Дослідження процесів масопереносу при фільтрації підземних вод

Моделювання й прогнозування якості підземних вод. Математичне моделювання динаміки забруднення підземних вод.

Рубрика Экология и охрана природы
Вид дипломная работа
Язык украинский
Дата добавления 14.07.2008
Размер файла 313,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Установимо граничні умови на цих ділянках для потенціалу (x,y). Помітимо, що граничні умови, як і самі рівняння фільтрації, виводяться з фізичних законів або умов, які виконуються на границі області, у якій досліджується розглянутий процес руху підземних вод.

Розглянемо на водонепроникній ділянці AB довільну точку M(x,y), де п'єзометричний напір p/г дорівнює висоті стовпа води над точкою M, тобто дорівнює ординаті y точки M . З огляду на співвідношення (3.15), у цій точці водонепроникної ділянки, а отже, і на всій водонепроникній ділянці AB , маємо

.

Для довільної точки N(x,y) водопроникної ділянки DE маємо

.

Таким чином, на водопроникних ділянках потенціал приймає постійне значення. Безліч точок, де потенціал задовольняє рівності (x,y)=const, називається лінією (поверхнею) рівного потенціалу або еквіпотенціальною лінією (поверхнею).

На кривої депресії п'єзометричний напір дорівнює нулю (атмосферний тиск і тиск, що відповідає висоті капілярного підняття води в ґрунті звичайно не враховується) і тому на ділянці BC маємо

На проміжку виточування CD , як і на кривій депресії, тиск дорівнює нулю й тому на цій ділянці маємо умову

.

На водонепроникних ділянках і на кривій депресії швидкість фільтрації спрямована уздовж цих границь. Лінії, уздовж яких рухається фільтрівна рідина, називаються лініями потоку. Інакше кажучи, лінія, дотична в кожній точці якої збігається з напрямком вектора швидкості фільтрації, називається лінією потоку. Отже, кутовий коефіцієнт дотичної в кожній точці лінії потокузбігається з кутовим коефіцієнтом вектора швидкості фільтрації й тому диференціальне рівняння ліній потоку має вигляд

. (3.18)

Очевидно, на лініях потоку, а отже, також на кривій депресії й на водонепроникних ділянках, нормальна складова швидкості фільтрації в будь-якій точці цих ліній дорівнює нулю, тобто

.

Зокрема, для горизонтальної водонепроникної ділянки маємо

.

Уздовж вільної поверхні (кривій депресії) у загальному випадку, коли має місце інфільтрація або випар рідини, виконуються дві умови (з обліком капілярного pk й атмосферного pat тисків)

.

Якщо через s позначити довжину дуги депресійної кривої, а через cos(s,x) і cos(s,y) - косинуси кутів, утворених дотичній до кривої депресії відповідно з віссю абсцис і віссю ординат, то, з огляду на останню рівність, можна записати

,

де vs,vn - проекції швидкості фільтрації на кривої депресії відповідно на дотичну й нормаль до цієї кривої.

Скориставшись відомими співвідношеннями

умови для дотичній і нормальної складової швидкості фільтрації на кривій депресії можна представити у вигляді

.

Виключаючи з останніх рівностей cos(s,x), cos(s,y) одержимо умову для швидкості фільтрації на кривої депресії у вигляді

або

. (3.19)

Із цієї умови слідує, що кривій депресії в площині зміни вектора швидкості фільтрації vxOvy відповідає окружність (або її частина) із центром у точці з координатами радіусом |ч - е|/2, причому частина зазначеного круга може проходити двічі.

Точне рішення рівняння фільтрації при певних граничних умовах можна одержати тільки в окремих випадках, причому одержання рішень й у цих випадках пов'язане з більшими математичними труднощами, перебороти які вдається як правило, тільки за допомогою методу конформних відображень.

3.3. Зв'язок рівнянь плоскої фільтрації з теорією функцій КЗ

Щоб застосувати апарат теорії функцій комплексної змінної до рішення рівнянь у частинних похідних, що описують конкретні фізичні процеси необхідно встановити, як можна перейти від крайових задач для цих рівнянь до завдань теорії аналітичних функцій комплексної змінної. Зв'язок теорії функцій комплексної змінної із крайовими задачами теорії фільтрації підземних вод дає можливість за допомогою методу конформних відображень знаходити аналітичні як точні, так і наближені вирішення для багатьох випадків, що виникають у практиці гідротехнічного, меліоративного й водогосподарчого будівництва. Метод конформних відображень можна застосовувати при розв'язанні різних крайових задач математичної фізики. Однак найбільш ефективне його застосування виявляється у випадку крайових задач для рівняння Лапласа, рішеннями якого є гармонійні функції. Вид цієї функції залежить від області, у якій шукається розв'язання, і від виду крайових умов для шуканого рішення. Як відомо, гармонійні функції можна зв'язати з аналітичними, і тоді завдання про знаходження рішення рівняння Лапласа (рівняння фільтрації) буде зведена до завдання знаходження аналітичної в розглянутій області (області фільтрації) функції.

Рівняння плоскої сталої фільтрації важкої нестисливої рідини в однорідному ізотропному пористому середовищі у випадку, якщо рух рідини (підземних вод) відбувається у вертикальній площині (профільна фільтрація), можуть бути записані у вигляді

(3.20)

(3.21)

Рівність (3.20) є умовою того, що величина -vydx + vxdy є повним диференціалом деякої функції ш(x, y) , що, як і функція (x,y), визначається з точністю до довільного доданка. Отже, відповідно до визначення повного диференціала маємо

. (3.22)

Звідси,

(3.23)

Порівнюючи (3.21) і (3.23), одержуємо

(3.24)

Ці рівності, як відомо, називаються умовами Коші-Рімана (Эйлера-Даламбера). Диференціюючи першу рівність по y , а другу по x, одержуємо

. (3.25)

Таким чином, функція ш(x,y) так само, як і функція (x,y), задовольняє рівнянню Лапласа, тобто є гармонійною функцією.

Функція ш(x, y) називається функцією потоку. Її назва визначається фізичним змістом цієї функції, тому що диференціальне рівняння лінії току має вигляд (3.18), яких можна записати в такий спосіб:

. (3.26)

Загальний інтеграл цього рівняння є функція ш(x,y) = C (C = const), отже, на лініях току функція ш(x, y) зберігає постійне значення. З'ясуємо фізичний зміст функції потоку, а саме, покажемо, що функція ш(x,y) пов'язана з поняттям фільтраційної витрати. Нехай KL - довільна крива в області фільтрації G - є напрямної циліндричної поверхні одиничної висоти з утворюючої, перпендикулярної площини xOy. Витрата рідини Q через таку поверхню дорівнює сумі фільтраційних витрат через нескінченно малі елементи кривій KL.

Завдяки нерозривності розглянутого потоку рідини елементарна витрата d через елемент кривої dl дорівнює алгебраїчній сумі витрат через ділянки 1-2 й 2-3 - відрізки прямих, паралельних осям координат:

d = dQx + dQy = vdl.

Будемо вважати, що значення витрати Q(x,y) зростає при русі уздовж кривої KL у напрямку від точки 1 до точки 3 (позитивний напрямок кривої). Тоді маємо

d = dQx + sQy = vy(-dx) + vxdy > d = dш.

Інтегруючи останнє рівняння уздовж кривої від точки K до точки L, знайдемо шукану фільтраційну витрату

(3.27)

тобто збільшення функції потоку уздовж довільної кривої KL, узятої в області фільтрації G, дорівнює фільтраційній витраті через цю криву.

Якщо задати функцію потоку як функцію від довжини дуги l кривій KL, то для визначення витрати одержимо

(3.28)

Тому що функції (x, y) і ш(x, y) задовольняють умовам Коші - Рімана, то комплексна функція

(3.29)

буде аналітичною в області фільтрації G й її можна розглядати як функцію комплексної змінної щ=f(z) , де z = x + iy . Функція (3.29) у теорії фільтрації називається комплексним потенціалом фільтрації. Таким чином, через комплексний потенціал фільтрації встановлюється зв'язок фільтрації з теорією функцій комплексної змінної.

Розглянемо ще одну комплексну величину vx - iyy , що у теорії фільтрації називається комплексною швидкістю фільтрації. Диференціюючи рівняння (3.29) по z і використовуючи співвідношення (3.20), (3.23), знайдемо похідну

. (3.30)

Тому що похідна аналітичної функції є також аналітичною функцією, то комплексна швидкість фільтрації w, обумовлена рівністю

, (3.31)

є аналітичною функцією в області фільтрації G .

Геометричне подання про плоский сталий фільтраційний потік дає так названу гідродинамічну сітку, тобто сітку, утворену сімейством ліній потоку ш(x,y)=шn=const і сімейством еквіпотенціальних ліній (x,y)= m=const, які одночасно є й лініями рівних напорів h = hm = const.

З умов Коші-Рімана слідує рівність

(3.32)

яка показує, що еквіпотенціальні лінії й лінії потоку взаємно ортогональні.

Таким чином, якщо для досліджуваного руху підземних вод знайти комплексний потенціал фільтрації (3.29) або комплексну швидкість фільтрації (3.31), те можна легко визначити величини (x,y), ш(x,y), vx(x,y), vy(x,y), отже й всі інші характеристики фільтраційного потоку.

3.4. Метод конформних відображень у теорії фільтрації

Якщо геометрична форма області G складна, то відшукання рішення крайової задачі пов'язане з більшими труднощами. Тому при вирішенні тієї чи іншої крайової задачі намагаються спростити як диференціальне рівняння із граничними умовами, так і вид області, у якій відшукується вирішення. Одним з найпоширеніших методів такого спрощення крайового завдання є метод перетворення незалежних змінних (заміна змінних), зокрема, метод конформного перетворення незалежних змінних.

Нехай у деякій області G необхідно знайти рішення крайової задачі для рівняння Лапласа

. (3.33)

Спробуємо спростити вид області G за допомогою заміни змінних

(3.34)

або

(3.35)

При переході до новим змінних о і з міняється не тільки область G, але й саме диференціальне рівняння й граничні умови. Очевидно, найбільший інтерес представляють перетворення, що не міняють вид диференціального рівняння, тобто в нашому випадку перетворення, щодо яких саме рівняння Лапласа залишається інваріантним. Покажемо, що в цьому випадку функції (3.34), що здійснюють перетворення області G у більш просту область D, належать, як і функція (x,y), до класу гармонійних функцій, більше того, вони будуть сполученими гармонійними функціями.

Знайдемо

Підставляючи знайдені вирази в рівняння (3.33), одержимо наступне диференціальне рівняння

. (3.36)

Очевидно, для того, щоб диференціальне рівняння (3.36) було рівнянням Лапласа, необхідно, щоб перетворення (3.34) задовольняло таким вимогам:

(3.37)

(3.38)

. (3.39)

Рівняння (3.37) показують, що функції і є гармонійними функціями. Розділивши рівняння (3.38) на , маємо

(3.40)

Підставляючи вираз (3.40) у рівняння (3.39), одержуємо

, (3.41)

звідки маємо, що якщо

(3.42)

то = ±1 й, отже, з рівнянь (3.40) одержимо або

(3.43)

або

(3.44)

Ці рівняння є умовами Коші-Рімана й показують, що функції і є гармонійними функціями. Перетворення, здійснюване такими функціями, переводить нескінченно малі фігури площини хОу в подібні їм фігури площини за умови, що виконується (3.42). Саме такі перетворення й називаються конформними. Отже, якщо перетворення, здійснюване функціями (3.34), є конформним, то рівняння (3.33) прийме вид

або

З останньої рівності одержуємо

(3.45)

Отримане рівняння також є рівнянням Лапласа, де частки похідні виражаються через нові незалежні змінні о і з - координати області D .

Тепер, якщо утворити комплексну функцію, у якої дійсною й уявною частинами є відповідно функції о(x,y) і з(x,y), то така комплексна функція ж=о+iз буде аналітичною функцією комплексної змінної z = x+iy, тобто

ж(z)=о(x,y)+iз(x,y) = f(z). (3.46)

Як ми вже відзначали, перетворення, здійснюване аналітичною функцією (3.47), або, що те ж саме, функціями (3.34), називається конформним усюди в області G , де похідна не дорівнює нулю, тобто де виконується умова

(3.47)

Таким чином, рівняння Лапласа є інваріантним щодо перетворень, здійснюваних аналітичними функціями комплексного змінного. Якщо ж перетворення (3.34) здійснюється довільними функціями о(x,y) і з(x,y), тобто не є конформним, то рівняння Лапласа (3.33) не переходить у рівняння Лапласа (3.45), а переходить у більше загальне рівняння в частинних похідних другого порядку.

Якщо вдається знайти рішення рівняння Лапласа або якого-небудь іншого рівняння математичної фізики в одній з найпростіших, так званих канонічних областей D (коло, напівплощина, прямокутник, смуга й ін.), тобто якщо визначено функцію як функція координат о і з точок області D , то, скориставшись співвідношеннями (3.47) або (3.34), легко знайти шукане рішення , як функцію змінних x й y - координат точок вихідної фізичної області G .

При рішенні конкретних фізичних задач функції й мають певну фізичну інтерпретацію. Фізична постановка задач визначає й крайові умови для шуканих функцій. Метод конформних відображень дозволяє також у ряді випадків, а саме, коли граничні умови як для функції (x,y), так і для сполученої з нею функції ш(x,y), мають спеціальний фізичний зміст, відшукувати рішення рівняння Лапласа безпосередньо. У цих випадках досить знайти аналітичну функцію, конформно фізичну область, що відображає, G на область D зміни фізичних параметрів (x,y) і ?(x,y) . Вид області D визначається граничними значеннями функцій (x,y) і ш(x,y).

Для завдань плоскої фільтрації, якщо вдається конформно відобразити область фільтрації z на область комплексного потенціалу щ за допомогою деякої аналітичної функції щ = f(z), те розділивши дійсну й уявну частини функції, що відображає, знайдемо комплексний потенціали фільтрації у вигляді

(3.48)

де (x, y) - потенціал швидкості фільтрації, а ш(x, y) - функція струму.

Крім описаної аналітичної функції - комплексного потенціалу фільтрації, у теорії профільної фільтрації розглядаються ще дві аналітичні функції: функція Жуковського G , що визначається рівністю

(3.49)

і функція Нумерова, обумовлена рівністю

(3.50)

де е - кількість води, що надходить у ґрунт (е > 0) або паркої (е < 0) з одиниці площі горизонтальної проекції вільної поверхні за одиницю часу.

Таким чином, крайове завдання теорії плоскої сталої або фільтрації, що квазиустано-вились, полягає в тім, щоб для заданої області фільтрації Z знайти одну (або дві) з аналітичних функцій (3.48),(3.49),(3.50).

3.4.1. Спосіб Павловського

Спосіб конформного відображення Павловського застосовується у випадку, коли відома границя вихідної області фільтрації G, що будемо позначати також буквою z (тому що область фільтрації розглядається в комплексній площині z=x+ iy). і відома область комплексного потенціалу (ОКП) щ (яка будується в комплексній площині щ= +iш). Тоді характеристична функція потоку z = F(щ) або зворотна їй функція - комплексні потенціали швидкості фільтрації щ = f(z) - визначається в результаті конформного відображення області щ на область z . Область комплексного потенціалу щ, як правило, можна побудувати тільки в тому випадку, коли границя області фільтрації z складається з водонепроникних і водопроникних ділянок, тобто границя області фільтрації складається з еквіпотенциальних ліній і ліній струму. У цьому випадку проміжки височування й кривих депресій відсутні (напірна фільтрація). Тому що на еквіпотенциальних лініях = const, а на лініях струму ш = const, то область комплексного потенціалу щ у розглянутому випадку завжди буде мати вигляд прямокутника або прямолінійного багатокутника, сторони якого паралельні осям координат.

Звичайно будують дві функції, що відображають: конформно, що відображає на область фільтрації z нижню (або верхню) так називану допоміжну напівплощину ж = о + iз і конформно відображає на ОКП щ цю же допоміжну напівплощину ж. У цьому випадку рішення завдання фільтрації, тобто комплексний потенціал швидкості фільтрації (або характеристичну функцію потоку), можна записати в параметричному виді

z = f1(ж), щ = f2(ж). (3.51)

Тому що ОКП - прямолінійний прямокутник, то функція щ = f(ж) знаходиться за допомогою інтеграла Крістофеля-Шварца.

3.4.2. Спосіб Ведерникова-Павловского

У випадку, коли границя області фільтрації z містить криві депресії (так названа безнапірна або вільна фільтрація), положення яких заздалегідь невідомо, конформне відображення області фільтрації z на область щ або напівплощину ж неможливо, хоча й у цьому випадку, як й у попередньому, область щ цілком визначена й має вигляд прямокутника або прямолінійного багатокутника. У зв'язку з результатами В. В. Ведерникова й Н. Н. Павловського, отриманими незалежно друг від друга, був запропонований спосіб, що усуває труднощі, пов'язані з невизначеністю положення кривої депресії. Скориставшись відомими для функцій (x, y) і ш(x,y) граничними умовами на кривої депресії BjCj

(3.52)

вони замість області змінно z (область фільтрації) запропонували розглядати область так називаної функції Жуковського G, що визначається рівністю

(3.53)

або

(3.54)

Тепер можна записати граничні умови для функції Жуковського, вірніше, для її уявної частини:

уздовж границі АВ з верхньою водоймою (б'єфом)

(3.55)

ч AB на кривої депресії ВР, розташованої між k-м й (k+1)-м водоймами,

(3.56)

на границі з (k + 1) -м водоймою

(3.57)

де - наведена фільтраційна витрата в (k+1)-й водоймі; Q - повна фільтраційна витрата.

На водонепроникній ділянці A1E1, називаній водоупором, значення функцій u й v невідомі, однак можна вказати межі їхньої зміни:

(3.58)

(3.59)

З нерівності (3.59) бачимо, що лінія A1E1, що є образом водоупора в площині функції Жуковського G, укладена в горизонтальній смузі товщини H.

Таким чином, в області функції Жуковського G криві депресії перетворяться в горизонтальні прямі, інші ділянки - у невідомі лінії, причому водоупор перетвориться в деяку криву лінію, укладену в смузі товщиною H, де H дорівнює різниці оцінок води у верхній і нижній водоймах. При дуже великій глибині залягання водоупора, коли можна покласти , всі ділянки границі області функції Жуковського G будуть відомі, якщо водопроникні ділянки - вертикальні (x = xk = const). Тоді, відображаючи конформно на область функції Жуковського G, що має вид прямолінійного багатокутника, ОКП щ за допомогою функції G=F(щ) і з огляду на співвідношення (3.53), шукану характеристичну функцію плину знаходимо у вигляді

. (3.60)

Якщо ж зазначене відображення здійснюється через допоміжну напівплощину, то шукане рішення можна записати в параметричній формі

(3.61)

Викладений спосіб можна застосовувати й у тому випадку, коли водопроникні й водонепроникні ділянки не є відповідно горизонтальними й вертикальними. При цьому як вихідну область досить вибрати область функції Жуковського G, а після ОКП щ на область G за допомогою співвідношення (3.53) знайти границі області фільтрації z (напівзворотний спосіб Ведерникова-Павловського). Область G у цьому випадку вибирають так, щоб, з одного боку, її можна було порівняно легко конформно відобразити на область щ або ж, з іншого боку - побудована для неї область фільтрації z повинна відповідати реальним умовам фільтраційного завдання.

3.5. Конформні перетворення й моделювання масо переносу

Процес міграції розчинних речовин при фільтрації підземних вод, як відомо, описується системою рівнянь:

(3.62)

; (3.63)

(3.64)

або в скалярній формі

(3.65)

(3.66)

(3.67)

де v = {vx,vy,vz} - вектор швидкості фільтрації, м/доб; (x,y,z,t) - потенціал фільтрації; c(x, y, z, t) і N(x, y, z, t) - концентрація дифундуючої речовини відповідно в рідинній і твердій фазах, г/см , D - коефіцієнт конвективної дифузії, м3/доб; у - активна (або ефективна) пористість середовища, у якому протікає фільтрація розчину; t - година (у добах); - оператор Гамільтона; г - стала швидкості масообміну; в - коефіцієнт розподілу речовини між; фазами в умовах рівноваги по лінійній ізтермі Генрі cp = вN. У багатьох практичних завданнях можна обмежитися дослідженням процесу масопереносу розчинних у фільтраційному потоці речовин тільки на основі рівнянь, що описують конвективний процес, а саме:

(3.68)

(3.69)

причому масообмін визначається такою досить розповсюдженою залежністю:

(3.70)

де - концентрація граничної насиченості.

Наведені рівняння описують, як правило, міграцію й фізичну трансформацію (сорбцію, десорбцію) консервативних водорозчинних речовин.

Якщо дослідити масоперенос при плоско-вертикальній і плановій усталеній або квазіусталеній фільтрації підземних вод, то для моделювання цього процеса доцільно застосувати конформне перетворення рівнянь масопереноса до криволінійних змінних - координатам точок області комплексного потенціала фільтрації.

У разі плоско-вертикальної (профільної) фільтрації рівняння рухові підземних вод запишуться у вигляді

(3.71)

де ч - коефіцієнт фільтрації, h - напір, який визначається рівністю

(3.72)

причому вісь Oy спрямовано вертикально вниз, p - тиск, с - щільність, g - прискорення сили тяжіння.

У разі планової напорної фільтрації відповідні рівняння записуються так:

Ц = -чTh;

(3.73)

а в разі планової безнапорної фільтрації

(3.74)

У рівняннях (3.73), (3.74) через T позначено потужність напірного водоносного шару: q - вектор питомої фільтраційної витрати (м2/доб), a h - напір, який у даному випадку визначається таким рівнянням:

(3.75)

де Z - вертикальна координата точки фільтраційного потоку.

Припущення, що для фільтраційних течій, що розглядаються, можна побудувати область комплексного потенціала щ = + , де ш - функція течії, і що відома характеристична функція течії

z = x + iy = F(щ) = F1( , ш) + i2(), (3.76)

за допомогою заміни

x = F1( ,ш); y = F2( ,ш) (3.77)

перетворимо рівняння конвективної дифузії до нових незалежних змінних і ш. У результаті такої заміни рівняння конвективної дифузії в разі плоско-вертикальної фільтрації запишеться у вигляді

(3.78)

у разі планової напорної фільтрації - у такому вигляді:

(3.79)

а в разі планової безнапорної фільтрації перетворюється до вигляду

(3.80)

Якщо в рівняннях (3.78)-(3.80) D = 0, отримаємо рівняння конвективного масопереносу без враховування дифузійних процесів, що перетворені до нових змінних , ш або Ц, Ш або Ц*, Ш* відповідно для випадків плоско-вертикальної, планової напорної і планової безнапорної фільтрації, а саме:

(3.81)

(3.82)

(3.83)

Отже, у разі нехтування дифузійними процесами питання про визначення концентрації речовин, що забруднюють підземні води, зводиться до розв'язання відповідної фільтраційної задачі та одного з рівнянь (3.81)-(3.83) із одною додатковою (початковою) умовою, яка задається залежно від фізичної постановки задачі.

Важливою характеристикою при дослідженні процесу забруднення підземних вод є час, протягом якого в даній точці області (або області z) концентрація розчинної речовини досягає визначеної величини. Крім того, виникає питання про визначення часу, протягом якого концентрація розчинної речовини досягає в даній точці максимального значення. Основні диференціальні рівняння, з яких визначаються ці характеристики, а також фронт просування речовини (домішку) у фільтарційному потоці будуть наведені нижче.

Нехай відома концентрація розчинної в фільтраційному потоці речовини як функції координат точок області комплексного потенціала й і години t . Тоді для кожного значення (моменту) часу t можна побудуввати поверхню розподілу концентрації відносно області комплексного потенціала , а отже, й відносно області фільтрації z . Цим самим для кожного моменту часу буде визначено значення концентрації речовини, що розповсюджується в підземних водах, у будь-якій точці області фільтрації або впродовж; лінії, зокрема, впродовж; будь-якої йз ліній чи течії еквіпотенціальних ліній.

Якщо ж припустити, що міграція речовини здійснюється зі сталою концентрацією, то час, протягом якого станеться забруднення визначеної частки області фільтрації, знайдемо таким чином. Нехай відома швидкість фільтрації v(x,y,t) і характеристична функція течії, що отримана у вигляді (3.77). Швидкість розповсюдження розчинної у фільтраційному потоці речовини U(x,y,t) у даному разі дорівнює дійсній швидкості руху підземних вод V(x,y,t), яка зв'язана зі швидкістю фільтрації v(x,y,t) співвідношенням

(3.84)

де через позначена активна пористість ґрунту (породи). За миттєво протікаючих сорбційних процесах, що визначаються рівністю (3.70), активна пористість замінюється ефективною пористістю середовища, що визначається рівністю

(3.85)

Із (3.84) отримуємо

(3.86)

Після перетворення рівності (3.86) до нових незалежних змінних та маємо

(3.87)

Замість рівнянь (3.81)-(3.83) зручно розглядати рівняння

(3.88)

де - безрозмірні величини, причому . До рівняння (3.88) легко звести кожне з рівнянь (3.81)-(3.83). Дійсно, якщо в рівнянні (3.88) покласти

(3.89)

то отримаємо рівняння (3.81), якщо в рівнянні (3.88) покласти

(3.90)

то отримаємо рівняння (3.82), а якщо в рівнянні (3.88) покласти

(3.91)

то отримаємо рівняння (3.83).

Якщо розглядається квазістаціонарна фільтрація (фільтраційні характеристики залежатимуть й від години за незмінного розташування ліній потоку), то конвективний масоперенос описується рівнянням

(3.92)

де залежна від дослідження переносу при профільній, плановій напорній і плановій безнапорній фільтрації визначається відповідно рівностями

(3.93)

(3.94)

(3.95)

Щоб знайти частинний розв'язок рівняння (3.88), треба задати додаткову умову при = 0 або t = 0 , тобто розлянути задачу Коші. При цьому суттєвою є фізична інтерпретація незалежних координат it. Тож під часом розв'язання конкретних задач Коші для рівняня (3.88) слід відокремлювати початково-часову та початково-просторову задачі. Перший тип завдань, як правило, виникає під час дослідження процесів очищення або розсолення підземних вод та засолених земель; другий тип завдань (початково-просторові) з'являється зазвичай під час дослідження процесів забруднення або засолення підземних вод та родючих земель.

3.6. Крайові задачі конвективної дифузії розчинених речовин при профільній фільтрації

Процес масопереносу розчинних у підземних водах речовин описується системою диференціальних рівнянь у частинних похідних іншого порядку зі змінними коефіцієнтами, яка в разі двовимірної плосковертикальної (профільної) фільтрації підземних вод за умови сталості коефіцієнта конвективної дифузії має вигляд

(3.96)

(3.97)

(3.98)

де D - коефіцієнт конвективної дифузії, м3/доб; c,N - концентрації дифундуючої речовини відповідно в рідинній і твердій фазах (кг/м3 ); vx(x, y, t) , vy(x, y, t) - координати швидкості фільтрації v, м/доб; - пористість або активна пористість ґрунту, у якому здійснюється рух вод і конвективна дифузія розчиненої речовини; t - час, доба; -стала масообміну (швидкості сорбції); - коефіцієнт розподілу речовини між; рідинною і твердою фазами в умовах рівноваги між; рідинною і твердою фазами за законом лінійної ізотреми Генрі, який виражається рівністю cp = N , cp - рівновагова концентрація розчину, яка за величиною дорівнює кількості речовини, що поглинається твердою фазою; - потенціал швидкості фільтрації; - коефіцієнт фільтрації. м/доба; - напір, м; p- тиск, Н/м2=кг/м·c2 ; - щільність, кг/м3 ; -прискорення сили тяжіння, м/c2 .

Будемо розглядати конвективну дифузію тих розчинних речовин, які нейтральні до порід, що наявні в ґрунті, тобто сорбцією та іншими видами поглинання речовин, що забруднюють підземні води, будемо нехтувати й розглядати систему рівнянь фільтрації та конвективної дифузії (гідравлічної дисперсії):

(3.99)

(3. 100)

рис. 3.3.

Будемо вважати, що розв'язки фільтраційних завдань для кожної конкретної схеми (мал. 3.3 -3.5) відомі, а також; відомі для цих схем відповідні області комплексного потенціалу (3.6), . Знайдемо розв'язки різних крайових задач для рівняння (3.100).

3.6.1. Крайові й початкові умови для шуканої функції с(х, у, t) :

При конвективній дифузії речовин, що забруднюють підземні води, на вході АВ фільтраційного потоку (3.3,3.4) можна прийняти одну із наступних крайових умов:

а)задана концентрація розчиненої у водоймі (річці) речовини

(3. 101)

б)задана умова Данкверста, яка враховує як конвективний, так й дифузійний механізми відведення речовини на водопроникненій ділянці межі області фільтрації:

(3. 102)

рис. 3.4.

рис. 3.5.

де n - нормаль до межі; vn - нормальна складова швидкості фільтрації.

На водонепроникних ділянках межі області фільтрації z та на кривих депресії виконується умова (наприклад, ділянка BC на мал. 3.3,а-г)

(3. 103)

На ділянці виходу фільтраційного потоку (на мал. (3.4) (11.18) - водопроникнені ділянки CD) можна прийняти одну із наступних крайових умов:

а) задана концентрація дифундуючої речовини або задана умова Данкверста(такі умови приймаються, коли не спостерігається інтенсивний відвід вод на виході фільтраційного потоку)

(3. 104)

б) задана умова, яка враховує тільки конвективне перенесення через межу (приймається в разі інтенсивного відведення вод на виході фільтраційного потоку; наприклад,

рис. 3.6.

вихід у дренаж CD на мал. 3.3б-г):

(3. 105)

Умови (3.103) і (3.105) начебто рівнозначні. Алі це не так, бо ці умови треба враховувати разом із межовими умовами для рівнянь фільтрації підземних вод, які різні для водопроникнених і водонепроникних ділянок межі області фільтрації (у першому випадку vn = 0, в іншому vn 0).

При конвективній дифузії солей і гіпсів, що залягають на визначеній глибині T фільтраційного потоку, на межі із сіллю або гіпсом зазвичай приймається умова

(3. 106)

де c - концентрація повної насиченості солі або гіпсу.

Початкові умови, що приймаються при розв'язанні задач про забруднення та засолювання підземних вод, мають вигляд

(3. 107)

або

(3. 108)

де c0 - задана концентрація дифундуючої речовини в області фільтрації в момент години до настання процесу. Складність, що виникає при розв'язанні стаціонарних і нестаціонарних крайових завдань, які описують двовимірні процеси, пов'язана не тільки з виглядом рівнянь у частинних похідних й виглядом крайових умов, але головним чином, із виглядом (геометрією) області, у якій відшукується розв'язок.

Тож, у рівняннях конвективної дифузії та наведених вище крайових умовах перейдемо до нових незалежних змінних - координат області комплексного потенціалу , які, як відомо, мають вигляд многокутника зі сторонами, паралельними прямокутній системі координат.

Нехай відома характеристична функція течії

, (3.109)

яку можна знайти, наприклад, методом конформних відображень. Тоді, виконуючи в рівнянні конвективної дифузії (3.100) заміну змінних і отримаємо рівняння:

(3. 110)

де

(3. 111)

Після заміни змінних у крайових умовах через підстановку (3.109) отримуємо таке: межові умови (3.101), (3.102) набудуть вигляду відповідно

(3. 112)

(3. 113)

межову умову (3.103) перепишемо у вигляді

(3. 114)

межові умови (3.104), (3.105) набудуть вигляду відповідно

(3. 115)

(3. 116)

(3. 117)

(3. 118)

Межові умови (3.101)-(3.106) і відповідні до них умови (3.112)-(3.118) справджуються як для нестаціонарних, так і для стаціонарних крайових задач. Початкові умови (3.107), (3.108) перетворюються на умови

(3. 119)

(3. 120)

Перейдемо до розгляду завдань конвективної дифузії, розв'язання яких для різних схем фільтрації (мал. 3.5в) будемо шукати в областях комплексного потенціалу, які зображуються у вигляді прямокутників (мал. 3.5г-є).

При заданій концентрації розчинної речовини на межі з водоймами виникає така крайова задача: у прямокутнику ABCD знайти розв'язок рівняння (3.110). що задовольняє межові умови

(3. 121)

(3. 122)

(3. 123)

У разі усталеної конвективної дифузії отримуємо таку крайову задачу:

(3. 124)

(3. 125)

розв'язок якої, вочевидь, не залежить від змінної і має вигляд:

(3. 126)

Якщо враховувати механізм дифузійного відводу речовини на вході фільтраційного потоку, то отримаємо крайову задачу

(3. 127)

(3. 128)

розв'язок якої можна записати у вигляді

(3. 129)

Осереднюючи величину , що є в правій частині рівняння (3.110), по області приведеного комплексного потенціала і замінюючи її деякою середньою величиною , розглянемо типи двох нестаціонарних крайових завдань.

3.6.2. Перший тип крайових задач

Виникає при фільтрації забруднених вод у відкриті водойми, коли у відкритих водоймах підтримується задана концентрація речовин. Ці задачі формулюються таким чином:

треба знайти розв'язок рівняння

(3. 130)

що задовольняє межові умови вигляду (перша задача)

(3. 131)

або умови, що враховують механізм дифузійного відводу речовини від межі на вході фільтраційної течії (друга задача):

(3. 132)

і початкову умову

(3. 133)

Безпосередньою перевіркою легко переконатися, що розв'язком крайової задачі (3.130), (3.131),(3.133) та (3.130),(3.132),(3.133) будуть функції і , які є розв'язки відповідних одновимірних крайових задач:

(3. 134)

(3. 135)

(3. 136)

(3. 137)

Якщо підставити в ці рівняння розв'язок у вигляді суми розв'язків стаціонарної і нестаціонарної задач і застосувати метод Фур'є, отримаємо розв'язки нестаціонарних задач конвективної дифузії (3.134) -(3.137), які після ділення на c1 і запровадження безрозмірних змінних та набувають вигляд:

(3. 138)

(3. 139)

де власні значення визначаються рівняннями

(3. 140)

(3. 141)

коефіцієнти обчислюються за формулами

(3. 142)

(3. 143)

a функції визначаються рівнянням

коли (3.144)

коли (3.145)

Графіки цих функцій наведено на мал. 3.7, 3.8.

рис. 3.7.

3.6.3. Другий тип крайових задач

Другий тип крайових задач конвективної дифузії забруднюючих підземні води речовин характеризується межовою умовою вигляду (3.105), яку приймається на виході фільтраційного потоку, коли має місце інтенсивний відвід вод із дренажного каналу CD. У цьому разі розв'язком стаціонарних задач буде стала, значення якої залежить від межової умови на вході фільтраційного потоку. Тому будемо розглядати нестаціонарні задачі. Осереднюючи, як і раніше, швидкість фільтрації по просторовим змінним, приходимо до таких двох крайових завдань: треба знайти розв'язок рівняння

, (3.146)

що задовольняє межові умови

(3. 147)

а в разі враховування механізму дифузійного відводу речовини на вході фільтраційного потоку (друга крайова задача) треба знайти розв'язок рівняння

(3. 148)

яке задовольняє межові умови

(3. 149)

Застосування методу відокремлювання змінних (метод Фур'є) призводить до розв'язку (у частках від c1):

(3. 150)

рис. 3.8.

де , функція визначається рівностями (3.144),(3.145), а коефіцієнти обчислюються за формулою

(3. 151)

Розв'язок крайової задачі (3.148)-(3.149) отримуємо у вигляді:

(3. 152)

де , коефіцієнти обчислюються за формулою

(3. 153)

а власні значення визначються із рівняння

(3. 154)

Графіки цих функцій наведено на мал. 3.9, 3.10.

Отже, отримані аналітичні розв'язки всіх основних крайових задач конвективної дифузії забруднюючих воду речовин за умови осереднення швидкості фільрації по просторовим координатах.

У разі змінної швидкості фільтрації вдається знайти числово-аналітичні розв'язки деяких стаціонарних завдань.

рис. 2.9.

рис.2.10.

4. Отримання аналітичних розв'язків при конвективній дифузії солей і гіпсів

Розглянемо крайові задачі, що з'являються при дослідженні конвективної дифузії солей, що залягають на глибині T, причому будемо припускати, що міграція солей або вилужування гіпсів здійснюється внаслідок фільтрації підземних вод під гідротехнічними спорудами, через земляні загати, перемички, дамби (мал. 3.За, б) або внаслідок зрошування територій і відводу підземних вод через дренажні споруди (мал. 3.3в, г). Відзначимо, що постановка крайових завдань конвективної дифузії солей, особливо в разі усталеного процеса, суттєво відрізняється від постановки крайових завдань, що розглянуті вище, які виникають при міграції забруднень. Питання про відшукання точних розв'язків завдань конвективної дифузії солей суттєво залежить від структури схеми фільтрації навіть у тому разі, коли область комплексного потенціала зображується у вигляді прямокутника (мал. 3.4).

Розглянемо спочатку стаціонарні крайові задачі. При завданні концентрації солей на межі із водоймами за досить великої їх ширини і при заданій концентрації солей (або гіпсів) на глибині T виникає задача: у прямокутнику ABCD, який є областю приведеного комплексного потенціала для схеми фільтрації мал. 3.5а знайти розв'язок рівняння (3.124) за крайових умов:

(4.1)

(4.2)

Розв'язок крайової задачі (3.124), (4.1),(4.2) шукатимемо у вигляді суми

(4.3)

Внаслідок підстановки (4.3) в (3.124) отримуємо відповідно задачі:

(4.4)

(4.5)

(4.6)

Розв'язок задачі (4.4) записується у вигляді (3.126). Застосуємо метод відокремлювання змінних до задачі (4.5), (4.6). Отримуємо розв'язок у вигляді ряду Фур'є. Отже, шуканий розв'язок можна записати у вигляді

(4.7)

де коефіцієнти визначаються рівністю

(4.8)

У разі швидкого відведення вод із нижнього б'єфа (або дренажного каналу) замість межової умови (4.1) необхідно використовувати умову:

(4.9)

Розв'язок відповідної задачі в цьому разі можна записати у вигляді

(4.10)

де коефіцієнти визначаються так:

(4.11)

причому власні значення визначаються за рівнянням (3.141).

Для схеми фільтрації, що розглядається, коли область комплексного потенціала зображується у вигляді прямокутника ABCD (мал. 3.4г), а швидкість фільтрації, що присутня в правій частині рівняння (3.110), осереднюється по області комплексного потенціала, розв'язки відповідних крайових завдань конвективної дифузії солей (або гіпсів) можна отримати також; за допомогою методу Фур'є. Зокрема, у разі інтенсивного відводу засолених вод цей розв'язок має вигляд

(4.12)

де визначається із рівняння (3.141); коефіцієнти - рівністю (4.11) при n=m, а коефіцієнти - такою рівністю:

. (4.13)

(4.14)

Графіки цих функцій наведено на мал. 4.1, 4.2.

рис. 4.1.

рис. 4.2.

5. ОХОРОНА ПРАЦІ

При роботі з обчислювальною технікою на користувачів діють наступні шкідливі та небезпечні фактори :

1. Електромагнітні поля;

2. Статична електрика;

3. Шум;

4. Незадовільна освітленість робочого місця;

5. Неправильна організація робочого місця та інші;

Дія цих небезпечних факторів може привести до певних "професійних" захворювань, найбільш розповсюдженими серед яких є:

1. Порушення зорового аналізатора;

2. Захворювання шкіри;

3. Кістково-м'язові порушення.

Більшість з цих проблем можуть бути мінімізованими при правильній організації робочого місця, дотриманні правил техніки безпеки і раціональному розподілі робочого часу.

5.1 Організація робочого місця

Важливу роль відіграє правильна організація робочого місця. При проектуванні враховується зручність розташування монітора, клавіатури, принтера та інших зовнішніх пристроїв, а також робоча поза користувача і простір для розміщення користувача. Для роботи використовуються столи з висотою робочої поверхні 700 мм. Ширина та глибина стола складають відповідно 1700 та 800 мм. Висота поверхні сидіння крісла користувача ПК регулюється в межах 400-550 мм. Ширина і глибина поверхні сидіння складають 450 мм. Поверхня сидіння плоска, передній край - заокруглений. Є можливість зміни кута нахилу поверхні від 15 градусів вперед до 15 градусів назад. Опорна поверхня спинки стільця має висоту 300, ширину 300 мм, і радіус кривизни горизонтальної площини - 400 мм. Кут нахилу спинки у вертикальній площині регулюється в межах 0 +/- 30 градусів від вертикального положення. Відстань спинки від переднього краю сидіння регулюється в межах 260-400 мм. Поверхня сидіння та спинки виконані з м'якого матеріалу, який легко очищується від бруду. Робочі столи з ПК розташовані на відстані 1,5 м від стіни з віконними прорізами і на відстані 1м від інших стін, відстань між столами складає 1,5 м. Екран монітору ПК знаходиться в центрі поля огляду на відстані більше 70 см від очей, верхня границя екрану знаходиться на рівні з очима. Клавіатура розташована на спеціальній підставці, яка розташована під поверхнею столу і може висуватися на відстань до 30 см від краю столу. Екран монітора розташований в площині, перпендикулярній нормальній лінії погляду користувача.

Розміщення робочих місць користувачів ПК відповідає ГОСТ 12.3.032-78, ГОСТ 21889-76, ГОСТ 22269-76.

5.2 Захист від електромагнітних випромінювань та електростатичних полів

Джерелами електромагнітних випромінювань у лабораторії являються монітори з ЕПТ. Навколо працюючого монітору виникають електромагнітні поля низької частоти (від 5 Гц до 400 КГц). Для захисту користувачів ПК від дії електромагнітних випромінювань використовуються заземлені захисні фільтри для екранів моніторів. Віддаль від екрану монітору до користувача становить 60 см. Час роботи за комп'ютером не перевищує 4 години на день. Значення напруженості електромагнітних полів на робочих місцях мають відповідати нормативним значенням. Рівні електромагнітного випромінювання та магнітних полів повинні відповідати вимогам СНіП 3206-85 "гранично допустимі рівні магнітних полів частотою 50 Гц" та ДСанПіН 3.3.2-007-98. Гранично допустима напруженість електростатичного поля на робочих місцях не повинна перевищувати рівнів, наведених в СНіП 1757-77 "санитарно-гигиенические нормы допустимой напряженности электростатического поля" та ДСанПіН 3.3.2-007-98.

Смуга частот, кГц

Електричне поле, в/м

Магнітне поле, нТл

0,005-2

25

250

2-400

2,5

25

Поверхневий електростатичний потенціал не перевищує 500 в;

Для захисту користувачів ПК від дії електромагнітних випромінювань використовують: встановлені заземлені захисні фільтри для екранів моніторів, які зменшує випромінювання видимого діапазону на 60 %, випромінювання elf+vlf на 99,6 %, збільшує контрастність в 50 разів; віддаль від екрану монітору до користувача становить 600-700 мм; режим праці та відпочинку тих, хто працює з ЕОМ - через 1 годину роботи - 15 хвилин перерва.

У приміщеннях, де знаходяться монітори, забезпечується виконання заходів по боротьбі із статичною електрикою - підтримується відносна вологість повітря на рівні 50-60% за допомогою побутового електрозволожувача “Іон”.

Відповідно до ГОСТ 12.4.124-83 №4459-88, використовуючи покриття підлоги на проходах і біля робочих місць виготовлене з антистатичного лінолеуму.

Статичне покриття підлоги обробляється антистатичними речовинами типу “лана-1”.

5.3 Електробезпека

Згідно ПУЕ 1.1.6 відносна вологість в приміщенні не перевищує 60%.

За ступенем небезпеки ураження людини електричним струмом згідно ПУЕ 1.1.13 лабораторію відносять до приміщення без підвищеної небезпеки, тому що відсутні ознаки, які характеризують приміщення небезпечні та особливо небезпечні.

Відповідно до пункту 2.1.15 “правил охорони праці під час експлуатації електронно-обчислювальних машин“ заземлені конструкції, що знаходяться в приміщеннях (батареї опалення, водопровідні труби, кабелі із заземленим відкритим екраном тощо), надійно захищені діелектричними щитками або сітками від випадкового дотику. Згідно пункту 2.1.16 у приміщенні з ЕОМ щоденно проводиться вологе прибирання, пункту 2.1.17 у приміщенні знаходяться медичні аптечки першої допомоги.

ЕОМ, периферійні пристрої ЕОМ та устаткування для обслуговування, ремонту та налагодження ЕОМ підключаються до електромережі тільки з допомогою справних штепсельних з'єднань і електро-розеток заводського виготовлення. Штепсельні з'єднання та електро-розетки крім контактів фазового та нульового робочого провідників мають спеціальні контакти для підключення нульового захисного провідника. Все обладнання має опір заземлення R ? 4Ом згідно ПУЕ 1.7.65.

5.4 Пожежна профілактика

Згідно ОНТП 24-86 (категорії приміщень за вибухо-пожежною та пожежною небезпекою) приміщення лабораторії відноситься до категорії В. Ступінь вогнестійкості будівель за СНіП 2.01.02-85 ІІІ. Можливим джерелом пожежі являється загорання ізоляції електрообладнання, яке відбувається внаслідок коротких замикань або перевантаження мережі. Для усунення небезпеки загорання встановлений електрощиток з запобіжниками, а також використовуються додаткові електронні стабілізатори напруги щоб запобігти перевантаженню блоків живлення комп'ютерів.

На випадок пожежі встановлений вогнегасник типу ОУ-2 (для гасіння використовується вуглекислий газ) та розрахований план евакуації персоналу офісу.

Пожежна профілактика повинна проводитися згідно правил пожежної безпеки України, затверджених наказом управління державної пожежної охорони МВС України від 22.06.95 № 400, зареєстрованих в міністерстві юстиції України 14.07.95 за № 219/755. Приміщення з ЕОМ, крім приміщень, в яких розміщуються ЕОМ типу ЕС, см та інші великі ЕОМ загального призначення, повинні бути оснащені системою автоматичної пожежної сигналізації відповідно до вимог переліку однотипних за призначенням об'єктів, які підлягають обладнанню автоматичними установками пожежогасіння та пожежної сигналізації, затвердженого наказом міністерства внутрішніх справ України від 20.11.97 № 779 і зареєстрованого в міністерстві юстиції України 28.11.97 за № 567/2371, з димовими пожежними оповіщувачами та переносними вуглекислотними вогнегасниками з розрахунку 2 шт. на кожні 20 м2 площі приміщення з урахуванням граничнодопустимих концентрацій вогнегасної рідини відповідно до вимог правил пожежної безпеки України. В інших приміщеннях допускається встановлювати теплові пожежні оповіщувачі.

Джерелами займання можуть бути електричні іскри, дуги, коротке замикання, струсові перевантаження, перегріті опірні поверхні, несправність обладнання. Кабельні лінії електроживлення виконані з спалимого ізоляційного матеріалу, тому є найбільш пожежонебезпечними елементами в конструкціях електрообладнання.

Для профілактики опір ізоляції встановлюється згідно ПУЕ 500КОм, для електричного захисту електричних мереж використовуються швидкодіючі реле, автоматичні вимикачі, запобіжники. Для збільшення площі дійсного дотику контактів використовуються пружні контакти.

Висновок.

Застосування математичного моделювання до гідроекологічних досліджень підземних вод, як правило, базується на рішенні крайових задач для рівнянь у частинних похідних. Розглядаються основні гідродинамічні моделі одномірного й двовимірного руху підземних вод і методи визначення основних характеристик фільтраційного потоку. Необхідність математичного моделювання різних фільтраційних потоків потрібно тому, що для вивчення процесів забруднення підземних вод різними речовинами, що надходять зі сховищ побутових і промислових відходів, з полів фільтрації стічних вод, зі ставків-охолоджувачів, ставків-накопичувачів і ставків-відстійників, а також з полів зрошення стічними водами, потрібно знати основні гідродинамічні характеристики підземного водного потоку: фільтраційна витрата, швидкість фільтрації, пористість, коефіцієнт фільтрації й ін. Коефіцієнт водовіддачі визначають лабораторними методами, а потужність водоносних горизонтів, швидкість фільтрації, а отже, і витрата - у натурних умовах, що є складним і дорогим процесом, а також недостатньо точним і надійним. Найбільш ефективний й надійний спосіб визначення основних фільтраційних характеристик - це розрахунковий метод із застосуванням математичного моделювання.

У роботі досліджуються питання математичного опису процесів зміни якості підземних вод при надходженні в них різних забруднюючих речовин, а також засоленні підземних вод при їхній взаємодії із засоленими ґрунтами, що спостерігається в результаті неправильного зрошення й підняття рівня підземних вод з високою концентрацією солей.Розглядаються основні методи моделювання процесів масопереносу з урахуванням дифузії (гідравлічної дисперсії) і трансформації забруднюючих речовин при двовимірній фільтрації підземних вод.


Подобные документы

  • Екологічний стан підземних вод, механізм їх утворення. Види та джерела їх забруднення. Характеристика промислових відходів. Проблема ліквідації та утилізації твердих побутових відходів. Гігієнічний моніторинг впливу їх полігону на якість ґрунтових вод.

    курсовая работа [138,6 K], добавлен 19.05.2013

  • Негативний вплив техногенного забруднення повітряного та водного басейнів на руйнування технічних споруд. Стратегічнi шляхи запобігання техногенних аварій таекологічних катастроф. Речовинне забруднення ґрунту та агресивність до підземних споруд.

    курсовая работа [76,2 K], добавлен 26.07.2010

  • Родючість ґрунтів як критерій якісної оцінки сільськогосподарських угідь. Екологічні аспекти землекористування в Україні. Математичні моделі розрахунку і прогнозування хімічного забруднення ґрунту, їх приклади. Моделювання забруднення ґрунту пестицидами.

    курсовая работа [266,4 K], добавлен 29.09.2009

  • Водні ресурси та їх використання. Фізичні властивості води. Забруднення природних вод важкими металами, органікою, нафтопродуктами, пестицидами, синтетичними поверхневоактивними речовинами. Теплове забруднення водойм. Особливості моделювання в екології.

    курсовая работа [947,6 K], добавлен 20.10.2010

  • Вплив забруднених опадів на якість грунтових вод, змінення складу ґрунтових вод під впливом забруднюючих речовин у атмосферних опадах. Особливості кількісної оцінки захищеності ґрунтових вод. Забруднення підземних вод в результаті зміни ландшафтів.

    курсовая работа [104,7 K], добавлен 29.05.2010

  • Проблеми озера Сасик. Підтоплення, заболочування прилягаючих до Сасику територій. Забруднення наявних підземних джерел питного водопостачання. Незадовільна іхтіотоксикологічна та іхтіопатологічна ситуація. Природно–рекреаційний потенціал озера Сасик.

    реферат [350,5 K], добавлен 11.12.2010

  • Фізико-географічне та геоботанічне положення, кліматичні умови та гідрографія р. Дніпро. Характеристика тваринного та рослинного світу Дніпра. Стан підземних вод і радіаційне забруднення річки. Скидання забруднюючих речовин та проблеми збереження річки.

    курсовая работа [51,6 K], добавлен 27.02.2012

  • Еколого-географічна характеристика озера Сиваш, вплив зрошення та забруднення поверхневих і підземних вод. Моніторинг сучасного екологічного стану унікальної гідробіологічної екосистеми, шляхи її збереження. Створення об'єктів природно заповідного фонду.

    дипломная работа [4,9 M], добавлен 02.12.2010

  • Фізико-географічні умови Миколаївської області, оцінка структури земельного фонду та ґрунтового покриву. Гідрогеологічні параметри підземних вод, показники забруднення. Проект заходів відтворення родючості ґрунтів фермерського господарства "Радість".

    курсовая работа [1,0 M], добавлен 03.01.2014

  • Еколого-географічна характеристика озера Сиваш: кліматичні умови, солоність, мінеральні ресурси. Забруднення поверхневих та підземних вод. Значення Сивашу в підтримці біорізноманіття. Шляхи збереження екосистеми. Моніторинг екологічного стану озеру Сиваш.

    дипломная работа [1,9 M], добавлен 25.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.