Расчёт и конструирование сборных и монолитных железобетонных конструкций каркаса одноэтажного производственного здания

Статический расчет рамы, ее компоновка. Сбор нагрузок на раму. Расчет, конструирование колонны по оси Б. Проектирование фундамента под колонну по оси Б. Сведения о материале, расчет арматуры фундамента. Расчет подколонника, конструирование фундамента.

Рубрика Строительство и архитектура
Вид курсовая работа
Язык русский
Дата добавления 21.10.2008
Размер файла 443,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Файл не выбран
РћР±Р·РѕСЂ

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

52

Министерство образования и науки Украины

Национальная академия природоохранного и курортного

строительства

Архитектурно строительный факультет

Кафедра: "Железобетонных конструкций"

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОМУ ПРОЕКТУ

по курсу: "Железобетонные конструкции"

Тема: "Расчёт и конструирование сборных и монолитных железобетонных конструкций каркаса одноэтажного производственного здания".

Выполнил:

студент группы ПГС-401

Жигна М.В.

Консультировал:

доц. Жигна В.В.

Симферополь 2007 г.

Содержание

  • 1. Исходные данные
    • 2. Конструктивное решение здания
    • 3. Статический расчет рамы
    • 3.1 Компоновка рамы
    • 3.2 Сбор нагрузок на раму
    • 4. Расчет и конструирование колонны по оси Б
    • 4.1 Конструирование
    • 5. Проектирование фундамента под колонну по оси Б
    • 5.1 Сведения о материалах
    • 5.2 Определение усилий
    • 5.3 Расчет арматуры фундамента
    • 5.4 Расчет подколонника
    • 5.5 Конструирование
    • 6. Расчет сборной предварительно напряженной арки пролетом 36м
    • 6.1 Данные для проектирования
    • 6.2 Расчетный пролет и нагрузки
    • 6.3 Геометрические характеристики и усилия в сечениях арки
    • 6.4 Расчёт прочности затяжки
    • 6.5 Определение потерь предварительного напряжения арматуры затяжки
    • 6.6 Расчёт трещиностойкости затяжки
    • 6.7 Проверка прочности затяжки при обжатии бетона
    • 6.8 Расчёт прочности нормальных сечений верхнего пояса арки
    • 6.9 Расчёт прочности наклонных сечений арки
    • 6.10 Расчёт прочности и трещиностойкости подвески
    • 6.11 Конструирование
    • 7. Список литературы

1. Исходные данные

1. Количество кранов и их грузоподъемность Q=2х150 кН (средний режим);

2. Пролёт здания В=36м

3. Количество пролётов - 1

4. Длина здания L=108м

5. Высота от пола помещения до головки подкранового рельса Hгол. р=12 м;

6. Место возведения сооружения - Севастополь:

7. Нормативное сопротивление грунта основания Rnгр=0,26 МПа = 260 кН/м2;

8. Материал стен - кирпич

Ветровая нагрузка W0=46кгс/м2=0,46 кПа = 0,46 кН/м2;

При гололеде WB=25кгс/м2=0,25 кПа = 0,25 кН/м2

Снеговая нагрузка S0=77кгс/м2= 0,77 кПа =0,77 кН/м2.

Таблица 1.1.Характеристики крана

Грузоподъемность

Пролёт

LK

Габаритные размеры

Давление колеса на крановый рельс

Масса

Главного крюка

К

ВК

В1

НК

тележки

крана

Рmax

Рmin

кН

м

мм

кН

т

150

34,5

5000

6300

260

2400

250

58

8,5

46,5

Высота рельса

Рисунок 1.1 Схема мостового крана.

2. Конструктивное решение здания

При пролете здания 36м и грузоподъемности крана 15т оптимальное решение компоновки здания - с шагом колонн 12м. Колонны сквозные двухветвевые, с привязкой 250мм. Здания разделено поперечным температурным швом на два блока 60 и 48м. Колонны жестко защемлены в фундаментах стаканного типа. Ригель здания - 36м сборная арка. Арка является экономичным решением сборных большепролетных покрытий. Применим двух шарнирную арку с предварительно напряженными затяжками. По арке укладываем ребристые плиты покрытия 3х12м.

3. Статический расчет рамы

3.1 Компоновка рамы

Для выполнения статический расчета конструкций здания или сооружения используем компьютерный расчет с помощью программного комплекса “Лира”.

“Лира" - это многофункциональный программный комплекс для автоматизированного проектирования и конструирования, численного исследования прочности и устойчивости конструкций.

Выполняем компоновку конструктивной схемы здания

Размеры поперечных сечений двухветвевых колонн рекомендуется назначать исходя из размеров типовых конструкций.

Размеры колонн приведены на рисунке 3.1.1

Привязка крайних колонн к продольным разбивочным осям принимается равной 250 мм.

Расчётная схема и конструктивная схема поперечной рамы изображена на рис.3.1.2 и 3.1.3

В качестве расчетной схемы следует принимать пространственную раму, состоящую из плоских рам, объединенных покрытием в пространственный блок.

Нагрузки от веса покрытия, снега, ветра принимают действующим ко всем поперечным рамам, а нагрузки от вертикального и горизонтального действия крана прикладывают ко второй от торца блока поперечной раме.

Моделируем в ПК “Лира" расчетную схему здания, сначала как плоскую регулярную раму (рис.3.1 4), а затем задаем жесткость элементам и путем копирования получаем пространственную модель (рис.3.1 5).

Выполняем сбор нагрузок и прикладываем их к раме.

Рис.3.1.5 Пространственный каркас здания.

3.2 Сбор нагрузок на раму

Таблица 3.2.1. Сбор нагрузок на покрытие на 1 м2

Вид нагрузки

Нормативная нагрузка, при

Расчётная нагрузка, при

ПОСТОЯННАЯ:

слой гравия, втопленного в дёгтевую мастику

три слоя рулонного ковра на дёгтевой мастике

цементно-песчаная стяжка - 30 мм ();

утеплитель (минераловатная плита) - 100 мм

();

панель покрытия с бетоном замоноличивания

ВСЕГО:

Принята к расчету:

0,18

0,09

0,6

0,1

0,05

2,2

qn=3,17

1,3

1,3

1,3

1,3

1,3

1,1

0,234

0,117

0,78

0,13

0,065

2,42

q=3,681

3,7

ВРЕМЕННАЯ:

снеговая (с=1), для I снегового района

sn=0,77

1,4

1,078

Постоянные нагрузки

Масса сборной предварительно напряженной арки .

Масса балки покрытия

Расчетная нагрузка на колонну от покрытия:

Расчетная нагрузка от веса подкрановой балки 114,7 кН и подкранового пути 1,5 кНна колонну.

Нагрузка от веса керамзитобетонных панелей (; )

Снеговая нагрузка для г. Севастополь (I снеговой район)

Крановые нагрузки.

Расчетное максимальное давление на колонну от двух сближенных кранов определяют по линии влияния давления на колонну (Рис.3.1) и коэффициентом надежности по нагрузке , по нагрузке .

Рис 3.2.1 Установка крановой нагрузки в невыгодное положении и линия влияния давления на колонну.

Нормативная горизонтальная нагрузка на одно колесо

,

где - масса крана,

- масса подкрановой тележки.

Расчетная тормозная горизонтальная нагрузка на колонну от двух сближенных кранов

Горизонтальная сила от поперечного торможения крана приложена к колонне на уровне верха подкрановой балки на отметке 13,1м.

Ветровая нагрузка.

Скоростной напор ветра на высоте 10м над поверхностью земли для III района г. Севастополь

Аэродинамический коэффициент с наветренной стороны с=0,8,с заветренной с=-0,6.

Коэффициент надежности по нагрузке .

Ветровую нагрузку в пределах высоты колонны до отметки 10м принимаем равномерно распределенной, а от отметки 10м принимаем с учетом изменения напора по высоте при среднем значении коэффициента увеличения скоростного напора ветра согласно табл.3.2

Табл.3.2.2

Высота

здания, м

Коэфф. увелич. cкоростного напора

10

1.0

20

1.25

40

1.5

Нагрузка от ветра с подветренной стороны:

Отметка 10,0м ;

Отметка 10,7м ;

Отметка 12,5м ;

Отметка 16,2м ;

Отметка 21,2м ;

Нагрузка от ветра с заветренной стороны:

Отметка 10,0м ;

Отметка 16,2 м ;

Отметка 21,2м ;

Нагрузка от ветра с подветренной стороны:

Отметка 10,0м ;

Отметка 16,2 м ;

Отметка 21,2м ;

Нагрузка от ветра с заветренной стороны:

Отметка 10,0м ;

Отметка 10,7м ;

Отметка 12,5м ;

Отметка 16,2м ;

Отметка 21,2м ;

Выполняем расчет от различных загружений каркаса. Составляем таблицу сочетаний усилий в соответствии с ДБН “Нагрузки и воздействия" 1.2-2-06 и нормами на проектирование ж. б. конструкций.

Получив всю информацию о напряженно-деформированной состоянии всех элементов расчетной схемы, переходим к конструированию колонны.

Рис.3.2.8 Расчетная схема колонны.

4. Расчет и конструирование колонны по оси Б

Расчет и конструирование колонны проводим в ПК “Лира" приложение “Лир-АРМ"

Задаемся типами материалов колонны:

Бетон тяжелый класса В 20, подвергнутый тепловой обработке при атмосферном давлении, Rb=11,5 МПа; Rbt=0,9 МПа; Eb=27103 МПа (СНиП 2.03.01-84, табл.13 и 18). Арматура класса А-III, d>10 мм, RS=RSC=365 МПа, ES=2105 МПа. Поперечная арматура класса А I, RS=225 МПа, RSw=175 МПа, Es=2.1105 МПа (СНиП 2.03.01-84, табл.22 и 29).

Производим расчет и получаем требуемые площади арматуры.

Рис.4.1 Расчетная схема колонны.

4.1 Конструирование

Рис.4.1.1 Армирование надкрановой и подкрановой части колонны.

Рис.4.1.2 Армирование сечений колонны.

5. Проектирование фундамента под колонну по оси Б

5.1 Сведения о материалах

Условное расчетное сопротивление грунта R0=0,22 МПа. Глубина заложения фундаментов по условиям промерзания грунтов Н1=1,65 м.

Определение глубины заложения фундамента в зависимости от глубины промерзания грунта основания:

,

где: - коэффициент, принимаемый для Крыма равным 0,7;

- коэффициент учета теплового режима здания (для неотапливаемого промышленного здания);

.

Бетон тяжелый класса В12,5, Rb=7,5МПа, Rbt=0,66 МПа, b2=1,1; арматура из горячекатаной стали класса A-II, RS=280 МПа. Вес единицы объёма материала фундамента и грунта на его обрезах

5.2 Определение усилий

Для определения значений усилий действующих на верхний срез фундамента в расчетной схеме (пк “Лира”) заменим подкрановую часть колонны рассчитываемого фундамента стержнем типа “КЭ-10”, численно описывающий геометрическую характеристику и жесткость сквозного сечения.

- жесткость элемента на осевое сжатие.

- жесткость элемента на изгиб в плоскости y

- жесткость элемента на изгиб в плоскости z

- первая координата ядра сечения

- вторая координата ядра сечения

- первая координата ядра сечения

- вторая координата ядра сечения

q - погонный вес (для автоматического определения собственного веса)

Расчёт выполняем на наиболее опасную комбинацию расчётных усилий

Расчётные значения усилий

Нормативные значения усилий

M = 1487,0 кНм

Mn = 1293,1 кНм

N = 2507,9 кН

Nn = 2180,8 кН

Q = 103,7 кН

Qn = 90,2 кН

Нормативное значение усилий определено делением расчётных усилий на усреднённый коэффициент надёжности по нагрузке .

Определение геометрических размеров фундамента.

Глубину стакана фундамента принимаем Han = 120 см, что должно быть не менее:

Han 0,5+0,33h=0,5+0,331,4=0,962 м, где h=1,4 м - больший размер сечения всей колонны; не менее Han1,5bcol=1,50,6=0,9 м, где bcol=0,6 м - больший размер сечения ветви; и не менее Han30d=302,8=84 см, где d=2,8 - диаметр продольной арматуры колонны. Расстояние от дна стакана до подошвы фундамента принято 250 мм, тогда минимальная высота фундамента Hf=1200+250=1450 мм. Принимаем Hf=1800 мм (кратно 300 мм), тогда глубина заложения фундамента H1=1500+150=1950 мм.

Фундамент трёхступенчатый, высота ступеней принята 300 мм, высота подколонника 1200 мм.

Предварительно площадь подошвы фундамента определяем как для центрально нагруженного по формуле:

где 1,05 - коэффициент, учитывающий наличие момента.

Назначая соотношение сторон фундамента b/a=0,8, получаем:

, b1=0,8 3,88 = 3,1м.

Принимаем размеры подошвы ab=4,23,3 =13,86 м2.

Момент сопротивления подошвы:

Так как заглубление фундамента меньше 2 м, ширина подошвы больше 1 м, необходимо учитывать нормативное давление на грунт по формуле:

.

Определим расчётную высоту фундамента из условия прочности на продавливание по формуле:

м

где h=1,4 м - больший размер сечения колонны

bcol=0,6 м - больший размер сечения ветви

Rbt=Rbt · гb2=1,1·0,66=0,726 МПа = 726 кН/м2

Полная высота фундамента

Н=0, 33+0,05=0,38 м < 1,5 м,

следовательно, принятая высота фундамента достаточна.

Определяем краевое давление на основание. Изгибающий момент в уровне подошвы фундамента:

Нормативна нагрузка от веса фундамента и грунта на его обрезах:

Gf = a b H1 n = 4,2 3,3 1,95 20 0,95 = 513,5кН

При условии что:

Принимаем размеры подошвы ab=4,53,6 =16,2 м2

Момент сопротивления подошвы:

Нормативна нагрузка от веса фундамента и грунта на его обрезах:

Gf = a b H1 n = 4,5 3,6 1,95 20 0,95 =600,2 кН

Проверка напряжений в основании показывает, что размеры подошвы фундамента достаточны.

Учитывая значительное заглубления фундамента, принимаем его конструкцию с подколонником стаканного типа и плитой переменной высоты. Толщина стенок стакана назначают 425мм > 0,2•h=0,2•1400=280мм. Зазор между колонной и стаканом поверху 75 мм, понизу 50мм. Высоту ступеней фундамента назначают

Высота подколонника 1200мм

Размеры ступеней в плане:

a1=4,5м b1=3,6м

a2=3,0м b2=2,4м

Размеры подколонника:

a3=2,4м b3=1,5м

Высота плитной части фундамента 60см. Проверяем достаточность принятой высоты плитной части из расчета на продавливание.

Расчет на продавливание по условию:

,

условие на продавливание выполняется.

Проверяем прочность фундамента на раскалывание:

,

следовательно проверяем по формуле:

,

прочность на раскалывание обеспечена.

5.3 Расчет арматуры фундамента

Определяем напряжения в грунте под подошвой фундамента в направлении длинной стороны а без учета веса фундамента и грунта на его уступах от расчетных нагрузок:

;

где

.

Напряжение в грунте в сечении I-I, II-II, III-III (см. Рис.6.1):

Изгибающие моменты, возникающие в сечениях I-I, II-II, III-III от реактивного давления грунта как в консоли, для расчета арматуры, укладываемой параллельно стороне а, определяют по формулам:

;

;

.

Сечение рабочей арматуры на всю ширину фундамента:

;

;

.

Назначаем шаг стержней 200 мм, на ширине фундамента b=3,6 м параллельно длинной стороне а укладываем 18 18 А-II c AS=45,8 см2. Процент армирования

Определяем изгибающий момент и площадь сечения арматуры, укладываемой параллельно стороне b:

;

.

При шаге стержней 200 мм принимают 23 16 A-II c AS=46,3см2. процент армирования

5.4 Расчет подколонника

Продольное армирование подколонника и его стаканной части определяем из расчета на внецентренное сжатие коробчатого сечения стаканной части в плоскости заделанного торца колонны (IV-IV) и расчета на внецентренное сжатие прямоугольного сечения подколонника в месте примыкания его к плитной части фундамента Размеры коробчатого сечения стаканной части, преобразованное в эквивалентное двутавровое:

b=1,4 м; h=2, 4 м; =1,5 м; =0,425 м; =0,04 м; =2,36 м; =0,04/2,36=0,017.

Расчетное усилие в сечении IV-IV при f>1:

Эксцентриситет продольной силы:

.

Расстояние от центра тяжести сечения растянутой арматуры до силы N:

Проверяем положение нулевой линии. Так как

> N=2292.9 кН,

нулевая линия проходит в полке, и сечение рассчитываем как прямоугольное шириной bf'=150 см.

Принимаем симметричное армирование, тогда высота сжатой зоны:

.

Сечение симметричной арматуры:

,

т.е. продольная арматура по расчету не нужна. Назначаем в соответствии с конструктивными требованиями не менее 0,04% площади поперечного сечения подколонника: AS=AS'=0,0005150240=18 см2. Принимаем с каждой стороны подколонника 618 A-II c AS=AS'=18,85 см2. У длинных сторон подколонника принимаем продольное армирование 8 18 A-II.

Прочность сечения V-V не проверяем, так как усилия от полученных ранее отличаются незначительно.

Поперечное армирование подколонника определяем по расчету на момент от действующих усилий относительно оси, проходящей через точку поворота колонны.

Так как 0,5hc=0,51,4=0,67 > e0=0,61 м > hc/6=1,4/6=0,23 м, поперечное армирование определяют по формуле:

,

zi=7.5+22.5+37.5+52.5+67.5+82.5+97.5+112.5=480 cм -

сумма расстояний от точки поворота колонны до сеток поперечного армирования подколонника при шаге сеток 150 мм и расстоянии от верха стакана до верхней сетки 75 мм.

Необходимая площадь сечения одного рабочего стержня (при четырех стержнях в каждой сетке): ASW=4.5/8=0,5625 см2. Принимаем 9 A-I c ASW=0,636см2.

5.5 Конструирование

Рис.5.5.1. Схема армирования фундамента.

6. Расчет сборной предварительно напряженной арки пролетом 36м

6.1 Данные для проектирования

Бетон тяжелый класса В30 (при ; ; при ; ; для бетона естественного твердения ;

; ).

Предварительно напрягаемая арматура затяжки - высокопрочная проволока периодического профиля класса Вр-II

(; ; );

натяжение арматуры производится механическим способом на упоры с применением инвентарных зажимов.

Ненапрягаемая арматура класса А-III Ш 10-40 мм

(; ; ).

Затяжка относится к конструкциям 3-й категории трещиностойкости. Прочность бетона к моменту отпуска натяжных устройств (передаточная прочность) принимается .

6.2 Расчетный пролет и нагрузки

Расчетный пролет арки

,

где а - расстояние от торца арки до точки опирания на колонну. Расчетная постоянная нагрузка на 1 м с учетом веса арки

Расчетная временная нагрузка при , для г. Севастополя

6.3 Геометрические характеристики и усилия в сечениях арки

Арку рассчитываем как двухшарнирную с затяжкой. Из соображений унификации блоков ось арки выполняем по круговому очертанию.

Варианты загружения и статическая схема арки приведены на Рис.6.1.

а)

б)

Рис.6.3.1 Варианты нагружения арки:

а - сплошная нагрузка; б - односторонняя снеговая нагрузка.

Находим геометрические характеристики арки согласно рис.3.3.2

Радиус круговой оси:

м,

где - стрела подъема, принятая равной примерно 1/9 пролета, то есть 3,97 м;

Центральный угол

25°8ґ˜25°

Длина арки м,

Арку разбиваем на 10 равных частей (дуге 0,1части соответствует угол =5°)

и определяем горизонтальные ординаты сечений по формулам:

; , где

Величина у6 соответствует длине стрелы подъёма f. Результаты вычислений приведены в таблице 6.3.

Рис.6.3.2 Схема геометрических характеристик арки.

Таблица 6.3. К определению значений х и у.

Номер сечения

град

х, м

у, м

1

25

0.4226

0.9063

0.00

0.00

2

20

0.3420

0.9397

3.47

1.44

3

15

0.2588

0.9659

6.96

2.54

4

10

0.1736

0.9848

10.53

3.33

5

5

0.0872

0.9962

14.15

3.81

6

0

0.0000

1.0000

17.8

3.97

7

5

0.0872

0.9962

14.15

3.81

8

10

0.1736

0.9848

10.53

3.33

9

15

0.2588

0.9659

6.96

2.54

10

20

0.3420

0.9397

3.47

1.44

11

25

0.4226

0.9063

0.00

0.00

Предварительно задаемся площадями сечений арматуры в арке и в затяжке, а так же вычисляем геометрические характеристики их сечений.

Рис.6.3.1 Сечение блока арки.

Принимаем с округлением .

Отношение модулей упругости для арки .

Тогда площадь приведенного симметричного армированного сечения арки

Момент инерции приведенного сечения при расстоянии до центра тяжести

Радиус инерции приведенного сечения

Так как площадь сечения затяжки , то сечение арматуры принимаем приближенно

Учитывая, что для затяжки отношение модулей упругости . Определяем площадь приведенного сечения затяжки:

Коэффициент податливости затяжки:

Для каждого случая загружения (см. рис.3.1) находим распор от нагрузки , принятой за единичную:

для равномерно распределённой нагрузки

для односторонней равномерно распределённой нагрузки на половине пролёта арки:

По вычисленному распору для каждого вида загружения определяем расчётные усилия в сечении арки. Для этого сначала определяем балочные моменты и поперечные силы .

При равномерно распределённой нагрузке балочные момента и поперечные силы находим по формулам:

где - опорная реакция в балке.

При загружении половины пролёта арки балочный момент и поперечную силу в незагруженной части определяем по формуле:

где - реакция в балке со стороны незагруженной части.

После вычисления балочных моментов и поперечных сил определяем расчётные усилия для всех сечений арки:

где - угол между касательной к оси арки в ассматриваемом сечении и горизонталью (см. таб.3.3 и рис.3.1); - изгибающий момент и поперечная сила в балке на двух опорах пролётам равным пролёту рассчитываемой арки.

Определим в середине пролёта арки при действии равномерно распределённой нагрузке при ;

Далее расчёт производим аналогично.

В таблице 3.4 приведены усилия от единичной нагрузки , распределённой по всему пролёту; а в таблице 3.5 - усилия в арке от единичной нагрузки на левой половине.

Таблица 6.4. Усилия от распределённой нагрузки распределённой по всему пролёту

Номер сечения

Н, кН

, кНм

, кН

, кНм

, кН

, кН

1

38,6

0,00

17,8

0,00

42,51

-0,18

2

55,75

14,33

0,17

41,17

0,27

3

99,67

10,84

1,63

40,09

0,48

4

131,99

7,27

3,45

39,27

0,46

5

151,76

3,65

4,69

38,77

0,27

6

158,42

0,00

5,18

38,6

0,00

7

151,76

-3,65

4,69

38,77

-0,27

8

131,99

-7,27

3,45

39,27

-0,46

9

99,67

-10,84

1,63

40,09

-0,48

10

55,75

-14,33

0,17

41,17

-0,27

11

0,00

-17,8

0,00

42,51

0,18

Таблица 6.5. Усилия от распределённой нагрузки на левой половине

Номер сечения

Н, кН

, кНм

, кН

, кНм

, кН

, кН

1

19,3

0,00

13,35

0,00

23,13

3,94

2

40,31

9,88

12,52

21,52

2,68

3

68,69

6,39

19,67

20,3

1,18

4

85,16

2,82

20,89

19,5

-0,57

5

88,79

-0,8

15,26

19,16

-2,48

6

79,21

-4,45

2,58

19,3

-4,45

7

62,97

-4,45

-10,56

19,31

-2,75

8

46,86

-4,45

-17,41

19,39

-1,03

9

30,97

-4,45

-18,05

19,41

0,7

10

15,44

-4,45

-12,35

19,29

2,42

11

0,00

-4,45

0,00

19,37

4,13

Для вычисления расчётных усилий в сечениях арки необходимо для каждого вида загружения величины, приведенные в табл.6.4. и 6.4. умножить на переводные коэффициенты, определяемые по формулам:

для постоянной нагрузки:

для постоянной нагрузки:

В табл.3.6. приведены значения усилий от всех видов нагрузок, а также расчётные комбинации усилий при наиболее невыгодном их сочетании.

Распор от расчётных нагрузок при - среднее значение коэффициента надёжности по нагрузке:

6.4 Расчёт прочности затяжки

Арматуру затяжки подбираем как для центрально растянутого элемента по условиям прочности.

Из условия прочности определяем необходимое сечение арматуры:

мм2

Число канатов при Ш6мм

Принимаем 96 проволок:

Рис.6.4.1 Армирование затяжки.

6.5 Определение потерь предварительного напряжения арматуры затяжки

По условиям эксплуатации арки в закрытом помещении затяжка относится к 3-й категории трещиностойкости. В то же время предельно допустимая ширина раскрытия трещин, обеспечивающая сохранность арматуры Ш 6, весьма мала (). Поэтому предварительное напряжение арматуры механическим способом можно назначить максимальным:

МПа.

Первые потери напряжения (до обжатия бетона)

От релаксации напряжений при механическом способе натяжения:

МПа

Потери температурного перепада отсутствуют, т.к по мере увеличения постоянной нагрузки на арку арматура затяжки подтягивается .

Потери от деформации анкеров при инвентарных зажимах:

МПа

где м - длина арматурного стержня, расстояние между упорами стенда.

Поскольку напрягаемая арматура не отгибается, потери от трения арматуры об огибающие приспособления отсутствуют, т.е.

От деформации стальной формы при отсутствии данных о её конструкции

МПа.

Потери от быстропротекающей ползучести бетона:

Учитывая симметричное армирование, считаем .

Напряжение в бетоне при обжатии:

МПа

Т.к. отношение

,

то для бетонов естественного твердения:

МПа

Первые потери составят:

МПа

Вторые потери напряжения

От усадки тяжелого бетоны класса В30 естественного твердения: МПа

От ползучести бетона:

МПа

Т.к. отношение

, то для бетонов

естественного твердения: МПа

Вторые потери составят: МПа

Суммарные потери: МПа

Напряжение с учётом всех потерь:

МПа

Усилие обжатия с учётом всех потерь:

6.6 Расчёт трещиностойкости затяжки

Проверяем сечение затяжки по образованию трещин. Расчёт производится с учётом коэффициента точности натяжения

Т.к. значение распора при

, ,

то трещины в затяжке не образуются.

6.7 Проверка прочности затяжки при обжатии бетона

Определяем усилие обжатия бетона как для центрально обжатого элемента с учётом всей напрягаемой арматуры. При натяжении арматуры на упоры прочность затяжки проверяется из условия:

Предварительное напряжение с учётом первых потерь определяются при

МПа

Тогда

где - приземная прочность бетона к моменту его обжатия, вычисляется по интерполяции при .

Условие выполняется, следовательно, прочность затяжки при её обжатии обеспечена.

6.8 Расчёт прочности нормальных сечений верхнего пояса арки

В сечениях арки действуют изгибающие моменты, сопоставимые по величине, но разные по знаку (см. табл.3.6)

Поэтому принимаем симметричное армирование арки

Сечение арматуры в средних блоках арки определяем по наиболее невыгодной комбинации усилий. В сечениях 4 и 5 действуют практически равные моменты, однако значение продольной силы в сечении 5 меньше. Следовательно

.

Поэтому за расчётное принимается сечение 5.

В этом сечении расчётные комбинации усилий:

от полной нагрузки: М = 450,3кНм

N = 2406,8кН

от длительных нагрузок: Мl = 262,6кНм

Nl = 2171,1кН

Расчётная длина в плоскости арки:

где L - длина арки в доль её геометрической оси.

Т.к. ,

расчёт производим с учётом прогиба элемента.

Находим рабочую высоту сечения:

мм.

Т.к. момент кратковременных нагрузок (снег справа и слева) М-

Мl=450,3-262,6=187,7 кНм

меньше момента от суммы постоянных и длительных нагрузок, т.е.

М - Мl=187,7 кНм <Мl=262,6 кНм. то М и Мl одного знака.

; принимаем

Конструкция двух шарнирной арки статически неопределимая.

см > - больший из случайных эксцентриситетов:

Следовательно случайный эксцентриситет не учитывается.

Принимаем ;

Условная критическая сила для элемента двутаврового сечения без предварительного напряжения:

Проверяем условие:

- условие выполняется.

Определяем коэффициент, учитывающий влияние прогиба:

Определение площади сечения арматуры внецентренно сжатого элемента двутаврового профиля.

мм;

;

МПа;

Граничная относительная высота сжатой зоны:

где =365 МПа для арматуры класса А-III

Положение нейтральной оси проверяем из условия:

Нейтральная ось проходит в пределах ребра, поэтому расчёт производим с учётом тавровой формы сечения.

мм

Принимая во внимание необходимость учёта сжатых свесов полки, вычисляем:

где ; мм2

При наличии сжатой полки:

где

Относительная высота сжатой зоны бетона определяется:

где

Площадь симметричной арматуры таврового сечения:

Коэффициент армирования

Т.к. полученный коэффициент армирования меньше нормируемого , то площадь сечения арматуры определяется:

Принимаем с каждой стороны по 5 Ш20 А-III,

Рассчитываем сечение 1 (в крайних блоках). По таблице 3.6. расчетная комбинация в этом сечении:

Так как , то внецентренно сжатый элемент можно рассчитывать как элемент со случайным эксцентриситетом.

По СНиП 2.03.01-84. "Бетонные и железобетонные конструкции" определяем коэффициент ,

Принимаем

Т.к. , то принимаем

Площадь сечения арматуры:

где .

Повторяем расчёт при новом значении

Т.к. , то принимаем

Площадь сечения арматуры:

Принимаем армирование элемента 5Ш25 А-III

Проверяем прочность сечения 10 первого блока при принятой арматуре

5Ш25 А-III для следующих значений усилий:

Расчет проводим с учетом тавровой формы сечения.

Определяем коэффициент увеличения начального эксцентриситета с учетом двутавровой формы сечения.

,

следовательно, и имеют разные знаки.

, принимаем .

конструкция статически неопределимая

принимаем

мм;

;

МПа;

Граничная относительная высота сжатой зоны:

где =365 МПа для арматуры класса А-III

Принятое армирование 5Ш25 А-III , достаточно.

6.9 Расчёт прочности наклонных сечений арки

Выполняем расчёт наклонного сечения, идущего от грани опоры арки. Условно считаем всю нагрузку на верхний пояс арки равномерно распределённой.

Максимальная поперечная сила действует в сечении 11 , .

Коэффициент, учитывающий влияние продольной силы:

Принимаем

Коэффициент, учитывающий влияние сжатых поло двутаврового сечения арки:

где . Принимаем 330.

где = 0,6 для тяжёлого бетона.

В этом случае поперечную арматуру устанавливаем по конструктивным соображениям. Принимаем 2 Ш 8 A III, , шаг

Проверяем прочность наклонной полосы между наклонными трещинами на действие поперечной силы.

=0,01 для тяжёлого бетона

;

;

Т.к. , то

следовательно, прочность наклонной полосы достаточна.

6.10 Расчёт прочности и трещиностойкости подвески

Подвеску рассчитываем на осевое растяжение от веса подвески и участка затяжки длиной 6000 мм.

где - площадь поперечного сечения подвески. = 3,25 м - длина наиболее загруженной подвески; - коэффициенты надёжности по нагрузки и по назначению; - средняя плотность железобетона.

Принимаем 4 Ш 10 A III,

Производим расчёт подвески по образованию трещин:

Следовательно трещиностойкость подвески обеспечена.

6.11 Конструирование

6.11.1 Армирование сечений.

6.11.2 Армирование узлов.

7. Список литературы

1. ДБН В.1.2-02-2006. СНБС. Нагрузки и воздействия. К.: МинУкр, 2006;

2. СНиП 2.03.01-84. Бетонные и железобетонные конструкции. М.: ЦИТП, 1989;

3. Пособие по проектированию бетонных и железобетонных конструкций из лёгких и тяжёлых бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84). М.: ЦНИИпромзданий Госстроя СССР, 1984;

4. СНиП II-21-75. Бетонные и железобетонные конструкции. - М.: Стройиздат, 1976;

5. Байков В.Н. ., Сигалов Э.Е. "Железобетонные конструкции: общий курс". Учебник для вузов. - 4-е изд., перераб. - М.: Стройиздат, 1985. - 728 с., ил

6. Железобетонные конструкции: Курсовое и дипломное проектирование / Под ред. А.Я. Барашикова. - К.: Вища шк. Головное изд-во, 1987. - 416 с.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.