойчивости и твердости.
Сплав АЛ6 применяют для отливок корпусов карбюраторов и арматуры бензиновых двигателей.
Сплавы алюминия, цинка и кремния -- типичный представитель сплав АЛИ (цинковый силумин), обладающий высокими литейными свойствами, а для повышения механических свойств подвергающийся модифицированию. Используется для изготовления отливок сложной формы -- картеров, блоков двигателей внутреннего сгорания.
Подшипниковые сплавы. Наибольшее применение из алюминиевых подшипниковых материалов получил сплав АСМ. По антифрикционным свойствам он близок к свинцовой бронзе, но превосходит ее по коррозионной стойкости и технологичности.
Сплав АСС-6-5 содержит в своем составе 5 % свинца, что придает ему высокие противозадирные свойства. Подшипники скольжения из сплавов АСМ и АСС-6-5 применяют взамен бронзовых в дизельных двигателях.
Из алюминиевых сплавов, легированных оловом, изготовляют тяжелонагруженные подшипники скольжения в автомобилестроении, а также в судовом и общем машиностроении.
Алюминиевые сплавы характеризуются более высоким коэффициентом теплового расширения, чем чугуны и стали. Поэтому подшипники из алюминиевых сплавов ограниченно применяются в практике машиностроения. Более широкое распространение получили биметаллические материалы, представляющие собой слой алюминиевого сплава, нанесенный на стальное основание. Такие биметаллы обеспечивают надежную работу узлов трения при больших нагрузках (20-- 30 МПа) и высоких скоростях скольжения (до 20 м/с).
Спеченные металлы. Материалы на основе алюминия, полученные методами порошковой металлургии, обладают по сравнению с литейными сплавами более высокой прочностью, стабильностью свойств при повышенных температурах и коррозионной стойкостью.
Материалы из спеченных алюминиевых порошков (САП) состоят из мельчайших частичек алюминия и его оксида А12О3. Порошок для спекания получают из технически чистого алюминия, распылением с последующим измельчением гранул в шаровых мельницах.
Технологический процесс получения изделий из САП состоит из операций изготовления заготовок и последующей механической обработки. Заготовки получают брикетированием (холодным или с подогревом) порошка с последующим спеканием при 590-620°С и давлениях 260-400 МПа.
По стойкости к воздействию температуры материалы из САП превосходят жаропрочный алюминиевый сплав ВД17.
Спеченные алюминиевые порошки (марок САП-1 -- САП-4) применяют для изготовления деталей повышенной прочности и коррозионной стойкости, эксплуатируемых при рабочих температурах до 500°С.
Спеченные -алюминиевые сплавы (САС) получают из порошков алюминия с небольшим содержанием А12О3, легированных железом, никелем, хромом, марганцем, медью и другими элементами.
Представителем этой группы материалов является САС-1, содержащей 25--30 % Si и 7 % Ni, применяемый взамен более тяжелых материалов в приборо- и машиностроении.
2. Медь и ее сплавы
Медь в чистом виде имеет красный цвет;.чем больше в ней примесей, тем грубее и темнее излом. Температура плавления меди 1083°С, плотность 8,92 г/см3.
Выпускают медь следующих марок: - катодная -- МВ4к, МООк, МОку, М1к;
-- бескислородная -- МООб, МОб, М1б;
-- катодная переплавленная -- М1у;
-- раскисленная -- М1р, М2р, МЗр, МЗ. .
Примеси оказывают существенное влияние на физико-механические характеристики меди. По содержанию примесей различают марки меди:
МОО (99,99 % Си), МО (99,95 % Си), Ml (99,9 % Си), М2 (99,7 % Си), МЗ (99,50 % Си).
Главными достоинствами меди как машиностроительного материала являются высокие тепло- и электропроводность, пластичность, коррозионная стойкость в сочетании с достаточно высокими механическими свойствами. К недостаткам меди относят низкие литейные свойства и плохую обрабатываемость резанием.
Легирование меди осуществляется с целью придания сплаву требуемых механических, технологических, антифрикционных и других свойств. Химические элементы, используемые при легировании, обозначают в марках медных сплавов следующими индексами:
А -- алюминий; Внм -- вольфрам; Ви -- висмут; В -- ванадий; Гм -- кадмий; Гл -- галлий; Г -- германий; Ж -железо; Зл -- золото; К -- кобальт; Кр -- кремний; Мг -- магний; Мц -- марганец; М -- медь; Мш -- мышьяк; Н -- никель; О -- олово; С -- свинец; Ст -- селен; Ср -- серебро; Су -- сурьма; Ти -- титан; Ф -- фосфор; Ц -- цикк.
Медные сплавы классифицируют:
по химическому составу на:
-- латуни;
-- бронзы;
-- медноникелевые сплавы; по технологическому назначению на:
-- деформируемые;
-- литейные;
по изменению прочности после термической обработки ъ&'.
-- упрочняемые;
-- неупрочняемые.
Латуни -- сплавы меди, в которых главным легирующим элементом является цинк. В зависимости от содержания легирующих компонентов различают:
-- простыв (двойные) латуни;
-- многокомпонентные (легированные) латуни. Простые латуни маркируют буквой «Л» и цифрами,
показывающими среднее содержание меди в сплаве. Например, сплав Л 90 -- латунь, содержащая 90 % меди, остальное -- цинк.
В марках легированных латуией группы букв и цифр, стоящих после- них, обозначают легирующие элементы и их содержание в процентах. Например, сплав ЛАН КМц 75--2--2,5--0,5--0,5 -- латунь алюминиевоникель-
кремнистомарганцевая, содержащая 75 % меди, 2 % алюминия, 2,5 % никеля, 0,5 % кремния, 0,5 % марганца, остальное -- цинк.
В зависимости от основного легирующего элемента различают алюминиевые, кремнистые, марганцевые, никелевые, оловянистые, свинцовые и другие латуни.
Алюминиевые латуни -- ЛА 85-0,6, ЛА 77-2, ЛАМш 77-2-0,05 обладают повышенными механическими свойствами и коррозионной стойкостью.
Кремнистые латуни -- ЛК 80-3, ЛКС 65-1,5-3 и другие отличаются высокой коррозионной стойкостью в ТМООферНШ условиях и в морской воде, а также высокими механическими свойствами.
Марганцевые латуни -- ЛМц 58-2, ЛМцА 57-3-1, деформируемые в горячем и холодном состоянии, облада-нм iii.K-oKiiMii механическими свойствами, стойкие к коррозии и морской воде и перегретом паре.
Никелевые латуни -- ЛН 65-5 и другие имеют высокие механические свойства, хорошо обрабатываются длплснпем в горячем и холодном состоянии.
Oловянистыe латуни- ЛО--90-1, ЛО 70-3, ЛО 62-1 отличаются повышенными антифрикционными свойствами и коррозионной стойкостью, хорошо обрабатываются.
Свинцовые латуни - ЛС 63-3, ЛС 74-3, ЛС 60-1 характеризуются повышенными антифрикционными свойствами и хорошо обрабатываются резанием. Свинец в этих сплавах присутствует в виде самостоятельной фазы, практически не изменяющей структуры сплава.
Бронзы -- это сплавы меди с оловом и другими элементами (алюминий, кремний, марганец, свинец, бериллий). В зависимости от содержания основных компонентов, бронзы можно условно разделить на:
-- оловянные, главным легирующим элементом которых является олово;
-- безоловянные (специальные), не содержащие олова. Бронзы маркируют буквами «Бр», правее ставятся буквенные индексы- элементов, входящих в состав. Затем следуют цифры, обозначающие среднее содержание элементов в процентах (цифру, обозначающую содержание меди, в бронзе, не ставят). Например, сплав марки БрОЦС 5-5-5 означает, что бронза содержит олова, свинца и цинка по 5 %, остальное -- медь (85 %).
Оловянные бронзы обладают высокими антифрикционными свойствами;-нечувствительны к перегреву, морозостойки, немагнитны.
Для улучшения качества оловянные бронзы легируют цинком, свинцом, никелем, фосфором и другими элементами. Легирование фосфором повышает механические, технологические, антифрикционные свойства оловянных бронз. Введение никеля способствует повышению механических и противокоррозионных свойств. При легировании свинцом увеличивается плотность бронз, улучшаются их антифрикционные свойства и обрабатываемость резанием, однако заметно снижаются механические свойства. Легирование цинком улучшает технологические свойства. Введение железа (до 0509 %} способствует повышению механических свойств бронз, однако с увеличением степени легирования резко снижаются их коррозионная стойкость и технологические свойства.
В зависимости от технологии- переработки оловянные и специальные бронзы подразделяют на:
-- деформируемые;
-- литейные;
-- специальные.
Деформируемые оловянные бронзы содержат до 8 % олова. Эти бронзы используют для изготовления пружин, мембран и других деформируемых деталей. Литейные бронзы содержат свыше 6 % олова, обладают высокими антифрикционными свойствами и достаточной прочностью; их используют для изготовления ответственных узлов трения (вкладыши подшипников скольжения).
Специальные бронзы включают в свой состав алюминий, никель, кремний, железо, бериллий, хром, свинец и другие элементы, В большинстве случаев название бронзы определяется основным легирующим компонентом.
Алюминиевые бронзы обладают высокими механическими, антифрикционными и противокоррозионными свойствами. Эти бронзы нашли применение для изготовления ответственных деталей машин, работающих при интенсивном изнашивании и повышенных температурах.
Кремнистые бронзы характеризуются высокими антифрикционными и упругими свойствами, коррозионной стойкостью. Дополнительное легирование кремнистых бронз другими элементами способствует улучшению эксплуатационных и технологических свойств бронз: цинк повышает их литейные свойства, марганец и никель улучшают коррозионную стойкость и прочность, свинец -- обрабатываемость резанием и антифрикционные свойства. Кремнистые бронзы применяют взамен оловянных для изготовления антифрикционных деталей, пружин, мембран приборов и оборудования,
Свинцовые бронзы используют в парах трения, эксплуатируемых при высоких относительных скоростях перемещения деталей. Для повышения механических свойств и коррозионной стойкости свинцовые бронзы легируют никелем и оловом.
Бериллиевые бронзы отличаются высокими прочностными свойствами, износостойкостью и стойкостью к воздействию коррозионных сред. Они обеспечивают работоспособность изделий при повышенных температурах (до 500°С), хорошо обрабатываются резанием и свариваются. Бронзы этого типа используют для изготовления деталей ответственного назначения, эксплуатируемых при повышенных скоростях перемещения, нагрузках, температуре.
Сплавы меди с никелем подразделяют на конструкционные и электротехнические
Кушали (медь-никель-алюминий) содержат 6--13 % Ni, 1,5--3 % А1, остальное -- медь. Они подвергаются термической обработке (закалка-старение). Куниали служат для изготовления деталей повышенной прочности, пружин и ряда электротехнических изделий.
Нейзильберы (медь-никель-цинк) содержат 15 % Ni, 20 % Sn, остальное -- медь. Они имеют белый цвет, близкий к цвету серебра. Нейзильберы хорошо сопротивляются атмосферной коррозии. Их применяют в приборостроении и производстве часов.
Мелькиоры (медь-никель и небольшие добавки железа и марганца до 1 %) обладают высокой коррозионной стойкостью. Их применяют для изготовления теплообменных аппаратов, штампованных и чеканных изделий,
Копелъ (медь-никель-марганец) содержат 43 % Ni, 0,5 Мп, остальное -- медь. Это специальный сплав с высоким удельным электросопротивлением, используемый для изготовления электронагревательных элементов.
Подобные документы
Состав, строение, свойства строительных металлов. Поведение металлических строительных конструкций при пожаре. Методы огнезащиты металлических конструкций. Применение низколегированных сталей. Расчет предела огнестойкости железобетонной панели перекрытия.
курсовая работа [94,9 K], добавлен 30.10.2014Определение и краткая история высокопрочного бетона. Общие положения технологии производства бетонов: значение качества цемента, заполнителей, наполнителей и воды. Основные характеристики структурных элементов бетона. Способы повышения его прочности.
реферат [25,9 K], добавлен 07.12.2013Металлы и неметаллические материалы, используемые в системах теплогазоснабжения и вентиляции (ТГВ). Способы испытания металлов и сплавов. Изделия и материалы (трубы, арматура), применяемые в системах ТГВ. Характеристика вспомогательных материалов.
курс лекций [3,5 M], добавлен 08.02.2015Достоинства и недостатки металлических конструкций, применение их в ответственных сооружениях. Механические свойства стали в зависимости от класса прочности. Коррозия алюминиевых сплавов, меры борьбы с ней. Конструкции многоэтажных каркасных зданий.
контрольная работа [683,2 K], добавлен 28.03.2018Определение характеристики однородности прочности бетона по всем партиям, статистический расчет коэффициента его вариации и состава. Назначение среднего уровня прочности бетона и других статистических характеристик на следующий контролируемый период.
курсовая работа [6,1 M], добавлен 29.05.2014Компоновка конструктивной схемы сборного перекрытия. Расчет и конструирование сборной предварительно напряженной плиты перекрытия. Методика вычисления прочности продольных ребер по нормальным сечениям. Определение значения прочности наклонного сечения.
курсовая работа [360,4 K], добавлен 27.07.2014Характеристики прочности бетона В45 и арматуры А 1000. Расчетный пролет и нагрузки. Расчет прочности плиты по сечению, наклонному к продольной оси. Определение усилий в ригеле поперечной рамы, усилий в средней колонне. Конструирование арматуры колонны.
курсовая работа [216,6 K], добавлен 19.01.2011Конструирование плиты проезжей части. Подбор рабочей арматуры плиты и проверка по прочности нормальных сечений. Определение усилий в сечениях главной балки, значений коэффициентов надежности и динамичности. Проверки по прочности наклонных сечений.
курсовая работа [2,8 M], добавлен 21.12.2013Вычисление расчетных пролетов плиты. Характеристики прочности бетона и арматуры. Сбор нагрузки на балку. Расчет прочности балки по сечениям, наклонным к продольной оси. Определение расчетных пролетов. Компоновка конструктивной схемы сборного перекрытия.
курсовая работа [3,0 M], добавлен 21.03.2015Изучение порядка определения требуемой прочности и расчет состава тяжелого бетона. Построение графика зависимости коэффициента прочности бетона и расхода цемента. Исследование структуры бетонной смеси и её подвижности, температурных трансформаций бетона.
курсовая работа [1,9 M], добавлен 28.07.2013