Рослинність України та вплив на неї антропогенної радіонуклідної аномалії

Визначення та причини антропогенної радіонуклідної аномалії. Нагромадження радіонуклідів у компонентах фітоценозу. Дія на рослини інкорпорованих радіонуклідів. Відбудовні процеси у багаторічних рослин, які виростають у зоні радіонуклідної аномалії.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык украинский
Дата добавления 13.01.2010
Размер файла 111,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Отримані дані свідчать про те, що в міру збільшення тривалості перебування багаторічних рослин у зоні з радіонуклідною аномалією, варто очікувати селективного збільшення поліморфізму й фізіологічної нестабільності. У цьому випадку пролонгований радіаційний вплив на меристеми точок росту може сприяти перетворенню генетичного й фізіологічного гомеостазу, що, очевидно, може привести до мікроеволюційних зрушень.

3.2 Відбудовні процеси у багаторічних рослин, які виростають у зоні радіонуклідної аномалії

Хронічний режим опромінення, що зложився на території 30-кілометрової зони ЧАЕС після гострого періоду опромінення навесні 1986 р., затрудняє розуміння природи променевої поразки багаторічних рослинних організмів, тому що радіочуттєвість всіх їхніх компонентів зазнає істотні зміни протягом річного циклу розвитку. Інтерпретація результатів ускладнюється й тією обставиною, що в ході опромінення поряд з розвитком ефектів поразки протікають відбудовні процеси. Після гострого періоду опромінення відбудовні реакції в багаторічних деревних і чагарникових породах спостерігали через 1-1,5 року. Як критерії відновлення використовували інтенсивність таких процесів, як корене-, пагоно- і порослестворення, фізіологічні реакції компенсаторного характеру.

Багаторічні дерева сосни не здатні до утворення порості. У них потужним відбудовним потенціалом вегетативного характеру володіє крона, що має велику кількість сплячих бруньок, захищених фотосинтезуючою хвоєю [23, 5-6]. Спостереження в пострадіаційний період (1986 - 1992) показали, що в сосни при дозі опромінення понад 14 Гр (сублетальна доза для сосни при гострому весняному опроміненні) відновлення відбувалося за рахунок додаткового пагоностворення з раніше сплячих бруньок. Цей процес починався через рік після опромінення, тобто в 1987 р., і виражався в появі у верхній частині крони одиничних пагонів, що представляють собою пучки дуже довгої хвої, яка сидить на короткому товстому ауксибласті. Роль цих пагонів полягає в забезпеченні мінімального рівня фотоасиміляції, необхідного для підтримки життєдіяльності не уражених опроміненням атрагуючих органів і тканин дерева (коріння, деревина стовбура й гілки). Підтвердженням цього є надзвичайно висока інтенсивність фотосинтезу хвої таких пагонів (в 3 - 4 рази вище контрольних), що свідчить про компенсаторний характер цього процесу. З кожним наступним роком кількість таких пагонів у кроні збільшується, що вказує про можливість поступового часткового відновлення вихідних функцій багаторічної рослини.

Починаючи з вегетаційного сезону 1988 р., у зоні сильної й середньої поразки при тих самих поглинених дозах інтенсивніше проходило відновлення дерев більше старшого віку, а приріст пагонів минулого року був вищим у верхніх колотівках, ніж у нижніх. Виживаність сильно уражених дерев залежить від приросту пагонів останнього року, і і якщо приріст становить близько 20% нормальної охвоєності при спостережуваних темпах росту, то для відновлення таких дерев буде потрібно 2-3 роки. [18, 63-67]

Тому можливе виживання окремих дерев, у яких кількість пагонів із зеленою хвоєю в цей час становить близько 5-10%. Зміна вершини дерева -- пострадіаційна реакція на загибель осьового верхівкового пагона; його роль бере на себе один з бічних пагонів колотівки, найбільш потужний. Це явище відзначали приблизно в 30% сосен (Pinus sylvestris) і ялин (Picea excelsa L.), опромінених у межах 11-15 Гр. Про можливість відновлення багаторічних рослин, які ростуть в 30-кілометровій зоні ЧАЕС, свідчать і дані про динаміку компенсаторної й репродуктивної генерації при різних дозових навантаженнях. Як критерії компенсаторної регенерації використовували також такі показники, як загоєння ран на гілках багаторічних рослин, зпили гілок певного діаметру, величина вторинного приросту на багаторічних рослинах після видалення верхньої бруньки.

В якості критерію протікання репродуктивної регенерації в рослин, що виростають на ґрунтах з різним рівнем забруднення радіонуклідами, використовували такий показник, як інтенсивність ризогенеза в черешків смородини чорної (Ribes nigrum), верби гостролистної (Salix acutifolia).

Отримані результати свідчать про те, що при тих рівнях дозового пресингу, які спостерігаються на території 30-кілометрової зони ЧАЕС, реєструється достовірне збільшення інтенсивності всіх типів регенераційних процесів у багаторічних рослин.

3.3 Мутагенна дія

Під впливом зовнішнього й внутрішнього опромінення радіонуклідами, викинутими при аварії, у рослинах реєстрували мутації як у соматичних, так і в статевих клітинах.

Виникнення мутацій зв'язується, як правило, із прямим фізичним руйнуванням або функціональною інактивацією під впливом продуктів радіолізу ділянок хромосом і їхніх унікальних структур. Про ушкодження унікальних структур може свідчити збільшення розривів у молекулах ДНК. Використовуючи прийом додаткового гамма-опромінення рослин, що вже одержали певну дозу радіації, за допомогою методу електрофорезу однониткової ДНК і лужного розплітання, виявили при обстежені в 1987р. популяціях трав'янистих рослин, які ростуть на околицях ЧАЕС, зокрема, у радіочуттєвої бобової рослини горщика мишачого (Vicia cracca L.) підвищений вихід однониткових ДНК [20, 41-46].

Формування генетичних змін і їхня фіксація в наступних поколіннях багато в чому залежать від функціонування систем репарації ДНК. При цьому в рослин дані системи грають особливо важливу роль у пилку, що обумовлено її особливою функцією й гаплоїдністю ядер. Ефективність функціонування систем репарації ДНК повинна забезпечити стабільність генома, що може легко ушкоджуватися внаслідок слабкої захищеності дозрілого пилкового зерна. Тому ослаблення функціонування систем репарації є свідченням посилення генетичної дії випромінювання. При випромінюванні спонтанного відновлення ДНК і індукованого гострим гамма-опроміненням позапланового синтезу ДНК, що відбиває її репарацію, було встановлено, що формування пилка берези бородавчастої (Betula pendula L.) при високих концентраціях радіонуклідів у ґрунті приpзводить до придушення системи темнової репарації ДНК у зрілому пилку, що зберігається, [20, 73]. При збереженні в такого пилка здатності до запліднення можна чекати в рослин нагромадження генетичних ушкоджень.

Багатьма дослідниками відзначено збільшення аберацій хромосом в утворювальних тканинах рослин, які ростуть в зоні аварії ЧАЕС. Так, виявлено [16, 28-35] збільшення в кілька разів числа клітин з абераціями хромосом у кореневих мерисистемах проростків ослинника дворічного (Oenothera biennis L.), вирощених у лабораторних умовах з насіння рослин, що виростають при рівнях гамма-фоону в 1986р. від 0,05 до 60мР/ч. При цьому показана характерна прямо пропорційна залежність виходу мутацій від потужності дози й виявлені множинні аберації хромосом, які можуть бути наслідком дії щільно-іонізуючого альфа-випромінювання.

При проведенні досліджень [16, 38-41] на різних за рівнем забруднення радіоактивними випаданнями ділянках (від 120 до 800 МБк/м2), спостерігали лінійну або близьку до неї залежність між поглиненою протягом 26.04 - 5.06 (збір насіння) 1986р. сумарної бета- і гамма-дозою рослинами озимого посівного жита (Secale cereale L.) і виходом клітин з абераціями хромосом у кореневих меристемах проростків М 2-поколіннями (мал. 4.).

Цей же тест був використаний [13, 592] для оцінки впливу радіоактивного забруднення на насіння 7 видів рослин, зібраних у зоні, що прилягає до ЧАЕС. Потужність дози склала 2 - 3 мр/ч. При цьому в деяких видах, які відрізняються за радіочуттєвістю було виявлено від 1 до 8% аберацій хромосом, причому спостерігалося підвищення частоти аберацій зі збільшенням потужності дози. Але лінійної залежності не встановлено, що, очевидно, обумовлено нерівномірним розподілом радіонуклідів по поверхні ґрунту або впливом різних забруднювачів хімічної природи. Цікаво, що на другий рік після аварії частота аберацій хромосом у деяких видів зросла в 1,5 - 3 рази незважаючи на 2 - 3-кратне зниження радіаційного фону. Цей факт має винятково важливе значення з погляду генетичної небезпеки не тільки зовнішнього, але й внутрішнього опромінення за рахунок радіонуклідів, які попадають у рослини із ґрунту.

При вирощуванні високо-радіочуттєвих кінських бобів (Vicia faba L.) сорту Російські чорні [12, 149-152] в 30-кілометровій зоні при рівнях радіоактивного забруднення орного обрію ґрунту по 90Sr близько 2·1012 Бк/км2 і по 137Cs близько 4·1012 Бк/км2 (поглинена доза для кореневої системи за 3 місяці вирощування рослин складала 0,15 - 0,4 Гр) реєстрували збільшення в 2 - 3 рази кількість клітин з абераціями хромосом.

Крім того, було встановлено [14, 46-48] збільшення кількості клітин з абераціями хромосом і хроматид у кореневій меристемі проростків скерди покрівельної (Crepis tectorum L.), вирощених з насіння рослин, зібраних на території зони ЧАЕС при умовах гамма-фону 5-10 мР/год у перший і 0,02 - 20 мР/год у другий роки після аварії. У проростках першого року максимальна частота клітин з абераціями досягала 10,2 - 15,3%, причому нерідко спостерігалися клітини із множинними абераціями. У другий рік на ділянках з максимальним рівнем фона було виявлено 1,4 - 2,2% клітин з абераціями хромосом. При мінімальних потужностях опромінення частота клітин з абераціями склала всього 0,3 - 0,5%; ці значення відповідають спонтанному рівню. Крім того, відзначали також появу рослин зі зміненим каріотипом, що свідчить про активні мікроеволюційні процеси в популяціях, які опромінюються хронічно.

Є дані [8, 3-9], що свідчать про підвищення кількості стерильного пилка в рослинах, що ростуть на територіях, забруднених радіонуклідами. Так, досліджуючи дві популяції фіалки ранкової (Viola matutina klok), що виростає на двох ділянках 30-кілометрової зони ЧАЕС, які різняться на 3 порядки по величинах поглинених доз, виявили в 1987 і 1988 р. збільшення в 1,5 - 2 рази кількості стерильних пилкових зерен. При рівні потужності дози на висоті 2 м 4 - 5 Гр/рік спостерігали часткову жіночу стерильність сосни (Pinus sylvestris L.), що виражалася в зниженні гамето-фитної виживаності сім'ябруньок, обпилених в 1986 р. і зменшенні ембріональної виживаності сім'ябруньок, обпилених в 1985 р.

Безумовно, стерильність -- нездатність організму утворювати гамети або достатня їхня кількість, не приводить до генетичного ушкодження, а лише знижує число нащадків. Але при дії іонізуючої радіації стерильність, як правило, є наслідком генних або хромосомних мутацій, що обумовлюють порушення мейозу -- основної ланки гаметогенезу.

Прямим свідченням генетичної дії іонізуючих випромінювань на пилок є безпосередня реєстрація в них мутацій. У рослин, вирощуваних на ґрунтах 30-кілометрової зони ЧАЕС із загальною бета-активністю 2,6·103- 6,3·104Бк/кг, в пилку ячменя (Hordeum vulgare L.) відзначали збільшення частоти waxy-змін в 2 - 3 рази [6, 147-156].

Таблиця 3

Кількість хлорофільних мутацій типу альбіна в житі (Secale cereale L.) і ячмені (Hardeum vulgare L.), %

Культура

Контроль

1986 р.

1987 р.

1988 р.

1989 р.

Жито Київське 80

0,01

0,14

0,40

0,91

0,71

Жито Харківське 03

0,02

0,80

0,99

1,20

1,14

Ячмінь

0,40

0,90

0,74

0,80

0,91

Примітка. Насіння отримані в 30-кілометровій зоні ЧАЕС.

У перші місяці після аварії при вирощуванні рослин жита (Secale cereale L.) і ячменя (Hardeum sativum jessen) в умовах закритого ґрунту на ґрунтах, привезених з 30-кілометрової зони, було виявлене збільшення частоти зустрічальності різних типів хлорофільних мутацій. Переважали нежиттєздатні мутації типу альбіна. У наступні роки насіння, зібране в зоні, висівали знову. У жита і ячменя, вирощуваних в 30-кілометровій зоні на ґрунті із сумарною гамма-активністю 1·105Бк/кг, реєстрували багаторазове перевищення спонтанного рівня виходу хлорофільних мутацій (табл. 3). При цьому було відзначено, що в кожному наступному поколінні мутації не елімінувалися, оскільки висіяні насіння піддавалися наступному пресингу радіонуклідів. Вихід морфологічних аномалій в 4 сортів озимої пшениці (Triticum vulgare L.) при їхньому вирощуванні протягом 3 років на ґрунті із сумарною активністю гамма-випромінювання 5,2·104- 1,8·105Бк/кг в 1986 - 1987 рр. перевищив 40 %, але в 1988 р. зменшився.

Спектр виявлених аномалій досить широкий: у перший рік після аварії найбільш частим (до 49 %) було утворення в колоссях стерильних зон -- череззерниця; в 1987 р. кількість аномалій цього типу досягалася 30 %, а в наступному поколінні знижувалося до 1,9 %. Часто зустрічалися колосся з додатковими колосками ("грижі") і вкорочені колосся. До розповсюджених змін структури колосся варто також віднести аномалії типу скверхед.

Зустрічалися також рослини з підвищеною остистістю, нерівномірною остистістю, колосся "ялинка", зміни фарбування стебла й інші. У різних сортів вихід морфологічних аномалій проявляється по-різному, що може бути зв'язано, з одного боку, з різною їх радіо чуттєвістю, а з іншого боку -- з неоднаковою здатністю до нагромадження радіонуклідів.

Безумовно, відмічувані морфологічні аномалії, відхилення від норми, як правило, мають місце лише в поколіннях організмів, що опромінюються, і зазвичай не закріплюються в потомстві. Проте їхній стійкий прояв в усі наступні роки, аж до 1994 р., дозволяє припускати, що більшість з цих змін носять генетичний характер і свідчать про те, що під впливом іонізуючих випромінювань радіонуклідів, викинутих при аварії на ЧАЕС, у популяціях рослин іде мутаційний процес.

3.4 Дія на рослини інкорпорованих радіонуклідів

Радіочуттєвість рослин до опромінення, яке створюється в результаті нагромадження в тканинах радіонуклідів, вивчена менше, ніж радіочуттєвість до опромінення від зовнішніх джерел. Головним чином це обумовлено тим, що більшість видів рослин має більш високу в порівнянні зі ссавцями радіостійкістю, і навіть при нагромадженні радіонуклідів у значних кількостях дія випромінювань у них проявляється набагато в меншій мері.

Рослинам зазвичай приділяється роль переносників радіонуклідів по харчовому ланцюжку "ґрунт -- рослина -- тварина -- людина" або "ґрунт -- рослина -- людина".

Проте при попаданні й нагромадженні радіонуклідів у відносно радіочуттєвих видах рослин залежно від фізико-хімічних характеристик радіоактивних речовин, їхньої кількості, місць локалізації можуть спостерігатися ті ж радіобіологічні ефекти, що й при еквівалентних поглинених дозах зовнішнього опромінення: радіаційна стимуляція, морфологічні зміни, променева хвороба, прискорення старіння й скорочення тривалості життя, загибель, генетична дія. Однак радіоактивні речовини, що попали усередину рослин, можуть володіти підвищеною в порівнянні із зовнішнім опроміненням небезпекою, викликаною рядом причин. Перша й основна з них -- здатність деяких радіоактивних речовин вибірково накопичуватися в окремих тканинах і органах, що приводить до відносно високих локальних рівнів опромінення. Друга причина -- збільшення небезпеки дії альфа-і бета-випромінювачів, які мало впливають на рослини в умовах зовнішнього опромінення, але можуть стати надзвичайно сильним джерелом іонізуючої радіації при попаданні всередину клітин і клітинних структур. Третьою причиною є, як правило, тривалі строки опромінення.

Через специфіку метаболізму рослин радіонукліди, акумулюючись у тканинах, практично не виводяться з них на відміну від тварин. При величезних періодах напіврозпаду 90Sr, 137Cs, 239Pu навіть у багаторічних рослин ці радіонукліди будуть обумовлювати опромінення протягом усього онтогенезу.

І якщо в перший рік аварії опромінення рослин було обумовлено в значній мірі за рахунок зовнішнього опромінення, то в наступні роки з міграцією, радіонуклідів по трофічному ланцюжку, яка розпочалася, воно майже винятково обумовлюється внутрішнім опроміненням. Але якщо в одно-, дворічних рослин за порівняно короткий період вегетації не завжди встигають сформуватися досить високі дози опромінення, то в багаторічних рослин протягом десятків років можуть зложитися порівняно високі рівні опромінення. Більше того, більшість видів багаторічних рослин, як правило, більш чуттєві до дії радіації, ніж одно-, дворічні трав'янисті види.

У зоні Чорнобильської катастрофи в кроні деревних рослин спочатку було затримано від 60 до 90 % радіонуклідів, що випали на ліс. Після випадання радіоактивних опадів на лісову рослинність починається їхня вертикальна міграція під впливом сил гравітації, атмосферних опадів, руху повітря, з листовим опадом у результаті чого радіонукліди переміщаються в нижні шари крон, під полог лісу. Швидкість вертикальної міграції залежить від фізико-хімічних характеристик радіоактивних випадань, типу й віку деревостою, метрологічних умов, пори року. Через деякий період, який у хвойних лісах може вимірятися декількома роками, основна маса радіоактивних речовин переходить у лісову підстилку й у верхній шар ґрунту.

Саме з нього через 4 - 5 років у листяному лісі й через 8 - 10 років у хвойному (що обумовлено особливостями у швидкості вертикальної міграції радіонуклідів і більш швидкою мінералізацією листя у порівнянні із хвоєю) починається активне попадання радіонуклідів у деревні рослини через корінь.

Якщо механізми надходження й засвоєння радіонуклідів одно-, дворічними трав'янистими й багаторічними деревними рослинами в основному не різняться, то характер з нагромадження має принципові розходження. Багаторічні деревні рослини здатні до істотного нагромадження радіонуклідів у всіх органах -- листях, гілках, корі, деревині. Багаторічний замкнутий цикл радіонуклідів по ланцюжку "листя -- лісова підстилка -- ґрунт -- корінь -- стовбур -- листя" і так далі може приводити до істотного радіоактивного забруднення всіх органів. В одного із самих радіочуттєвих видів -- сосни -- це може приводити до всіляких типів порушень.

Ушкоджуватися можуть і інші види. Ялина, наприклад, має більш високу радіостійкість, але вона є кальцієфілом і здатна накопичувати -Sr у більших кількостях, ніж сосна й інші види.

Різні радіонукліди не тільки по-різному накопичуються окремими видами рослин, але й по-різному концентруються в різних органах, приводячи до різного ступеня опромінення. На радіоавтографах цілих рослин, отриманих при введенні різних радіонуклідів, як правило, буває добре визначена нерівномірність їхнього розподілу по окремих органах. Чітко простежуються місця концентрації, зосереджені, як правило, у тканинах, які володіють високою метаболічною активністю (меристема й генеративні органи) і найбільш високою радіочуттєвістю. Саме тому як при зовнішньому, так і при внутрішньому опроміненні радіобіологічні ефекти, у першу чергу, проявляються на цих групах клітин. Зокрема, у меристемах спостерігаються вповільнення або прискорення розподілу клітин, формування різного роду морфологічних змін, уповільнення росту органів і рослини в цілому, загибель меристем і ін.

У рік аварії в п'яти областях України (Київській, Чернігівській, Житомирській, Черкаській і Вінницькій), у тому числі в різних місцях 30-кілометрової зони, були зібрані зразки насіння 9 сортів озимої пшениці (Tviticum vulgare L.), рослини якої протягом 3 місяців з фази кущіння (час аварії) до дозрівання піддавалися опроміненню радіоактивними викидами. [10, 16-17]

Максимальний рівень сумарної бета- і гамма-активності насіння досягав 3,7·104Бк/кг. По загальноприйнятим методикам експериментального мутагенезу в наступних 6 поколіннях вивчалися частоти й спектр мутаційної мінливості рослин. В 18,4 % зразків виявили достовірне збільшення (більш ніж в 2,7 рази) частоти хромосомних аберацій у клітинах меристеми первинного проростаючого корінця насіння. В одному випадку в проростків з насіння рослин, що виросли в 16 км від станції, спостерігали збільшення в 32 рази кількості аберацій. Реєстрували збільшення в 2,7 - 8,7 рази частоти видимих мутацій. Їхній спектр охоплював 27 типів мутацій за ознаками структури стебла, листа й колосся, фізіологічним ознакам. Специфікою спектра були порівняно часті мутації по генах карликовості, а також, що рідко зустрічаються у звичайних умовах мутації типу "общипане колосся" і "розгалужене колосся". Мутації полімерних генів по елементах структури врожаю в наступних поколіннях призвели до зміни продуктивності мутантів і в підсумку до втрати типовості сортів. [15, 291-295]

При вирощуванні проростків гороху (Pisum sativum L.) і кукурудзи (Zea mays L.) на водних витяжках ґрунтів з 10-кілометрової зони ЧАЕС, що мають сумарну бета-активність 5·10-9- 5·10-8Ки/л, спостерігали значне зниження відносної швидкості росту рослин. [14, 46-48]

Радіаційну стимуляцію, яка виражалася в прискоренні проростання насіння, росту рослин, проходженні фаз розвитку, підвищенні фотохімічної активності хлоропластів, збільшенні змісту хлорофілу, спостерігали в жовтого люпину (Lupinus luteus L.), вирощеного з насіння, яке буле зібране в 30-кілометровій зоні ЧАЕС при рівні забруднення по 137Cs Ки/км2. Такі насіння містили 137Cs 2,31·103 та 90Sr 1,65·102Бк/кг [14, 48].

Найбільшу чутливість до радіоактивного забруднення виявили соснові ліси через високу радіочуттєвість цього виду рослин, значну затримуючу здатність хвої й, як наслідок, високого внеску бета-випромінювання в дозове навантаження [1, 16]. Загальна поглинена доза у хвої й бруньках приблизно в 10 разів більше дози зовнішнього гамма-опромінення. Саме тому на ділянках з високим рівнем забруднення в активно зростаючих меристемах виявляли найбільш сильні ушкодження, які призводять до їхньої масової загибелі, проліфірації бічних бруньок з неупорядкованою орієнтацією, утворенню вкорочених пагонів із дрібною або гігантською хвоєю, скривленню голок хвої, порушенню орієнтації молодих вегетативних пагонів. До кінця літа 1986 р. виявилися летальні ефекти опромінення сосни. Протягом наступного осінньо-зимового періоду було виявлено, що загальна площа загиблого лісового масиву, що примикає із заходу до проммайданчика АЕС, досягає 500 га.

Через 4 роки після аварії спостерігалося зниження в 5 - 10 разів продуктивності насіння в аборигенної популяції подорожника ланцетолистного (Plantago lanceolata L.), який росте в місцях з рівнем гамма-фону від 2,8 до 1334 па/кг [8, 4-9]. Очевидно, даний тип радіаційної поразки рослин можна зв'язати із гнітючою дією багаторічного хронічного опромінення на популяцію цього радіочуттєвого представника трав'яного покриву, не виділяючи внесок зовнішнього й внутрішнього опромінення.

Крім того, без сумніву, можна стверджувати, що на 4-й рік після аварії, коли зовнішнє опромінення в порівнянні з первісним поставарійним періодом зменшилося в багато разів, фактор внутрішнього опромінення в радіаційному ушкодженні рослин грає визначальне значення. Особливо це стосується трав'янистих рослин з мочковатою кореневою системою, що формують основну масу корінь у верхньому, найбільш забрудненому радіонуклідами прошарку ґрунту.

Проте варто визнати, що головна небезпека нагромадження рослинами радіонуклідів складається не в їхній традиційній погрозі для рослин, а в тому, що вони є головною ланкою міграційного ланцюжка на шляху передачі радіонуклідів більш радіочуттєвим видам живих організмів -- ссавцям і, у першу чергу, людині.

Висновки

Розвиток атомної промисловості, випробування ядерної зброї, аварії на атомних реакторах різного походження призводять до локальних підвищень рівня діючих радіаційних доз і до глобального збільшення фону іонізуючих випромінювань. Істотне підвищення радіаційного фону на значних територіях викликала аварія на Чорнобильській атомній електростанції - найбільша в історії ядерної енергетики. Вона стала причиною забруднення радіонуклідами більше 100 тис. км2 на території СНД, де мешкає близько 4 млн. чоловік.

Серед численних антропогенних та природних чинників, які шкідливо впливають на біоценози та на людину, важливим залишається радіоактивне забруднення. Результати багатьох радіологічних досліджень свідчать, що значну небезпеку для людини створюють малі дози іонізуючого випромінювання.

Підводячи підсумок дослідження, можна стверджувати, що продовольча й технічна якість продукції зерна, бульб, олійного насіння, коренеплодів, одержуваних від опромінених рослин істотно не погіршується навіть при зниженні врожаю до 30-40 %. Вміст білка й клейковини в зерні пшениці, розрахований на одиницю маси, не знижується, однак загальний вихід помітно зменшується в результаті більших втрат урожаю зерна. Опромінення рослин у період масового цвітіння й початок плодоносіння дозою до 10 кр. загальмовує розвиток насіння у плодів, що формуються, які зазвичай стають безнасінними. Аналогічна закономірність отримана в досвідах з картоплею. При опроміненні рослин у період створення бульб врожай при опроміненні дозами 7 10 кр. практично не знижується. Якщо рослини опромінюються в більше ранню фазу розвитку, врожай бульб зменшується в середньому на 30 50 %. Крім того, бульби виходять не життєздатними через стерильність вічок.

Опромінення вегетуючих рослин не тільки приводить до зменшення їхньої продуктивності, але й знижує посівні якості насіння, що формуються. Так при опроміненні зернових культур у найбільш чутливі фази розвитку (кущіння, вихід у трубку) сильно знижується врожай, однак схожість одержуваного насіння істотно знижується, що дає можливість не використовувати їх для посіву. Якщо ж рослини опромінюють на початку молочної спілості (коли відбувається формування ланки) навіть у відносно високих дозах, урожай зерна зберігається практично повністю, однак такі насіння не можуть бути використані для посіву через гранично низьку схожість. У такий спосіб радіоактивні ізотопи не викликають помітних ушкоджень рослинних організмів, однак у врожаї сільськогосподарських культур вони накопичуються в значних кількостях.

Отже, одним з головних наслідків Чорнобильської аварії є значні рівні та величезні масштаби забруднення довгоживучими радіонуклідами агроценозів з різноманітними екологічними характеристиками, які створюють зони антропогенної радіонуклідної аномалії. Для сучасної, відновлювальної стадії поставарійного періоду основним механізмом забруднення сільськогосподарської продукції є надходження радіонуклідів в рослинну ланку з ґрунту. Відомо, що радіонукліди, після надходження у ґрунт, поглинаються його компонентами, в результаті чого їхні концентрації у ґрунті значно знижуються, в той же час вміст радіонуклідів у рослинності, може зрости у тисячі і десятки тисяч разів. Через це, знаючи основні параметри динаміки формування радіаційної ситуації і розподілу радіонуклідів в компонентах цих екосистем, можна з достатньою ймовірністю визначити розмір і скласти прогноз радіоактивного забруднення рослинності і, у разі необхідності, задіяти комплекс контрзаходів зі зниження існуючого рівня забруднення рослинних обєктів, що, відповідно, сприятиме зменшенню дозового навантаження на людину через шлях ґрунт-рослина-продукти харчування.

Список використаних джерел та літератури

1. Абатуров Ю.Д., Абатуров А. В., Быков А. В.Состояние сосновых лесов в ближней зоне ЧАЭС// Биологические и радиоэкологические аспекты последствий аварии на ЧАЭС. -- М., 1990. -- С. 16;

2. Абрамов В.И., Шевченко В.Л.Генетические последствия хронического действия ионизирующих излучений на популяции// Радиационный мутагенез и его роль в эволюции и селекции. -- М., 1987. -- С. 83 - 109;

3. Алексахин Р. М., Архипов Н. П., Бархударов Р. М. и др. Тяжелые естественные радионуклиды в биосфере. -- М.: Наука, 1990;

4. Алексахш P.M., Нарышкин М.А.Миграция радионуклидов в лесных биогеоценозах. -- М.: Наука, 1977. -- 144 с.;

5. Андриенко Т.Д. Растительный мир // Природа Украинской ССР. -- Киев, 1985;

6. Антропогенная радионуклидная аномалия и растения / Д. М. Гродзинский, К. Д. Коломиец, Ю. А. Кутлахмедов и др. -- Киев: Лыбидь, 1991. -- 160 с.;

7. Архипов Н.П., Федотов И.С., Мишенков Н.Н. Лесные насаждения на дезактивированных землях// Биологические и радиоэкологические аспекты последствий аварии на ЧАЭС. - М., 1990. - С. 16;

8. Балашов Л. С. Антропогенные изменения лугов Украинского Полесья // Экология. -- 1991. -- С. 3 - 9;

9. Бубряк И.И., Гродзшскчй Д.М.Репарация ДНК в пыльце березы, произрастающей в условиях радиоактивного загрязнения // Радиобиология. -- 29, вып 5 -- С 589 - 594;

10. Булах А.А.Особенности морфогенеза вегетативных побегов многолетних растений в условиях радионуклидной аномалии на территории 30-километровой зоны ЧАЭС // Радиобиологические последствия аварии на Чернобыльской АЭС: Всесоюзн. конф Минск, 30 окт. - 1 нояб. 1991: Тез. докл. -- Минск, 1991. -- С. 16 - 17;

11. Гайченко В.А., Крыжановский В.И., Стовбчатый В.Н. Экологическая обстановка в 30-километровой зоне ЧАЭС и ее изменения за 3 послсаварийных года // Биологические и радиоэкологические аспекты аварии на ЧАЭС: Материалы I междунар. конф. Зеленый мыс, 1990: Тез. докл. -- М., 1990. -- С. 57;

12. Гудков П., Иванова Е.А.Сравнительная радиочувствительность различных сортов конских бобов и возможность их использования для биологической дозиметрии// Тез. докл. Второй радиобиол. съезд. -- 1993.

13. Дощечкчна О.В.Оценка генетических изменений в природных популяциях Ocnothcra biennis L., произрастающих в условиях хронического облучения: Тез. докл. I Всесоюз. радиобиол. съсзда. Т. 3. -- Пущине, 1989. -- С. 592;

14. Зезина Н.В. Михеев А.Н., Кутлахмедов Ю.А. и др. Особенности ростовой реакции растений при действии инкорпорированных радионуклидов. Оценка относительной биологической эффективности// Актуальные проблемы радиационной биологии и радиационной генетики/ АМН СССР. -- Обнинск, 1990. -- С. 46 - 48;

15. Зяблиикая Е.Я. Спирин Е.В., Санжарова Н.И. и др. Генетический и биологический эффекты действия хронического облучения посевов озимой ржи радиоактивными выпадениями от аварии на Чернобыльской АЭС // Радиобиология. -- 30, вып. 3. -- 1990. -- С. 291 - 295;

16. Израэль Ю.А., Соколовский В.Г., Соколов В.Е. и др. Экологические последствия радиоактивного загрязнения природных сред в районе аварии на Чернобыльской АЭС// Атомная энергия. -- 64, вып. 1. -- 1988. -- С. 28 - 40;

17. Кабашникова Г.И. Накопление радионуклидов в компонентах лесного фитоценоза // Радиобиологические последствия аварии на Чернобыльской АЭС: Всесоюзн. конф., Минск, 30 окт. -- 1 нояб. 1991: Тез. докл. -- Минск, 1991. -- С. 16 - 17;

18. Козубов Г.М., Таскаев А.И. Радиационное воздействие на хвойные леса в районе аварии на Чернобыльской АЭС. -- Сыктывкар: КНЦ УрО АН СССР, 1990. -- 136 с.

19. Одум Ю. Основы экологии. -- М.: Мир, 1975;

20. Перелина И.И., Саенко А.С., Сынзыныс Б.И. и др. Радиобиологические проблемы Чернобыля // Биологические и радиоэкологические последствия аварии на ЧАЭС: I междунар. конф. Зеленый мыс., 1990: Тез. докл. --М., 1990. -- С. 174;

21. Пристер Б.С. Гахов В.Ф., Цапка Ю.Л. и др. Вертикальная миграция радиоцезия в дерновоподзолистых почвах легкого механического состава // I Всесоюз. радиобиол. съезд. -- Т. 4. -- Пущине, 1990. -- С. 976 - 977;

22. Уварова С.А.Влияние комплексного воздействия радионуклидов на морфологию некоторых древесных растений: Тез.докл.//Радиобиологическне последствия аварии на Чернобыльской АЭС: Всесоюз. конф., Минск, 30 окт. -- 1 нояб. 1991: Тез. докл. -- Минск, 1991;

23. Федотов И.С., Мишенков Н.Н., Архипов Н.П. и др. Пострадиационные эффекты облучения лесных экосистем в зоне аварии на Чернобыльской АЭС // III Всесоюз. конф. по с.х. радиологии, Обнинск, 1990: Тез. докл. -- С. 5 - 6.

24. Чистик О. В. Экология: Учеб. пособие. -- Минск.: "Новое знание", 2000;

25. Шилов П. А. Экология: Учеб. для биол. и мед. спец. вузов. -- М.: Высш. шк., 1998.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.