Современные технологии ремонта и усиления каменных зданий

Описание принципов и правил реконструкции и реставрации существующих каменных зданий, для обеспечения их конструктивной надежности и долговечности. Традиционные методы восстановления и усиления отдельных конструктивных элементов зданий из каменной кладки.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 13.10.2011
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию

Вологодский Государственный Технический Университет

Кафедра ПГС

Контрольная работа

По дисциплине: «Реконструкция»

Студент: Грошева М.П.

Группа: ЗСП-51

Проверил: Казакова И.C.

Вологда 2011

Содержание

Введение

Традиционные методы восстановления и усиления отдельных конструктивных элементов зданий из каменной кладки

Современные технологии ремонта и усиления каменных зданий

Литература

Введение

Один из актуальных вопросов реконструкции и реставрации существующих каменных зданий - обеспечение их конструктивной надежности и долговечности. В отличие от железобетонных конструкций, в которых трещинообразованию препятствует арматура, каменная кладка весьма чувствительна к действию растягивающих и сдвиговых напряжений. Как результат, наиболее распространенным видом повреждений построек из камня является их растрескивание. Этот процесс, во-первых, негативно сказывается на комфорте жильцов, пользователей, арендаторов и т.п. Во-вторых, он может быть как следствием, так и причиной аварийного состояния сооружения целиком или его отдельной части. Кроме того, трещины, даже безопасные, снижают коммерческую ценность объекта, ухудшая его внешний и внутренний вид.

Особенно ощутимы последствия таких деструкций в зданиях исторической застройки с богатым рельефом фасадов и ценной внутренней отделкой стен, содержащей фрески, позолоту и прочие элементы интерьерного убранства.

В последнее время вследствие повсеместного строительства новых объектов вблизи старых каменных зданий и сооружений образование трещин в их кладке происходит ускоренными темпами. В подобных случаях наиболее опасным для архитектурного памятника становится близкое соседство с местами проведения работ нулевого цикла, вызывающих неизбежное изменение напряженно-деформационного состояния оснований фундаментов. Известны факты, когда в процессе устройства котлованов в непосредственной близости от существующих объектов последние не только растрескивались, но и обрушались.

Традиционные методы восстановления и усиления отдельных конструктивных элементов зданий из каменной кладки

Восстановление и усиление отдельных элементов зданий из каменной кладки (столбов, простенков, перемычек, участков перекрытий, отдельных участков стен и узлов их сопряжений) в зависимости от технического состояния кладки, установленного при обследовании, сводится к трем основным случаям:

1) Несущая способность кладки с учетом имеющихся ослаблений достаточна. Повреждения кладки незначительные, общее состояние кладки работоспособное, снижение несущей способности не более 15% от первоначальной.

В этом случае проведение конструктивных мероприятий по восстановлению не требуется. Имеющиеся трещины заделывают раствором.

2)Несущая способность кладки по расчету достаточна и усиления не требуется, но ослабление кладки превышает 1/3 первоначальной прочности, имеет место значительное расслоение кладки и большое количество трещин. Техническое состояние кладки оценивается, как ограниченно работоспособное.

В этом случае производится восстановление путем местной перекладки захваченного глубокими трещинами участка стен, мелкие трещины затирают раствором. При сквозных трещинах перекладка ведется по очереди с двух сторон на толщину половины кирпича с каждой стороны. Столбы и простенки оштукатуриваются по конструктивной сетке из арматурной стали диаметром 4-6мм с ячейками 15х15см.

3)Несущая способность каменных элементов недостаточна, их техническое состояние оценивается как недопустимое (неработоспособное), требуется выполнение усиления.

Одним из наиболее эффективных методов повышения несущей способности существующей каменной кладки является включение ее в обойму. В этом случае кладка работает в условиях ограничения поперечных деформаций, а при использовании напряженных поперечных элементов обоймы- в условиях всестороннего сжатия, что существенно повышает сопротивление кладки воздействию продольной силы.

Устройство обойм повышает несущую способность кладки в 1,25-2,5 раза при незначительных трудозатратах. Обоймами усиливают как отдельные конструктивные элементы (столбы, простенки) (рис. 1), так и участки стен, работающие на центральное и внецентренное сжатие (рис. 2).

Рис1. Усиление каменных конструкций устройством обоймы: а - стальной, при соотношении сторон сечении меньше 1:2; б - то же, при соотношении сторон сечения больше 1:2; в- железобетонной и растворной.1 - хомуты из круглой или полосовой стали; 2 - уголки; 3 - промежуточные вертикальные планки ил полосовой стали; 4 - стяжные болты; 5 - слои цементно-песчаного раствора; 6 - вертикальная арматура обоймы; 7 - сварные хомуты обоймы; 8 - растворная пли железобетонная обойма; 9 - усиливаемый каменный элемент; 10 - слой цементно-песчаного раствора.

Рис.2. Усиление стен обоймами: а - железобетонной; б - штукатурной предварительно-напряженной; 1 - усиливаемая стена; 2 - арматурные стержни d=10-14 мм; 3 - хомуты-связи d=10 мм; 4 - отверстия в стене; 5 - арматурные сетки, привязанные к арматурным стержням; 6 - бетон обоймы; 7 - стальные пластины с отверстиями для тяжей; 8 - тяжи-связи; 9 - арматурные стержни, приваренные к пластикам и попарно стянутые; 10 - сжимы; 11 - штукатурка из цементно-песчаного раствора

Применяются три основных вида обойм: стальные, железобетонные и армированные растворные.

Основными факторами, влияющими на эффективность обойм, являются: процент поперечного армирования обоймы (хомутами), класс бетона или марка штукатурного раствора и состояние кладки, а также схема передачи усилия на конструкцию.

С увеличением процента армирования хомутами прирост прочности кладки растет не пропорционально, а по затухающей кривой.

Опытами установлено, что кирпичные столбы и простенки, имеющие трещины, а затем усиленные обоймами, полностью восстанавливают свою несущую способность.

Стальная обойма состоит из вертикальных уголков, устанавливаемых на растворе по углам очищенного от штукатурного слоя усиливаемого элемента, и хомутов из полосовой стали или круглых стержней, приваренных к уголкам. Расстояние между хомутами должно быть не более меньшего размера сечения и не более 50 см (рис. 7.23, а, 6). Для включения обоймы в работу зазоры между кладкой и уголками зачеканиваются или инъецируются цементно-песчаным раствором. Стальная обойма должна быть защищена от коррозии слоем цементно-песчаного раствора толщиной 25-30 мм. Для надежного сцепления раствора стальные уголки закрываются металлической сеткой.

ПЕРЕЧЕНЬ ВЫПОЛНЯЕМЫХ ОПЕРАЦИЙ:

-Усиление кирпичных простенков состоит из следующих операций:

-Демонтаж оконных заполнений.

-Устройство временных креплений для снятия нагрузки от перекрытия над ремонтируемом простенком и передачи ее на перекрытие нижележащего этажа под балкой, опирающейся на ослабленный простенок.

-Отбивка штукатурки со всей поверхности подлежащего усилению простенка.

-Пробивка отбойными молотками борозд, отбивка четвертей при установке металлического каркаса Работы с отбойными молотками выполнять с осторожностью, непрерывно наблюдая за состоянием деформированных конструкций и временных креплений. При слабой (сильно деформированной) кладке пневматический инструмент для разборки не применять.

-Устанавливаем закладные детали. Устанавливаем металлические стойки из уголков разного сечения в проем вертикально по углам столба или простенка. Закрепляем их сваркой к закладным деталям

-Для обеспечения включения обоймы в работу кладки необходимо тщательно зачеканивать или инъецировать зазоры между стальными элементами обоймы и каменной кладкой цементным раствором.

-После устройства металлической обоймы ее элементы защищают от коррозии цементным раствором толщиной 25-30 мм по металлической сетке.

Для обеспечения совместной работы элементов обоймы при ее длине, превышающей в 2 раза и более толщину, необходимо установить дополнительные поперечные связи, которые пропускают через кладку, расстояние между этими связями в плане принимается не более 1 м и не более двух толщин стен, а по высоте -- не более 75 см.

При нарушении совместной работы продольных и поперечных стен вследствие образования трещин рекомендуется устанавливать поперечные стальные гибкие связи диаметром 20-25 мм в уровне перекрытий, закрепив их к стенам с помощью распределительных прокладок из швеллеров или уголков.

Железобетонная обойма выполняется из бетона классов В12,5-В15 с армированием вертикальными стержнями и сварными хомутами. Расстояние между хомутами должно быть не более 15 см. Толщина обоймы назначается по расчету и принимается от 6 до 10 см (рис. 1, в; рис. 2, а)

Обойма из раствора армируется аналогично железобетонной, но вместо бетона арматура покрывается слоем цементно-песчаного раствора марок М50-М100 (рис. 1, в).

С увеличением размеров сечения (ширины) элементов при соотношении их сторон от 1:1 до 1:2,0 эффективность обойм несколько снижается, однако снижение незначительное, его можно не учитывать.

Когда соотношение сторон сечения элемента превышает указанную выше величину (широкие простенки, стены и т.п.), необходима установка дополнительных поперечных связей, пропускаемых через кладку и располагаемых по длине сечения на расстоянии не более 2h и не более 100 см, где h- толщина стены. По высоте стен расстояние между связями должно быть не более 75 см (рис. 1, б). Связи должны быть надежно соединены со стальными элементами обоймы, коэффициент условий работы связей принимается равным 0,5.

Усиление поврежденных элементов обоймами рекомендуется вести с последующей инъекцией поврежденной трещинами кладки цементным раствором, что обеспечивает наиболее высокую несущую способность конструкций.

Если простенки с наружной стороны по архитектурным или иным соображениям нарушать запрещается или при небольших размерах их поперечных сечений и необходимости значительно увеличить на них нагрузку, то усиление простенка может быть выполнено устройством металлического или железобетонного сердечника, размещаемого в вертикальной нише, вырубленной в простенке (рис. 3). Устройство железобетонных сердечников может быть осуществлено с одной или двух сторон стены.

Кроме этого, применяются инъецирование и перекладка. Столбы и простенки перекладываются в случаях, когда усиление обоймами, инъекцией и т. п. экономически и технически нецелесообразно (значительные повреждения, ослабление сечения, аварийное состояние кладки): когда другие способы усиления недостаточны и при необходимости сохранения внешнего вида здания.

Перекладка простенков производится с сохранением размеров сечения и существовавшей системы перевязки или с увеличением размеров сечения за счет сокращения размеров проемов.

Во всех случаях, когда усиление простенков сопровождается временным ослаблением конструкций или их перекладкой, необходимо обеспечить разгрузку простенков от перекрытий и перемычек.

Для этого в проемах и под перекрытиями всех нижележащих этажей устанавливают временные конструкции (подклиненные деревянные или металлические стоики), способные воспринять передаваемые на них нагрузки.

Следует обратить внимание на индивидуальность подхода к выбору метода усиления в каждом конкретном случае, как при усилении простенков, столбов, так и при усилении и восстановлении ниже рассматриваемых конструктивных каменных элементов или их участков. При этом предпочтение нужно отдавать такому методу, при котором наилучший эффект усиления достигается при минимальном расходе материалов и трудозатрат.

реконструкция реставрация здание кладка

Рис. 3. Усиление каменных простенков устройством несущего сердечника: а - сварного из двух швеллеров; 6 - железобетонного; 1 - усиливаемый простенок; 2 - стальной сердечник; 3 - бетон класса В 10-В 15; 4 - опорные пластины стального сердечника; 5 - вертикальная ниша, пробитая в простенке; б - арматурный каркас

Современные технологии ремонта и усиления каменных зданий

Большинство традиционных способов усиления трудоемки в реализации, дорогостоящи, а по отношению к историческим зданиям некоторые и вовсе не применимы по эстетическим соображениям. Поэтому для ремонта и усиления каменных конструкций все чаще используются новые технологии и материалы. К ним, в частности, относятся композиты в виде ламелей, матов и сеток, изготавливаемые из углеводородных, арамидных и стекловолокон, прочность которых зачастую превышает прочность стали. Следовательно, они используются для усиления не только каменных, но железобетонных и даже металлических конструкций в качестве поверхностного армирования. Соединение таких материалов с усиливаемой конструкцией обычно осуществляется с помощью эпоксидного клея. Коммерческое название такой системы усиления за рубежом известно как FRP (Fibre Reinforced Polymers). У этой системы, однако, есть целый набор недостатков:

- для обеспечения надежного сцепления материала усиления с конструкцией ее поверхность должна быть сухой и выровненной;

- работы по усилению необходимо осуществлять при положительных температурах и нормальной влажности воздуха с целью отверждения клея, низкая живучесть которого требует быстроты приклеивания;

- клеевое соединение обладает низкой огнестойкостью, поскольку деструкция эпоксидного клея начинается при температуре 50-100 0С;

- вследствие органического происхождения эпоксидных клеев соединения с их помощью обладают низкой долговечностью из-за их строения;

- технология приклеивания на эпоксидном клее является вредной для здоровья;

- усиление должно выполняться высококвалифицированными рабочими и специализированными фирмами.

Отмеченных недостатков удается избежать, если вместо клея использовать специальные штукатурные растворы из неорганических минеральных материалов с модифицированными полимерными добавками. Технология усиления при этом заключается в следующем. На очищенную от штукатурки и загрязнений поверхность каменной кладки после ее увлажнения наносится слой клеящего штукатурного раствора толщиной 3 мм, в который втапливается армирующая сетка из композиционных материалов. Затем наносится защитный штукатурный слой толщиной 8-10 мм, поверхность которого подвергается финишной обработке. При необходимости в защитный слой может втапливаться вторая сетка, обеспечивающая повышенную прочность усиления.

Данная система усиления известна за рубежом как FRCM (Fibre Reinforced Cementitious Matrix), а одной из ее разновидностей является система Ruredilx Mech. В указанной системе используются сетки из углеволокон, обладающие следующими механическими свойствами: прочность на растяжение - 4800 МПа; модуль упругости - 240 ГПа; деформативность при разрыве - 1,8%. К достоинствам также относятся:

- простота технологии;

- высокая сцепляемость армирующего штукатурного слоя к поверхности усиливаемой каменной кладки;

- высокая компатибильность армирующего слоя с кирпичной кладкой, т.е. сближенные деформационные характеристики, такие, как модули упругости, коэффициенты температурного расширения;

- высокие коррозионная, огне- и водостойкость, паропроницаемость, что позволяет производить усиление каменных конструкций как изнутри, так и снаружи зданий

К несомненным преимуществам рассматриваемого способа усиления следует отнести его универсальность и возможность применения для любых форм и очертаний усиливаемых конструкций.

В зарубежной практике он нашел широкое применение для усиления каменных зданий и сооружений, подвергаемых динамическим воздействиям, например от движения транспорта, технологического оборудования и сейсмики. В странах СНГ, в том числе и России, данный метод только начинает внедряться.

Другим не менее эффективным способом усиления каменных конструкций, широко распространенным в странах Европы на протяжении последних 15 лет, является усиление с использованием спиралевидных связей и анкерных соединений. В Республике Польша он применяется с 1999 г. и известен под названием “Brutt Technologies”. Метод основан на применении спиралевидных стержней Brutt profili, втапливаемых в специальный раствор Brutt Saver Powder. Раствор укладывается в предварительно прорезанные в швах кладки щели или просверленные в ее теле отверстия (рис. 4).

рис 4. спиралевидные стержни Brutt profili

Спиралевидные связи изготавливаются из высокопрочной нержавеющей стали, устойчивы в щелочной среде. Наиболее часто в практике усиления каменных конструкций применяются связи диаметром 6, 8 и 10 мм, в необходимых случаях - до 12-14 мм. Их длина достигает 10 м. Связи можно укладывать с нахлестом, изгибать, соединять с помощью вязальной проволоки. Использование данного вида усиления позволяет устранить практически все распространенные виды конструктивных дефектов каменных конструкций, нанося минимальный ущерб их внешнему облику.

Рис 5.Усиление наружных стен Рис 6. Усиление кирпичных сводов

На рис. 5-6 показано усиление стен и каменных сводов, поврежденных трещинами.

Спиралевидное ребро позволяет также производить установку связей путем забивания или вкручивания в материал основания при помощи ручного электроинструмента со специальной установочной насадкой-адаптером. В основание из ячеистого бетона и пустотелого кирпича связи устанавливаются при помощи химических анкеров. Спиралевидная связь дает возможность производить закрепления практически в любых строительных материалах при минимальных расстояниях от края конструкции и между осями креплений.

По мнению специалистов, метод усиления с помощью спиралевидных связей позволяет сохранять оригинальный внешний облик зданий старой застройки. Его можно использовать как одно из новейших инновационных средств усиления кирпичной облицовки в многослойных стенах [1].

Кроме анализа и выявления рациональных областей применения приведенных методов усиления авторами настоящей статьи проводятся экспериментально-теоретические исследования их эффективности для разных видов каменных конструкций. В частности, реализуется концепция рационального армирования конструкции в зависимости от вида ее напряженного состояния либо морфологии трещин. Согласно этой концепции, армирующие элементы должны размещаться так, чтобы их направления (волокна сеток или спиралевидные связи) были перпендикулярны трещинам либо при отсутствии последних совпадали с траекторией главных растягивающих напряжений, которые устанавливаются расчетным путем (рис. 7).

Рис. 7. Морфология растекания кирпичной кладки

В заключение следует отметить, что многолетний опыт эксплуатации каменных конструкций, усиленных названными способами, подтвердил их высокую надежность и эффективность. Таким образом, целесообразность их внедрения в практику ремонта, реконструкции и реставрации каменных зданий на территории Республики Беларусь неоспорима.

Литература

1. Павлова, М., Моськина, О., Пыхяла, Я. Выполнено из кирпича // Строительный эксперт. - № 11 (224). - 2009. - С. 10-11.

2. Найчук А.Я., Деркач В.Н. //Архитектура и строительство. - №2 (213). - 2010.

3. Бедов А.И. Проектирование, восстановление и усиление каменных и армокаменных конструкций// Учебное пособие для студентов вузов. - (568). - 2006.

Размещено на Allbest.ru


Подобные документы

  • Дефекты каменных конструкций, причины их возникновения. Характеристика способов усиления фундаментов, стен, перекрытий. Увеличение несущей площади фундамента и несущей способности грунта. Методы усиления каменных конструкций угле- и стеклопластиками.

    реферат [1,0 M], добавлен 11.05.2019

  • Особенности работы и разрушения каменных и армокаменных конструкций. Определение их прочности и технического состояния по внешним признакам. Влияние агрессивных сред на каменную кладку. Мероприятия по обеспечению долговечности промышленных зданий.

    курсовая работа [1,2 M], добавлен 27.12.2013

  • Основные методы восстановления и усиления фундаментов без расширения подошвы. Восстановление гидроизоляции и влажностного режима. Технические решения при ремонте и усилении стен деревянных зданий. Ремонт и усиление каменных арок, сводов, перемычек.

    контрольная работа [1,6 M], добавлен 16.12.2011

  • Каменные работы по возведению фундаментов, стен, колонн, труб и других элементов зданий и сооружений из естественных и искусственных камней. Специальный кирпич для кладки промышленных печей и обмуровочных работ. Используемые растворы и способы кладки.

    реферат [22,3 K], добавлен 01.04.2009

  • Изучение свойств каменных материалов, применения искусственного камня в конструктивных решениях стен зданий. Виды искусственных материалов и их отличия от природного каменного материала. Использование керамогранита в монтаже вентиляционных фасадов.

    курсовая работа [33,6 K], добавлен 19.12.2010

  • Этапы подготовки к реконструкции: натурное обследование, проверочный расчет строительных конструкций. Эксплуатационные требования к проектируемым зданиям. Описание методов по сохранению исторических зданий и рассмотрение примера по их реконструкции.

    реферат [910,2 K], добавлен 30.10.2011

  • Обследование технического состояния строительных конструкций является самостоятельным направлением строительной деятельности. Оно занимается обеспечением эксплуатационной надежности зданий и разработкой проектной документации по реконструкции зданий.

    контрольная работа [27,8 K], добавлен 21.01.2009

  • Контролируемые параметры каменных конструкций. Прочностные характеристики кладки (камней и раствора). Методы определения прочности кирпича и раствора. Задание расчетных характеристик кладки. Оценка несущей способности каменных и армокаменных конструкций.

    презентация [197,3 K], добавлен 26.08.2013

  • Порядок усиления конструкций покрытий одноэтажных промышленных зданий. Этапы проведения опалубочных работ. Исправление дефектов конструкций зданий индустриального строительства. Окраска поверхностей водными, масляными и синтетическими составами.

    контрольная работа [2,4 M], добавлен 21.06.2009

  • Технико-экономическое обоснование проекта. Выбор конструктивных элементов здания. Фундаменты, элементы конструктивной системы и стены каркасно-панельных зданий. Крыша, лестницы, перегородки, полы, окна и двери. Внутренняя отделка помещений зданий.

    курсовая работа [2,7 M], добавлен 25.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.