Закономерности и факторы устойчивости пресноводных экосистем к антропогенному загрязнению
Зональный характер ведущих абиотических и биотических факторов забуференности водных экосистем. Токсичность поллютантов и характеристика токсикорезистентности пресноводных биоценозов. Экологическая роль рыбохозяйственных ПДК для загрязняющих веществ.
Рубрика | Экология и охрана природы |
Вид | автореферат |
Язык | русский |
Дата добавления | 05.09.2010 |
Размер файла | 235,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Суммарная биомасса модельной популяции D. pulex в норме и при интоксикации никелем изменяется четко в противофазе с длительностью светового дня (r = -0.89 и -0.91 соответственно, p > 0.05), а ее минимальная токсикорезистентность отмечена весной, максимальная - осенью. Корреляция между ПК никеля и фотопериодом незначительна (r = -0.31, p >> 0.05). Для S. vetulus, напротив, характерна тесная достоверная положительная корреляция между популяционной токсикорезистентностью и среднесезонной длительностью светового дня (r = 0.98, p = 0.05) с максимальным пиком в летний период и минимальными значениями зимой. Приведенные данные говорят о видовой специфичности сезонной динамики функционального состояния исследованных природных популяций Cladocera в норме и при хронической интоксикации.
Стабильные условия содержания лабораторных культур и проведения всех экспериментов свидетельствуют о том, что цирканнуальные биоритмы, в частности, динамика токсикорезистентности, имеют наследственно закрепленную норму реакции.
3.4 Сезонные аспекты токсикорезистентности гидробионтов на ценотическом уровне
Для характеристики сезонной динамики экологических параметров зоопланктоценозов в вегетационный период были обработаны опубликованные данные исследований 8 озер разных природных зон: северной тайги (Сямозеро, оз. Онежское и Северная Ладога), южной тайги (оз. Красное), высотной тайги (оз. Байкал), смешанного леса (оз. Нарочь), горного ландшафта (оз. Севан) и 4 водохранилищ, расположенных в зоне смешанного леса (Рыбинское, Иваньковское), широколиственного леса (Киевское) и лесостепи (Волгоградское). Несмотря на то, что сезонная вариабельность токсобности зоопланктонных сообществ рассмотренных водоемов характеризуется индивидуальными особенностями, в целом, в летнее-осенний сезон наблюдается снижение токсикорезистентности всех руководящих комплексов зоопланктона за счет увеличения доли олиготоксобных видов при противофазном изменении биомассы более резистентных в-мезотоксобов и очень устойчивых к интоксикации б-мезотоксобов. Очевидно, что мы имеем дело с функциональными интерзональными закономерностями общего порядка, связанными с сезонной динамикой энергетических абиотических факторов. В качестве примера приведем данные по водохранилищам (рис. 5).
Следует отметить, что изменения токсикорезистентности планктонных ценозов в сезонном аспекте более значительны, чем динамика видового разнообразия сообщества, а индекс сапробности для доминирующих видов зоопланктоценозов всех исследованных водоемов изменяется в разные сезоны года в очень узком диапазоне (10-30 %) в пределах одного и того же класса сапробности вод.
Рис. 5. Сезонная динамика параметров зоопланктоценоза водохранилищ в вегетационный период [рассчитаны по данным: Мордухай-Болтовская, 1955; Луферова, Монаков, 1966; Цееб, Травянко и др., 1972; Вьюшкова, Белова, 1977; Ривьер, 1978]: водохранилища: А - Рыбинское, Б - Иваньковское, В - Киевское, Г - Волгоградское. По левой оси ордина: А и Г - биомасса олиготоксобов, в-мезотоксобов, б-мезотоксобов (ОТ, БМТ, АМТ соответственно), %; Б и В - биомасса ОТ, БМТ, %. По правой оси ординат: А и Г - индекс сапробности (S) и ИВР; Б и В - S, ИВР, биомасса АМТ, %
Сравнение сезонной динамики экологических параметров зоопланктона в условиях различного уровня антропогенного загрязнения представляет особый интерес. С этой целью проведен анализ изменения токсобности и сапробности зоопланктонных комплексов на разных акваториях северной части Выгозерского водохранилища, подверженных многолетнему действию сбросов и выбросов Сегежского ЦБК (СЦБК), и на условно чистом участке Северного Выгозера. Экологические параметры зоопланктоценозов рассчитаны по опубликованным материалам [Куликова, 1984; Лозовик, Пальшин и др., 1989]. Приведенные на рис. 6 А-В данные показывают, что динамика показателей токсобности планктонных комплексов с марта по октябрь в зоне сброса неочищенных сточных вод СЦБК и в зоне выпуска стоков после биологической очистки значительно отличается от данных по акваториям вторичного загрязнения, которые приближаются по сезонной динамике токсобности к зоопланктону условно чистой акватории.
Рис. 6. Сезонная динамика экологических параметров зоопланктоценозов Северного Выгозера в различных условиях загрязнения сточными водами С ЦБК. Акватории: 1 - зона сброса неочищенных отходов (СНО), 2 - зона вторичного разбавления СНО, 3 - зона сброса после биологической очистки (СБО), 4 - зона вторичного разбавления сбросов СБО, 5 - условно чистая зона. Параметры: А - биомасса олиготоксобов, %; Б - биомасса в-мезотоксобов, %; В - биомасса б-мезотоксобов, %; Г - индекс сапробности.
Сезонная динамика показателей токсобности на наиболее загрязненных акваториях (СНО и после СБО) проходит в четкой противофазе с изменением токсобности зоопланктона условно чистой зоны. Динамика индекса сапробности, отображенная на рис. 6 Г, также достаточно близка по своему характеру на условно чистой акватории и в зонах вторичного разбавления очищенных и неочищенных сточных вод СЦБК и отлична для сильнозагрязненных участков, однако, ценотическая токсикорезистентность зоопланктона изменяется в более широком диапазоне, чем показатель сапробности.
4. Популяционный уровень адаптационной пластичности гидробионтов в условиях антропогенного изменения абиотических факторов водной среды
4.1 Адаптационные возможности гидробионтов к токсификации водной среды
В литературном обзоре обоснована актуальность проблемы, показано, что при постепенном увеличении антропогенных нагрузок у различных организмов, как правило, происходит адаптация к изменяющимся условиям среды и увеличение их резистентности в направлении, адекватном внешнему воздействию. Приведены данные полевых и лабораторных исследований, свидетельствующие о высокой адаптационной способности к токсическим веществам у водных животных. Дана характеристика генотипической и фенотипической адаптации. Рассмотрены различные точки зрения на возможность фенотипических адаптаций к токсическим агентам. Отмечена зависимость адаптационной способности гидробионтов от химической природы действующего реагента. Показано, что при взаимодействии гидробионтов с токсикантами приспособленность организмов достигается, прежде всего, на основе генетически закрепленной нормы реакции.
4.2 Формирование популяционной нормы реакции планктонных организмов на закисление водной среды
Исследования на организмах с коротким жизненным циклом позволили в лабораторных условиях проследить за формированием популяционной нормы реакции при различных уровнях негативного воздействия рН водной среды. Показано, что в процессе длительного воздействия закисления в диапазоне слабокислых рН на популяционном уровне включаются компенсаторные механизмы поддержания устойчивости, что со временем приводит к расширению нормы реакции на действующий фактор и сдвигает порог ацидорезистентности популяций в более кислую сторону. Динамику ацидорезистентности модельных популяций при хроническом закислении хорошо иллюстрируют рассчитанные по результатам экспериментов индексы численности и биомассы (рис. 7).
Рис. 7. Динамика популяционной ацидорезистентности Scenedesmus quadricauda (А) и Daphnia pulex (Б) при хроническом закислении водной среды: экспозиция - А: 1 - 5-е сутки, 2 - 10-е сутки, 3 - 15-е сутки, 4 - 20-е сутки опыта; Б: 1 - 14-е сутки, 2 - 28-е сутки опыта. Стрелками указано начало угнетающего воздействия рН
Наблюдаемые закономерности формирования популяционной нормы реакции планктонных сообществ обусловлены, по нашему мнению, сочетанием гено- и фенотипических приспособлений, когда наряду с отбором на ацидорезистентность могут проявляться и защитные метаболические реакции организмов на молекулярном уровне (физиологическая адаптация).
4.3 Популяционный адаптивный потенциал зоопланктонных организмов к токсическому воздействию металлов
Содержание модельных популяций D. pulex на протяжении 1 года в условиях постоянного действия концентраций меди или свинца в диапазоне 0.005-0.05 и 0.1-0.8 мг/л соответственно не привело к угнетению биологически значимых параметров, в том числе - репродуктивных возможностей, являющихся ключевым фактором, определяющим жизнеспособность популяций при антропогенной деградации среды обитания. Для оценки адаптационного эффекта изучена устойчивость неадаптированных и адаптированных модельных популяций D. pulex в режиме острой и хронической интоксикации металлами (табл. 3).
Выявленная в результате корреляционного и регрессионного анализа достоверная зависимость параметров КТН50 и ПК от величины адаптационных концентраций металлов свидетельствует о том, что популяционная норма реакции адаптированных популяций формировалась под непосредственным воздействием их фоновых концентраций в среде обитания. Следует отметить, что постоянное содержание меди в среде обитания на уровне 0.05 мг/л является фактором, лимитирующим резистентность дафний по отношению к остролетальному воздействию (по КТН50), в то время как адаптационный резерв дафниевых популяций в изученных концентрациях свинца не исчерпан, т.е верхний порог толерантного диапазона D. pulex к токсическому воздействию этого металла лежит выше концентрации 0.8 мг/л.
Таблица 3 Устойчивость адаптированных и неадаптированных модельных популяций Daphnia pulex к интоксикации металлами
Адаптацион- |
КТН50, мг /л*час |
Пороговая концентрация (ПК), мг/л |
|||||||
ная концен- |
надфоновая |
абсолютная |
надфоновая |
абсолютная |
|||||
трация, мг/л |
M |
±m |
M |
±m |
M |
±m |
M |
±m |
|
Медь |
|||||||||
Контроль 0.005 |
0.196 0.255* |
0.018 0.017 |
0.196 0.268* |
0.018 0.017 |
0.025 0.040* |
0.001 0.002 |
0.025 0.045* |
0.001 0.002 |
|
Контроль 0.01 |
0.183 0.323* |
0.019 0.027 |
0.183 0.356* |
0.019 0.030 |
0.024 0.059* |
0.002 0.003 |
0.024 0.069* |
0.002 0.003 |
|
Контроль 0.02 |
0.192 0.235 |
0.016 0.019 |
0.192 0.282* |
0.016 0.023 |
0.023 0.033* |
0.001 0.001 |
0.023 0.053* |
0.001 0.001 |
|
Контроль 0.03 |
0.204 0.186 |
0.013 0.020 |
0.204 0.242 |
0.013 0.025 |
0.028 0.025 |
0.002 0.002 |
0.028 0.055* |
0.002 0.002 |
|
Контроль 0.04 |
0.173 0.132* |
0.016 0.009 |
0.173 0.185 |
0.016 0.013 |
0.030 0.015* |
0.001 0.002 |
0.030 0.055* |
0.001 0.002 |
|
Контроль 0.05 |
0.198 0.056* |
0.020 0.008 |
0.198 0.084* |
0.020 0.013 |
0.033 0.003* |
0.003 0.001 |
0.033 0.053* |
0.003 0.001 |
|
Свинец |
|||||||||
Контроль 0.1 0.2 |
0.52 0.67* 0.81* |
0.03 0.04 0.05 |
0.52 0.74* 0.97* |
0.03 0.04 0.06 |
0.18 0.25 0.37* |
0.01 0.03 0.02 |
0.18 0.35* 0.57* |
0.01 0.03 0.02 |
|
Контроль 0.4 |
0.59 0.92* |
0.07 0.12 |
0.59 1.28* |
0.07 0.17 |
0.23 0.51* |
0.02 0.03 |
0.23 0.91* |
0.02 0.03 |
|
Контроль 0.6 |
0.68 1.28* |
0.10 0.23 |
0.68 2.05* |
0.10 0.37 |
0.25 0.64* |
0.02 0.05 |
0.25 1.24* |
0.02 0.05 |
|
Контроль 0.8 |
0.76 1.21* |
0.12 0.15 |
0.76 2.17* |
0.12 0.27 |
0.31 0.58* |
0.02 0.04 |
0.31 1.38* |
0.02 0.04 |
|
Примечание. * - достоверное отличие от контроля (р ? 0.05); надфоновая - концентрация металла, дополнительно вносимая в опытную и контрольную среду, абсолютная - сумма надфоновой и постоянно действующей адаптационной концентрации. |
Таким образом, исходная природная популяция D. pulex, несмотря на партеногенетическое размножение, благодаря высокому полиморфизму характеризуется существенной адаптационной пластичностью, которая обеспечила длительное стабильное функционирование модельных популяций при постоянном воздействии исследованного диапазона концентраций металлов и обусловила увеличение популяционной токсикорезистентности.
4.4 Оценка популяционной адаптации гидробионтов к интоксикации металлами на уровне межвидовых биотических связей с использованием показателя конкурентоспособности
Дополнительная оценка популяционной адаптации D. pulex к интоксикации металлами в поликультуре с ветвистоусым рачком Simocephalus vetulus показала, что длительное содержание дафниевых популяций при постоянных концентрациях меди или свинца в диапазоне 0.005-0.05 мг/л и 0.1-0.8 мг/л соответственно привело к адекватному увеличению не только их токсикорезистентности, но и конкурентоспособности. В качестве примера приведем данные по тестированию популяций дафний, адаптированных к меди. При сравнении функционального состояния популяций Cladocera в поликультуре за контрольный уровень, равный 1, приняты параметры соответствующих монокультур. Культивирование неадаптированных и адаптированных к меди популяций D. pulex совместно с S. vetulus на фоне чистой воды сопровождалось стимулированием их развития, причем, превышение биомассы насыщения адаптированных популяций в поликультуре относительно монокультуры существеннее, чем в вариантах с неадаптированными дафниями (рис. 8 А). Подавление развития модельных популяций S. vetulus также было наибольшим со стороны адаптированных D. pulex (рис. 8 В).
Рис. 8. Функциональное состояние модельных популяций Cladocera в поликультуре на фоне чистой воды и их устойчивость к хронической интоксикации медью: А и Б - параметры D. pulex в поликультуре с S. vetulus , В и Г - параметры S. vetulus в поликультуре с D. pulex; 1 - поликультура с адаптированной D. pulex, 2 - поликультура с неадаптированной D. pulex. По оси абсцисс - вариант адаптации D. pulex к меди (цифры соответствуют адаптационной концентрации, мг/л)
Сравнение относительных ПК меди показало, что токсикорезистентность адаптированных популяций D. pulex в поликультуре с S. vetulus повышается, а неадаптированных снижается по сравнению с устойчивостью соответствующих монокультур (рис. 4.8 Б). Совместное существование S. vetulus в поликультуре с адаптированной D. pulex обусловливает значительное уменьшение его токсикорезистентности, а в поликультуре с неадаптированными дафниями резистентность S. vetulus к интоксикации медью выше, чем в монокультуре (рис. 4.8 Г). При тестировании на конкурентоспособность популяций дафний, адаптированных к свинцу, выявлены аналогичные закономерности. Результаты исследований показали, что использование конкурирующего вида в качестве биотической функциональной нагрузки может способствовать повышению экологической значимости результатов лабораторных токсикологических экспериментов.
4.5 Азональные факторы устойчивости природных популяций к токсическому воздействию металлов
Из азональных факторов, обусловливающих различия в токсикорезистентности биоценозов, наиболее примечательными являются биогеохимические провинции, играющие роль вектора в эволюции региональной биоты.
Вследствие сопряженности биологической эволюции с неравномерным распределением микроэлементов, биогеохимические провинции характеризуются популяциями гидробионтов, адаптированными к региональному уровню их концентраций. При этом, даже в пределах одного региона межпопуляционные различия в токсикорезистентности к природным химическим элементам весьма существенны. Об этом свидетельствуют результаты наших исследований по сравнительной устойчивости к хронической интоксикации металлами гидробионтов, представительных для Восточно-Казахстанской области и Южного Урала. Так, в реках ВКО гаммариды различаются по ПК Zn в 55, Pb - в 158, Cu - в 110 раз; турбеллярии - соответственно в 695, 65 и 220 раз; планорбиды - в 32, 2.3 и 6 раз соответственно. В регионе Южного Урала ПК Cu отличается в 117 раз для дафний и в 234 раза - для гаммарид; Ni - соответственно в 36 и 164 раза. Отмеченные внутривидовые различия популяционной токсикорезистентности вносят значительное разнообразие в их реакцию на антропогенное загрязнение металлами.
4.6 Закономерности и особенности формирования региональной нормы реакции гидробионтов к природным компонентам антропогенного загрязнения (на примере металлов)
Исследования по токсикорезистентности природных популяций представительных гидробионтов Карелии, Хакасии, Приморского края, Южного Урала и ВКО показали, что региональная норма реакции к интоксикации металлами формируется под непосредственным влиянием их естественного содержания в водоемах, а ее проявление в различных гидрохимических условиях имеет количественные и качественные межпопуляционные и межвидовые различия.
Так, выживаемость гидробионтов, представительных для Хакасии, в остротоксичных концентрациях молибдена повышается с увеличением его природного содержания в маточном водоеме: КТН50 для Gammarus lacustris из водоемов с концентрацией молибдена 0.016 и 2.0 мг/л составляет соответственно 0.25 и 8.4 г/л*сут, для Diura bicaudata - 0.8 и 21.8 г/л*сут (при содержании молибдена в маточных водоемах 0.02 и 0.12 мг/л соответственно), для Ciclops strenuus - 4.2 и 20.0 г/л*сут (концентрация молибдена в маточных водоемах - соответственно 0.016 и 1.7 мг/л). Интегральная оценка по наименее устойчивому виду свидетельствует о том, что с повышением природного содержания молибдена от 0.0008 мг/л (Карелия) до 0.174 мг/л (Хакасия) его абсолютная ПК при хроническом воздействии для представительных гидробионтов повышается с 0.0065 до 2.0 мг/л.
Проведенные исследования на Южном Урале показали, что абсолютная ПК меди для местных популяций Gammarus lacustris может быть рассчитана по формуле (р = 0.05):
ПК = 1.75 + 4.07 . С, мкг/л, (1)
где С - фоновая концентрация меди в водоеме.
Коэффициент детерминации равен 0.72, следовательно, число неучтенных факторов составляет всего 28 %. Эмпирически выявленное превышение пороговой концентрации меди над фоновой находится в пределах 4.25-6.00.
Данные по токсикорезистентности к меди представительных популяций гаммарид из водоемов ВКО свидетельствуют о наличии региональных особенностей по сравнению с гидробионтами Южного Урала. С увеличением природного содержания меди в поверхностных водах ВКО устойчивость гаммарид к хронической интоксикации металлом остается надфоновой, однако коэффициент превышения абсолютной ПК над фоном равен в среднем двум. Токсикорезистентность к меди гидробионтов Южного Урала выше, чем у изученных популяций региона ВКО, несмотря на то, что природная концентрация меди по обследованным водоемам Урала составляет в среднем 0.018 мг/л, а по водоемам ВКО - 0.032 мг/л. Отмеченные различия мы склонны отнести за счет особенностей гидрохимического режима водоемов: минерализация, жесткость и рН озер Южного Урала существенно выше, чем обследованных водоемов ВКО.
Аналогичные исследования токсикорезистентности к вольфраму гидробионтов, представительных для биогеохимических провинций с его низким и повышенным природным содержанием в поверхностных водах (Карелия и Приморский край) также выявили зависимость нормы реакции водных организмов от содержания металла в маточных водоемах: абсолютная ПК W6+ для гидробионтов бассейна Онежского озера (фоновое содержание вольфрама 0.00003 мг/л) составила 0.0013 мг/л, а для представительных гидробионтов Приморского края (природная концентрация вольфрама в среднем 0.022 мг/л) - 0.123 мг/л.
Таким образом, при обосновании региональных токсикологических нормативов для всех природных компонентов, в частности, для металлов, основным направлением исследований должно быть выявление характера связи между природным содержанием элемента в среде обитания и токсикорезистентностью к нему аборигенных популяций гидробионтов.
5. Эколого-токсикологические аспекты ацидификации водоемов таежной природно-климатической зоны (на примере Карелии)
5.1 Анализ современного состояния проблемы ацидификации водных экосистем
По литературным материалам проведен анализ современной концепции ацидификации пресноводных экосистем, выделены зональные и азональные факторы, определяющие возникновение и протекание процессов ацидификации в природе, приведена география распространения закисленных водоемов в различных регионах мира. Дана комплексная характеристика абиотических и биотических факторов устойчивости водных экосистем Европейского Севера к антропогенному закислению. Показано, что специфической особенностью поверхностных вод зоны тайги является широкое распространение гумифицированных озер с низкой минерализацией, водосборы которых сильно заболочены и природа их закисления имеет двойную природу: антропогенную и естественную, за счет притока органических кислот с водосбора. Высокие величины антропогенного поступления кислот в сочетании с высокой представленностью чувствительных, слабо забуференных озер создает предпосылки к существованию большого количества закисленных водоемов в этих регионах.
5.2 Популяционная норма реакции регионально представительных и индикаторных гидробионтов на закисление водной среды
Проведенные эксперименты показали, что ацидорезистентность планктонных ракообразных сем. Daphniidae характеризуется значительными межвидовыми различиями. Представительные для водоемов Карелии виды (S. serrulatus и D. pulex) более устойчивы к низким значениям рН, чем D. magna, граница распространения которой проходит южнее Карелии, т.е. норма реакции D. magna (стандартного тест-объекта в токсикологии) на закисление не отражает специфику регионального биоценоза. Установлено также, что популяционная норма реакции гидробионтов на закисление формируется под непосредственным влиянием природных значений рН среды их обитания, о чем свидетельствуют межпопуляционные различия ацидорезистентности окуня в период раннего онтогенеза из олигоацидных водоемов (Ангозеро и Петрозаводская губа Онежского озера) и закисленных естественным путем ?-мезоацидных ламб (Лебяжья и Озерки). Сравнение полученных результатов по величине рН50 позволило составить следующие ряды популяционной ацидорезистентности (по убыванию устойчивости к закислению):
эмбрионы: лебяжья (рН50 3.54) > онежская (рН50 4.06) ? ангозерская (рН50 4.09);
личинки : озерковская (рН50 4.14) > лебяжья (рН50 4.33) > онежская (рН50 4.79) ? ? ангозерская (рН50 4.83).
Для всех исследованных популяций окуня получены достоверные уравнения регрессии зависимости выживаемости эмбрионов и личинок от рН водной среды.
5.3 Экспериментальная оценка токсичности металлов при различном уровне закисления северотаежных водных экосистем
Методом ступенчатой нагрузки исследована острая токсичность металлов для половозрелых самок D. pulex в диапазоне рН 7.46-4.90, не вызывающем гибель дафний в контроле. Полиномиальные тренды индексов КТН50 для всех металлов, кроме хрома, с достоверностью аппроксимации (R2) ? 0.9 показали значительное увеличение токсичности по мере закисления водной среды. Достоверные различия (р ? 0.05) в токсичности по сравнению с близкой к нейтральной контрольной средой начинают проявляться для Cu, Zn, V, Cr, Pb и Al уже с рН 6.72, 6.71, 6.68, 6.64, 6.33 и 6.23 соответственно, для Ni и Li - соответственно с рН 5.87 и 5.83, а для Cr - только при рН 5.43. Для всех металлов, за исключением хрома, получены достоверные уравнения регрессии зависимости их токсичности от рН водной среды. В аналогичных опытах на моллюсках и личинках озерного лосося также выявлена достоверная отрицательная связь острой токсичности Al, Pb, Cu и Fe от рН.
Влияние гуминовых веществ (ГВ) на токсичность металлов (на примере меди) при закислении изучено в диапазоне рН 7.13-5.24 на модельных средах с цветностью 35, 118, 209 и 363 град., что по классификации С.П. Китаева (1984) соответствует олигомезогумозному, мезополигумозному, полигумозному и ультраполигумозному классу вод соответственно. Установлено, что при увеличении цветности острая токсичности меди закономерно снижается при всех значениях рН. Так, при рН 5.24-5.29 в олигомезогумозной воде КТН50 меди для молоди D. pulex составляет 0.133, в мезополигумозной - 0.195, в полигумозной - 0.372 и в ультраполигумозной - 0.735 мг/л*сут. Достоверные различия токсичности меди в нейтральной и кислой (рН 5.62-5.24) среде отмечены только для олигомезо- и мезополигумозной фоновой среды. Однако при сравнении токсичности меди в олигомезогумозной среде разной степени закисления с более гумозными при тех же значениях рН наблюдаются достоверные различия для всех исследованных вариантов цветности (р < 0.05). Полученные по уравнениям регрессии расчетные КТН50 для вод от ультраолигогумозных до ультраполигумозных подтверждают существенную роль ГВ в снижении острой токсичности меди в условиях закисления. Так, по сравнению с нейтральной водой при рН 5.71 острая токсичность металла увеличивается на 48 % в ультраолигогумозной среде и всего на 7 % в ультраполигумозной, а при рН 5.26 - на 88 и 11 % соответственно. Выявленные особенности интоксикации металлами в условиях закисления водной среды должны учитываться при нормировании их антропогенного поступления в водоемы таежной зоны.
5.4 Зависимость токсичности органических поллютантов от рН и степени гумификации водоемов
Результаты экспериментов свидетельствуют о неоднозначном проявлении биологической активности различных органических поллютантов при закислении водной среды. Так, например, токсичность для личинок окуня компонентов буровых растворов (пропиленгликоль и продукт EC6029-А) по градиенту рН несколько снижается, оставаясь в переделах порогового уровня толерантности. Для дизельного топлива характерно существенное увеличение токсичности, а для бензина - снижение, достигающее биологически значимых по сравнению с нейтральной средой различий в диапазоне рН 5.0-4.0. Достоверное снижение токсичности гербицида Бетарен начинается с рН 5.5, а токсичность гербицида Голтикс увеличивается с превышением порогового уровня толерантности при рН 5.0-4.0.
Влияние ГВ на токсичность органических поллютантов при закислении также неоднозначно, что, вероятно, связано с различиями в химическом составе реагентов. Так, увеличение цветности опытной среды от 9 до 192 град (класс вод от ультраполигумозного до полигумозного) при снижении рН до 5 не оказывает достоверного воздействия на токсичность для D. pulex гербицидов Бетарен и Глуккор, бензина и формальдегида. Токсичность дизельного топлива усиливается в условиях закисления на фоне ультраолиго - мезо - и мезополигумозной среды, а на фоне полигумозной негативное влияние низких значений рН на его токсичность нейтрализуется. Для пропиленгликоля закисление воды сопровождается снижением токсичности при всех исследованных цветностях, однако увеличение содержания ГВ в воде является дополнительным фактором, снижающим токсичность реагента.
При постоянно действующих рН по мере увеличения содержания ГВ токсичность формальдегида повышается относительно малоцветного варианта во всем диапазоне активной реакции, а токсичность гербицида Бетарен усиливается только в кислой среде. Увеличение цветности до 100 град. и более значительно снижает токсичность Глуккора при всех значениях рН, а снижение токсичности дизельного топлива и пропиленгликоля в диапазоне цветности 100-350 град. наиболее значимо на фоне слабокислой и кислой среды. Весь материал свидетельствует о более существенном воздействии на биологическую активность большинства исследованных поллютантов класса гумозности вод, чем степени закисления.
5.5 Влияние на гидробионтов антропогенного поступления биогенов в условиях закисления водной среды
Учитывая приоритетность фосфора в лимитировании продуктивности биоценозов ксеногалобных водоемов, проведены эксперименты по изучению комплексного воздействия на зоопланктонные организмы Рмин. и рН. Корреляционный, регрессионный и графический анализ полученных результатов по градиенту закисления показал, что снижение активной реакции от нейтральной до кислой оказывает закономерное отрицательное влияние на модельные популяции D. pulex. В диапазоне рН 6.5-5.0 дополнительное поступление фосфора практически не уменьшает негативного эффекта и только при снижении рН до 4.5 внесение фосфора в концентрациях 0.05-0.80 мгР/л приводит к увеличению суммарной биомассы в 1.3-1.6 раза, т.е по сравнению с биогенной нагрузкой рН является более мощным экологическим фактором, воздействующим на функциональное состояние популяций зоопланктона.
В то же время, оценка экспериментальных и рассчитанных по уравнениям регрессии данных по градиенту биогенной нагрузки выявила стимулирующий эффект от дополнительного внесения фосфора во всем диапазоне исследованных рН. При этом, биологически значимый эффект биогенного воздействия усиливается по мере снижения постоянно действующего рН, достигая достоверных различий с контролем (без внесения фосфора) в диапазоне рН 5.5-4.5. Пороговые концентрации фосфора (ПК1.2), стимулирующие развитие популяций D. pulex по сравнению с контролем на 20 %, при низких значениях рН (5.5, 5.0 и 4.5), характерных для значительно закисленных б-мезоацидных вод, существенно меньше, чем при рН 6.0-7.0, соответствующих в-мезоацидному и олигоацидному классу вод (рис.9).
Рис. 9. Воздействие дополнительной фосфорной нагрузки на модельные популяции Daphnia pulex при различных значениях рН водной среды (по расчетным данным): стрелками указаны стимулирующие ПК1.2 фосфора
5.6 Оценка степени закисления поверхностных вод таежной зоны Европейского Севера России по зоопланктону
Исходя из предложенной С.П. Китаевым (1984) классификации ацидности озер различных природно-климатических зон, северотаежные водоемы разделены нами, с учетом региональной нормы реакции зоопланктонных организмов на закисление, на 4 группы: олигоацидные (рН ? 6.5), ?-мезоацидные (рН 6.4-5.5), ?-мезоацидные (рН 5.4-4.0) и полиацидные (рН < 4.0). Указанные пределы величины рН среды в озерах разных групп соответствуют характеру влияния этого показателя на качественный состав зоопланктонных комплексов и количество встреченных видов. На основании анализа опубликованных данных комплексных исследований, проводимых на водоемах таежной зоны Северо-Запада России, исходя из минимальных значений рН воды, при которых обнаружены те или иные зоопланктонные организмы, выделены наиболее показательные виды-индикаторы закисления и составлена шкала распределения индикаторных видов зоопланктона по степени закисления поверхностных вод, ориентированная на водные экосистем зоны северной тайги (табл. 4).
Отметки на шкале соответствуют значениям, предложенным Raddum, Fjellheim (1984) и используемым В.А. Яковлевым (1998) для распределения бентосных организмов. В разработанной нами шкале биоиндикаторы закисления объединены в группы в соответствии с их толерантностью к определенному уровню рН среды и обозначены категорией закисления вод. Оценка степени закисления озерных вод с использованием биологической шкалы распределения видов зоопланктона позволяет определить принадлежность озер к одной из четырех групп и дать картину реальной экологической ситуации в закисленных водоемах.
Проведенный по опубликованным данным и архивным материалам СевНИИРХ ПетрГУ анализ количественного развития видов зоопланктона - биоиндикаторов по параметру "рН-устойчивости" в пяти условно чистых озерах южной Карелии (Сангое, Вагатозеро, Лаймолаярви, Паяозеро, Пялизъярви), отличающихся величиной рН, озерно-речной системе Кенти-Кенто, испытывающей мощную антропогенную нагрузку от Костомукшского ГОКА и трех зонах Северного Выгозера, в разной степени подверженных воздействию Сегежского ЦБК, показал, что составленная нами биологическая шкала степени закисления вод позволяет достоверно оценить реакцию биоценоза природных озер на процесс ацидификации в условиях различной степени токсификации и эвтрофикации. Полученные результаты дают основание рекомендовать региональную шкалу ацидорезистентности зоопланктоценозов для прогнозирования и раннего предупреждения отрицательных последствий закисления поверхностных вод таежной зоны Европейского Севера России.
Таблица 4 Биологическая шкала распределения видов зоопланктона по степени закисления поверхностных вод таежной зоны Европейского Севера России
Вид, таксон |
Отметка на шкале(группа ацидности) |
Закисление |
|
Rotatoria: Asplanchna priodonta, Plaesoma truncatum, Euchlanis dapidula , Filinia longiseta; Cladocera: Limnosida frondosa, Daphnia longispina, D. cristata, Bosmina coregoni, B. kessleri, Leptodora kindtii, Ceriodaphnia reticulate; Copepoda: Limnocalanus grimaldii macrurus, Eudiaptomus gracilis, Cyclops strenuus, Eucyclops macrurus |
1 (олигоацидная) |
Нет или слабое, рН ? 6.5 |
|
Rotatoria: Bipalpus hudsoni, Euchlanis lyra, E. myersi, Synchaeta spp., Polyartra euryptera; Cladocera: Diaphanosoma brachiurum, Chydorus sphaericus, Eurycercus lamellatus, Ceriodaphnia affinis, Alona spp; Copepoda: Eudiaptomus graciloides, Cyclops scutifer, Cyclops vicinus |
0.5 (?-мезоацидная) |
Среднее, pH 6.4-5.5 |
|
Rotatoria: Keratella cochlearis, Kellicotia longispina, Conochilus spp.,Trichocerka spp., Lecane spp.; Cladocera: Holopedium gibberum, Scapholeberis spp., Sida cristalina, Bosmina obtusirostris v. lacustris, Ceriodaphnia quadrangula, Alonopsis elongata; Copepoda: Eudiaptomus denticornis, Eucyclops serrulatus, Mesocyclops leuckarti, M. oithonoides, Macrocyclops spp. |
0.25 (?-мезоацидная) |
Значительное, рН 5.4-4.0 |
|
Rotatoria: Keratella serrulata, Keratella cochlearis v. macracantha, Lecane lunaris; Cladocera: Ophryoxus gracilis, Pleuroxus laevis, Polyphemus pediculus; Copepoda: Paracyclops fimbriatus, Acantocyclops languidoides, A. nanus, A. bisetosus |
0 (полиацидная) |
Сильное, рН < 4.0 |
6. Экологические основы нормирования антропогенной токсикологической нагрузки на пресноводные водоемы
Представленные в работе материалы свидетельствуют о том, что токсикорезистентность водных биоценозов существенно изменяется в географическом и временном аспекте, поэтому экологически обоснованное нормирование антропогенного загрязнения должно учитывать зональные и азональные особенности устойчивости водных экосистем к интоксикации. Однако результаты анализа данных аннотационных карт по токсикометрии 160 веществ показали, что общефедеральные рыбохозяйственные ПДК на 77 % являются функцией токсикорезистентности общепринятых индикаторных тест-объектов, не отражающих всего многообразия устойчивости к антропогенной интоксикации водных экосистем различных природно-климатических зон и биогеохимических провинций России.
Если использовать весь объем информации по разработанным ПДК и одновременно учитывать необходимость регионального регламентирования, в качестве первого шага повышения экологической значимости токсикологических нормативов целесообразно внести следующие коррективы в действующую систему общефедеральных рыбохозяйственных ПДК:
1. Все рыбохозяйственные ПДК разделить на 5 категорий в соответствии с гидрохимическим режимом и трофическим статусом водоема, на фоне которого проводится разработка регламента (табл. 5).
- в "О" категорию заносятся ПДК для веществ, токсичность которых согласно экспериментальной обоснованности не зависит от абиотических и биотических факторов среды (например, супермутагены);
- регламенты более высоких категорий могут распространятся (до специальной разработки) на более низкую категорию фоновой среды (например, 1 - на 2-4, 2 - на 3-4), но не наоборот;
- отнесение фонового водоема по любому параметру к более низкой категории означает категорийную принадлежность разработанного регламента;
- при снижении реагентом качества опытной среды в указанных пределах стандартных параметров (повышение минерализации, жесткости и т.д.) категория разработанного регламента соответственно понижается.
Таблица 5 Категории эколого-токсикологических регламентов (ОБУВ, ПДК)
Категория |
Параметры фонового водоема разработки регламента |
||||||
регламента |
трофический статус (хлорофилл, мкг/л) |
минерализа-ция, мг/л |
жесткость, мг-экв/л |
ХПК, мгО/л |
БПК20, мгО2/л |
сапробность, (индекс) |
|
0 |
Полютанты, токсичность которых не зависит от зональных и азональных факторов токсикорезистентности водных экосистем |
||||||
1 |
олиготрофный (< 3) |
до 125 |
до 1.50 |
до 7.5 |
до 1.0 |
ксеносапроб-ный (до 0.50) |
|
2 |
мезотрофный (3-12) |
126-250 |
1.51-3.00 |
7.6-15.0 |
1.1-2.0 |
олигосапроб-ный (0.51-1.50) |
|
3 |
эвтрофный (12-48) |
251-500 |
3.01-6.00 |
15.1-30.0 |
2.1-3.0 |
мезосапроб-ный (1.51-3.50) |
|
4 |
гипертрофный (> 48) |
501-1000 |
> 6.00 |
> 30.0 |
> 3.0 |
полисапроб-ный (> 3.50) |
2. Разработку эколого-токсикологических регламентов необходимо проводить на чистой воде из регионального водоема с использованием регионально представительных олиготоксобных гидробионтов, т.е. с учетом зональных и азональных особенностей нормы реакции водных экосистем. Исследования на индикаторных организмах должны быть вспомогательными.
3. Методической базой экологической "привязки" наработанных общефедеральных ПДК могут стать региональные ряды токсобности представительных олиготоксобных гидробионтов и соотнесение их с устойчивостью стандартных общепринятых тест-объектов (дафния магна, сценедесмус, радужная форель).
Настоящие рекомендации относятся и к ксенобиотикам, и к соединениям, имеющим природные аналоги. Учитывая азональные особенности устойчивости водных экосистем к интоксикации природными соединениями, связанные с наследственно закрепленной нормой реакции представительных гидробионтов в соответствии с природным содержанием этих веществ в поверхностных водах, мы считаем целесообразным:
- в системе рыбохозяйственных ПДК выделить в специальную группу вещества природного происхождения, регламентирование которых следует вести с обязательным учетом нормы реакции представительных гидробионтов;
- в качестве ПДК для природных компонентов водной среды принимать сумму абсолютной допустимой добавки и фонового содержания вещества (элемента) в контрольной среде с указанием Хср. + 2у по фону за период исследований;
- в случае достоверных различий фонового содержания природного вещества в конкретной водной экосистеме и его концентрации в контрольной при разработке ПДК среде, утвержденный регламент необходимо корректировать с учетом нормы реакции представительных гидробионтов;
- ПДК для веществ природного происхождения также должны применяться с учетом зональных особенностей токсикорезистентности водных экосистем.
Сезонную динамику токсикорезистентности пресноводных экосистем необходимо учитывать при решении практических природоохранных вопросов, связанных, в частности, с определением режима сброса сточных вод (ПДС) в рыбохозяйственные водоемы. Проблемы сезонных ПДК не существует.
Заключение
Анализ литературных данных и результатов собственных многолетних исследований показал, что проблема устойчивости водных экосистем к антропогенной интоксикации имеет многоплановый характер.
Зональные особенности устойчивости обусловлены различиями в энергетике водных экосистем, влекущими за собой различия в гидрохимическом режиме, биопродуктивности и самоочищаемости, а также зональными особенностями нормы реакции представительных популяций гидробионтов. Приведенные в работе материалы свидетельствуют о том, что с увеличением суммарной солнечной радиации от тундры к степной зоне закономерно повышается трофический статус водотоков и озер, увеличивается биомасса, биопродуктивность и сапробность гидробионтов. С продвижением от зоны степи к таежной зоне и тундре наблюдается достоверное (p < 0.05) увеличение в биоценозе доли чувствительных к интоксикации олиготоксобных видов и снижение относительной биомассы устойчивых б-мезотоксобов. О необходимости применения закона природной географической зональности при определении устойчивости водных экосистем к антропогенной интоксикации свидетельствуют и результаты наших эколого-токсикологических исследований, проведенных в Карелии, Хакасии, Приморском крае, Башкирии, Южном Урале и Восточном Казахстане, показавшие достоверную зависимость от качества фоновой среды изученных токсикометрических параметров поллютантов (ПК, КТН50, Кп).
Азональные особенности токсикорезистентности, связанные, в частности, с наличием биогеохимических провинций, также являются важным комплексом факторов, обусловливающих устойчивость пресноводных экосистем к загрязнению. Проведенные в широком биогеографическом аспекте исследования показали зависимость региональной резистености представительных гидробионтов к токсикантам, имеющим природные аналоги, от их фонового содержания в среде обитания, т.е. устойчивость водных экосистем к интоксикации природными химическими соединениями базируется на наследственной норме реакции, закрепленной отбором в соответствии с природным фоном этих веществ в поверхностных водах. В целом, токсикорезистентность биоценоза отражает региональную норму реакции, эволюционно связанную с природно-климатическими и биогеохимическими условиями ее формирования. Установленные особенности устойчивости северотаежных водоемов к процессам антропогенной ацидификации, токсификации и эвтрофикации подтвердили необходимость регионального подхода при нормировании и контроле загрязнения поверхностных вод России.
Выявленные межзональные закономерности и региональные особенности сезонной динамики устойчивости гидробионтов к интоксикации на организменном, популяционном и ценотическом уровне показали, что для экологически корректной оценки уязвимости водных экосистем в условиях интенсивного антропогенного загрязнения важно установить чувствительные и устойчивые периоды в сезонных флуктуациях биологических компонентов их биоценозов.
Анализ экологической значимости действующей системы нормирования загрязнения водных экосистем также показал, что разработка общефедеральных рыбохозяйственных ПДК на узкой базе нормы реакции доступных в регионе гидробионтов, а тем более на лабораторных культурах, недопустима. Биологически необоснованное применение для регламентирования антропогенной токсикологической нагрузки на водные экосистемы различных природно-климатических зон и биогеохимических провинций России общефедеральных рыбохозяйственных ПДК неизбежно влечет за собой опасность непредсказуемой экологической ошибки.
Выводы
1. Характер антропогенной трансформации водных экосистем имеет четкие зональные черты. Каждый процесс их изменения, даже если он вызван одними и теми же причинами, протекает различно в зависимости от конкретных природных условий. Россия обладает огромным фондом пресноводных водоемов, расположенных в разных природно-климатических зонах - от тундры до степи и полупустыни, что обусловливает значительную разнокачественность водных экосистем, в том числе и по их устойчивости к антропогенной токсикологической нагрузке.
2. Токсичность веществ самой разной химической природы (соединения металлов, пестициды, нефтепродукты) существенно зависит от гидрохимического режима (класс вод, минерализация, жесткость, рН, цветность, ПО и т.д.) и трофического статуса водоема, а также нормы реакции представительных гидробионтов, формирование которой тесно связано со средой обитания.
3. Сравнительный анализ пресноводных экосистем различных природно-климатических зон показал достоверное уменьшение их абиотической и биотической забуференности с юга на север, а, следовательно, снижение устойчивости к антропогенной интоксикации высокоширотных биоценозов зоны тундры и тайги по сравнению с ценозами более низких широт.
4. В регионе Карелии (в пределах одной зоны северной тайги) также наблюдается зависимость токсикорезистентности пресноводных биоценозов от географической широты, однако на первое место выступают экологические факторы, отражающие региональную специфику: продолжительность светового дня, прозрачность воды, температурный режим водоемов, величина перманганатной окисляемости и т.д.. Регионально значимым параметром, имеющим тесную достоверную связь с приоритетными биотическими факторами функционирования пресноводных экосистем Карелии и на 75 % обусловливающим токсобность руководящего ихтиологического комплекса озер (R2 = 0.75, p << 0.01) является прозрачность воды, что позволяет использовать ее в качестве косвенного показателя, характеризующего устойчивость пресноводных биоценозов региона к антропогенному загрязнению.
5. Одним из ведущих факторов токсикорезистентности водных экосистем всех природно-климатических зон и биогеохимических провинций является сезонная динамика функционального состояния биоценозов, адаптивно связанная с зональными и ландшафтными особенностями годовой цикличности энергетической обеспеченности биологических процессов.
6. Выявлена ярко выраженная сезонная динамика токсикорезистентности гидробионтов на организменном, популяционном и ценотическом уровне, обусловленная наследственно закрепленной нормой реакции на окологодовые изменения абиотических компонентов среды. Сезонные изменения устойчивости к интоксикации характерны не только для природных, но и культуральных (лабораторных) популяций планктонных организмов, а сезонная динамика экологических параметров зоопланктонных сообществ, в том числе, их токсикорезистентности, наблюдается как на условно чистых, так и на загрязняемых участках водных экосистем и в значительной степени определяется качественными и количественными показателями антропогенной токсикологической нагрузки. Показано также, что изменения токсикорезистентности зоопланктоценоза в сезонном аспекте более значительны, чем параметров сапробности и видового разнообразия.
7. Сезонный фактор должен учитываться при разработке научных основ регламентирования антропогенной токсикологической нагрузки, прогнозировании последствий антропогенного загрязнения и в решении практических природоохранных вопросов, связанных с разработкой режима сброса сточных вод в рыбохозяйственные водоемы. В хорошо исследованных экосистемах сезонные изменения соотношения численности устойчивых и чувствительных к токсическому воздействию видов могут служить показателем их устойчивости к антропогенному загрязнению в разные периоды годового цикла. Развитие данного направления исследований особенно актуально в зонах тундры и северной тайги в связи с пониженной устойчивостью водных экосистем Севера к антропогенному воздействию, а также резко выраженной (контрастной) сезонной изменчивостью их функционального состояния и, как следствие, их токсикорезистентности.
8. Все организмы, в том числе водные, в ходе эволюционного развития преадаптированы к определенной вариабельности природных абиотических факторов среды. При формировании модельных популяций фито - и зоопланктонных гидробионтов (Scenedesmus quadricauda (Turp.) Breb., Daphnia pulex Leydig) в условиях длительного хронического влияния компонентов, имеющих природные аналоги (рН, металлы), в диапазоне адаптационных возможностей наблюдается расширение их нормы реакции на воздействующий фактор и повышение популяционной ацидо- и токсикорезистентности.
9. Увеличение устойчивости адаптированных модельных популяций S. quadricauda и D. pulex к закислению водной среды и токсическому воздействию исследованных металлов (Cu и Pb) может быть как следствием направленного отбора организмов с геномом, обусловливающим более высокую популяционную токсикорезистентность, так и результатом физиологических адаптаций, связанных с защитными метаболическими реакциями на молекулярном уровне, например, с увеличением в теле дафний металлотионеина, участвующего в метаболизме и детоксикации меди и свинца. Вероятнее всего, наблюдаемые нами в модельных популяциях планктонных организмов адаптивные перестройки определяются сочетанием механизмов фено- и генотипической адаптации.
10. Азональные особенности токсикорезистентности, связанные с неравномерным характером рассеяния элементов в земной коре и наличием биогеохимических провинций, представляют важный комплекс факторов, обусловливающих устойчивость пресноводных экосистем к антропогенному загрязнению поллютантами, являющимися одновременно природными компонентами водной среды. Вовлечение в биогенную миграцию химических элементов в определенных количествах и соотношениях создает черты своей региональной нормы, состава фауны и флоры, а также реакции организмов на изменения в среде обитания.
11. Устойчивость водных экосистем к антропогенной нагрузке природными химическими соединениями (элементами), в частности металлами, базируется на наследственной норме реакции, закрепленной отбором в соответствии с их природным содержанием в поверхностных водах, поэтому экстраполяция выводов по токсикорезистентности гидробионтов, представительных для биогеохимических провинций с их повышенным содержанием, на другие регионы несет экологическую опасность.
12. Отличительной особенностью большинства водных экосистем зоны тайги, наряду со слабой минерализацией, является повышенная природная кислотность вод и высокое содержание гуминовых веществ. Активная реакция среды является важнейшим экологическим фактором, оказывающим специфическое воздействие как на степень токсичности поллютантов различной химической природы (металлы, нефтепродукты, пестициды и т.д.), так и на уровень ацидо- и токсикорезистентности представительных для водоемов Карелии гидробионтов. Увеличение содержания в воде гуминовых веществ обусловливает значительное снижение токсичности металлов в условиях закисления и оказывает более существенное воздействие на биологическую активность большинства исследованных органических реагентов, чем величина рН. При результирующем действии процессов ацидификации и эвтрофикации дополнительное внесение фосфора в диапазоне концентраций 0.05-0.8 мг/л практически не снижает негативных последствий закисления. Напротив, в условиях постоянных рН выявлен статистически значимый стимулирующий эффект исследованной биогенной нагрузки для развития планктонных организмов в водной среде с кислой реакцией (рН 4.5-5.5) и его слабое проявление при рН, соответствующих слабокислым и близким к нейтральным средам.
13. Установленные на примере Карелии особенности токсификации и эвтрофикации в условиях закисления и разной степени гумификации поверхностных вод должны учитываться при регламентировании антропогенного загрязнения водоемов зоны тайги. Полученные на представительных гидробионтах достоверные уравнения регрессии (р ? 0.05) зависимости токсичности приоритетных для региона Карелии металлов и органических поллютантов от рН и цветности водной среды могут быть использованы при определении их критической токсикологической нагрузки для водных экосистем таежной зоны Севера России в диапазоне активной реакции от нейтральной до кислой и класса гумидности вод от ультраолигогумозного до ультраполигумозного. Применение разработанной региональной шкалы ацидорезистентности зоопланктоценозов позволит повысит экологическую эффективность мониторинговых исследований состояния водных биоценозов зоны северной тайги.
14. Выявленные качественные и количественные отличия устойчивости водных экосистем различных природно-климатических зон и биогеохимических провинций к антропогенной интоксикации, а также анализ экологической значимости общефедеральных рыбохозяйственных ПДК однозначно свидетельствуют о биологической нецелесообразности и экологической опасности системы единых токсикологических регламентов без учета зональной и региональной нормы реакции гидробионтов, а также биотической и абиотической забуференности пресноводных водоемов. Сформулированные принципы нормирования и контроля антропогенной токсикологической нагрузки на водные экосистемы, учитывающие гидрохимический режим, трофический статус водоемов и региональную токсобность водных биоценозов, направлены на совершенствование методологической и методической базы разработки рыбохозяйственных регламентов для поллютантов различной химической природы.
Подобные документы
Экологическая сукцессия как процесс постепенного изменения состава, структуры и функции экосистем под влиянием внешнего или внутреннего фактора. Смена экосистем под влиянием жизнедеятельности организмов, деятельности человека и абиотических факторов.
реферат [389,4 K], добавлен 03.10.2013Понятие биосферы, ее компоненты. Схема распределения живых организмов в биосфере. Загрязнение экосистем сточными водами. Преобладающие загрязняющие вещества водных экосистем по отраслям промышленности. Принципы государственной экологической экспертизы.
контрольная работа [201,2 K], добавлен 06.08.2013Понятие "продуктивность экосистем", ее виды, классификация экосистем по продуктивности. Четыре последовательные ступени (или стадии) процесса производства органического вещества. Видовой состав и насыщенность биоценоза. Экологическая стандартизация.
контрольная работа [16,0 K], добавлен 27.09.2009Определение качественного состава микроорганизмов водных экосистем. Бактерии группы кишечной палочки. Грамположительные неспорообразующие кокки. Метод мембранных фильтров. Дрожжевые и плесневые грибы. Санитарно-вирусологический контроль водных объектов.
контрольная работа [40,1 K], добавлен 15.02.2016Знакомство с формами пресноводных брюхоногих моллюсков. Анализ способов определения видового состава пресноводной малакофауны в разнотипных водоемах Волгоградской области. Характеристика этапов распределения пресноводных моллюсков в разнотипных водоемах.
дипломная работа [5,1 M], добавлен 25.09.2013Специфичность водных экосистем Беларуси. Влияние естественных и антропогенных факторов воздействия на состояние водных экосистем. Водные экосистемы Бреста и Брестской области. Анализ их загрязнения. Карстовые озера. Озера-старицы. Водохранилища. Пруды.
курсовая работа [804,8 K], добавлен 16.05.2016Характеристика особенностей биогеографического районирования внутренних вод России, микропространственной неоднородности. Определение взаимосвязи водоемов с рельефами. Анализ причин целостности и сходства экосистем. Описание биотических связей организмов.
реферат [39,2 K], добавлен 03.07.2010Основные пути поступления загрязняющих веществ в водоемы и водотоки. Анализ факторов, определяющих степень накопления хрома в донных отложениях водоемов города Гомеля. Оценка миграционной способности хрома в различные компоненты водных экосистем.
дипломная работа [191,4 K], добавлен 26.08.2013Типы экосистем - совокупности взаимодействующих организмов, условий среды в зависимости от величины качественного и количественного состава компонентов. Пирамиды биомассы биоценозов. Рекультивация нарушенных территорий. Понятие энергетических загрязнений.
контрольная работа [1,7 M], добавлен 06.04.2016Общие правила и закономерности влияния экологических факторов на живые организмы. Классификация экологических факторов. Характеристика абиотических и биотических факторов. Понятие об оптимуме. Закон минимума Либиха. Закон лимитирующих факторов Шелфорда.
курсовая работа [445,5 K], добавлен 06.01.2015