Дистанційний екологічний моніторинг

Типи космічних апаратів для дослідження землі і планет. Аерокосмічний моніторинг еколого-геологічного середовища. Фактори техногенного впливу космічного польоту на довкілля. Вплив атмосфери на електромагнітне випромінювання. Основи екології космосу.

Рубрика Экология и охрана природы
Вид методичка
Язык украинский
Дата добавления 13.06.2009
Размер файла 8,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Переваги системи, що базується на прямій геосинхронній орбіті, в порівнянні з системою моніторингу, що ґрунтується на сонячно-синхронних орбітах:

Система, що сформована з k супутників тривалого функціонування, забезпечує зйомку довільно розташованих заданих ділянок через кожні 24/k години протягом усього світлового часу доби. В той час як із сонячно-синхронних орбіт 4 супутники забезпечують зйомку не частіше, ніж 2 рази на добу.

Зйомка з прямої геосинхронної орбіти забезпечує одержання зображень місцевості при самих різних напрямках освітлення, а це дозволяє покращати інтерпретацію знімків за рахунок використання струкурозонального аналізу знімків та більшості інших статистичних і автоматизованих методів дешифрування.

За умови однакової середньої швидкості переробки інформації, для зйомки з прямої геосінхронної орбіти відповідають менші пікові навантаження.

Можливість зйомки полюсів Землі та примикаючи до них ділянок, що не забезпечуються з сонячно-синхронних орбіт.

Можливість здійснення 14 - кратної зйомки в різні інтервали часу доби.

Недоліки:

Неможливість здійснення суцільної надірної зйомки місцевості.

Деякі збільшення часток ділянок, що завжди реєструються при нахиленнях оптичної осі, наближених до

Повільніше збільшення відсотка перекриття віртуальних смуг огляду з віддаленням від екватору.

Неможливість формування системи менш ніж з 4 супутників.

2.3 Вплив хмарності. Єдина багатоцільова система

2.3.1 Специфіка космічної зйомки високого розрізнення

Космічна зйомка високого розрізнення необхідна не лише з метою моніторингу, але й із метою рішення більшості задач дистанційного зондування Землі.

Особливості такої зйомки

Вузька смуга огляду, що на порядок та більше відрізняється від смуг огляду датчиків малого та середнього розрізнення.

Придатність результатів включення в серійні, масові пошуки екологічної, геологічної, сільськогосподарської та іншої направленості.

Необхідність здійснення зйомки лише в ясну погоду, при задовільній прозорості атмосфери.

Необхідність в більшості випадків, здійснення зйомки в суворо визначений сезон.

Жорсткі вимоги до надійності та своєчасності зйомки.

Отже космічні знімки високого розрізнення необхідні, якщо забезпечено їхнє надійне одержання і вони здійснені в необхідний сезон та ясну погоду.

2.3.2 Ймовірна оцінка впливу хмарності

Нехай буде називатись номінальним періодом зйомки n найменший інтервал часу в (добах) поміж двома реєстраціями ділянки, що досягається для конкретної знімальної системи без урахування впливу погодних умов. Для систем, що розраховані лише на надірну зйомку, n співпадає з періодом глобального огляду. Наприклад, для супутника Landsat-4 n= 16 діб.

Реальний період зйомки може істотно відрізнятись від номінального. Реальний період зйомки фіксованої ділянки залежить від n та від погодних умов на ділянці в заданий сезон його зйомки. Для наближеної оцінки ймовірності зйомки необхідна апріорна оцінка погодних умов.

Нехай спочатку необхідно визначити ймовірність P зйомки ділянки в фіксовану добу, у випадку, коли природоресурсний супутник типу Landsat пролітає в цей день над відповідною ділянкою. Час надірної зйомки ділянки сонячно-синхронної орбіти наперед невідомий, а зйомка можлива, якщо в цей час погода на всій ділянці ясна, але необхідно, щоб прозорість атмосфери була придатною, а хмар не було б і поблизу границь ділянки, бо інакше якість зображення зменшується, а коефіцієнти спектральної яскравості об'єктів виявляються перекрученими.

Крім того, апріорна оцінка P можлива лише за результатами багаторічних даних метеопостів, або ж метеореологічних супутників.

Для переходу до зйомки протягом сезону тривалістю m діб будемо вважати значення апріорної ймовірності зйомки для кожної доби сезону незалежними та позначимо через її середнє значення.

Оцінка впливу хмарності при космічній зйомці з метою дослідження природних ресурсів Землі або моніторинг складаються з рішення декількох основних задач.

Задачі, що відносяться до одноразової зйомки малої ділянки, що реєструється в межах однієї смуги огляду:

а) визначити ймовірністьздійснення зйомки протягом сезону тривалістю m діб системою з nom періодом n діб;

б) здійснити попередній розрахунок значення n, необхідне для зйомки в заданий інтервал m з заданою ймовірністю .

Тіж самі задачі для ділянки, що реєструються лише в межах j смуг огляду (j?2).

Тіж самі задачі для ділянки, що реєструються Я разів (Я?2), до того ж кожного разу протягом інтервалу в m діб (припускається, що інтервали не пересікаються).

Задача 1а. Задача зводиться до схеми випробувань Бернуллі, в якій число випробувань може приймати одне двох значень з ймовірністю, що залежить від цілої та дробної частини відношення . Рішення задачі одержують за рахунок використання формули повної ймовірності (Формула Байеса):

В оберненій задачі 1б формула, що одержана для визначення , використовується як рівняння, з якого і визначають відношення .

Таблиця 2.1

Ймовірність здійснення зйомок ділянки в залежності від діяльності сезону m, nom періоду системи n та апріорних метеоумов (p)

Одноразова зйомка (і=1)

р

5/6

1/2

1/6

m\n

7

15

30

90

7

15

30

90

7

15

30

90

j=1

1

1,0

1,0

1,0

1,0

0,9

1,0

1,0

1,0

0,72

0,94

1,0

1,0

2

1,0

1,0

1,0

1,0

0,91

0,99

1,0

1,0

0,74

0,74

0,94

1,0

5

0,89

1,0

1,0

1,0

0,6

0,88

0,98

1,0

0,22

0,42

0,66

0,96

16

0,36

0,78

0,96

1,0

0,22

0,47

0,72

0,98

0,07

0,16

0,29

0,64

j=2

1

1,0

1,0

1,0

1,0

0,94

1,0

1,0

1,0

0,33

0,74

0,97

1,0

2

0,96

1,0

1,0

1,0

0,59

0,95

1,0

1,0

0,1

0,36

0,74

1,0

5

0,28

0,93

1,0

1,0

0,1

0,5

0,89

1,0

0,01

0,07

0,26

0,83

16

0

0

1,0

1,0

0

0,22

0,86

0

0

0,02

0,24

j=4

1

0,98

1,0

1,0

1,0

0,5

0,98

1,0

1,0

0,02

0,23

0,76

1,0

2

0,24

0,99

1,0

1,0

0,03

0,57

0,98

1,0

0

0,02

0,23

0,96

5

0

0

0,94

1,0

0

0

0,34

1,0

0

0

0,01

0,35

16

0

0

0

0,89

0

0

0

0,29

0

0

0

0,01

Багаторазова зйомка(Я=2; 5; j=1)

Я=2

1

1,0

1,0

1,0

1,0

0,98

1,0

1,0

1,0

0,52

0,88

1,0

1,0

2

1,0

1,0

1,0

1,0

0,83

0,98

1,0

1,0

0,53

0,55

0,88

1,0

5

0,79

1,0

1,0

1,0

0,36

0,72

0,96

1,0

0,05

0,18

0,44

0,92

16

0,13

0,61

0,92

1,0

0,05

0,22

0,52

0,96

0

0,03

0,08

0,41

Я=5

1

1,0

1,0

1,0

1,0

0,95

1,0

1,0

1,0

0,19

0,73

1,0

1,0

2

1,0

1,0

1,0

1,0

0,62

0,95

1,0

1,0

0,03

0,22

0,72

1,0

5

0,56

1,0

1,0

1,0

0,08

0,52

0,9

1,0

0

0,01

0,13

0,82

16

0,01

0,29

0,81

1,0

0

0,02

0,19

0,9

0

0

0

0,11

Аналогічно, хоч і дещо складніше, розв'язують і другу задачу. Після цього третя задача не викликає ускладнень, бо ймовірність здійснення Я-кратної зйомки дорівнює, за інших рівних умов, кореню Я-го ступеню із ймовірності одноразової зйомки.

2.3.3 Результати розрахунків ймовірності зйомки

В табл. 2.1 наведені результати ймовірності здійснення зйомок P в залежності від тривалості сезону, можливостей та необхідного числа повторних реєстрацій, а в табл. 2.2 - відношення при різних ,, j та Я, що дозволяють визначити nom період системи n - необхідний для реєстрації певної ділянки в заданий сезон.

Таблиця 2.2

Значення m/n в залежності від Я,j,p та заданої ймовірності здійснення зйомок

j

Я

P=5/6

P=2/3

P=1/2

P=1/3

P=1/6

1

1

0,9

1,5

2,2

3,4

5,7

13

0,95

1,8

2,8

4,5

7,4

16

0,99

2,8

4,3

6,7

11

25

2

0,9

1,8

2,8

4,4

7,6

16

0,95

2,1

3,5

5,4

9,1

20

0,99

3,0

4,9

7,7

13

26

5

0,9

2,3

3,7

5,7

10

21

0,95

2,8

4,3

6,7

11

25

0,99

3,7

5,8

8,0

15

26

2

1

0,9

5,7

7,9

11

18

38

0,95

6,3

8,8

13

21

44

2

0,9

6,2

8,8

13

21

44

0,95

6,8

9,8

14

29

49

Із таблиць слідує, що існуючі природо-ресурсні системи не забезпечують не лише потреби моніторингу, але і багатьох звичайних задач вивчення природних ресурсів, які зовсім, на перший погляд, не потребують частого виконання зйомки.

Ще гірше діється при необхідності відзняти скажімо, трапецію масштабом 1:200 000 з розрізненням на місцевості порядку 10 м.

Висновки: Природоресурсні системи типу “Landsat” та сучасні варіанти КА для великомасштабної космічної фотозйомки не забезпечують надійного рішення більшості задач дослідження природних ресурсів Землі, тим більше моніторингу.

Ця ненадійність особливо виявляється сильною для країн з великою територією, значна частина якої розташована у високих широтах (Росія).

Ненадійність систем типу “Landsat” зростає і, можливо, буде зростати і далі, бо з розвитком дистанційних методів вимоги до обрання сезону зйомки стають жорсткішими. Зйомка має здійснюватись протягом того ж місяця або, навіть, тижня, коли дешифровані прикмети об'єктів, що вивчаються, проявляються найкраще, а з табл. 2.1 видно, що при цьому ймовірність реєстрації ділянки може різко зменшитись. Так, наприклад, при Я=1, j=2, p=1/6 ймовірність.

2.4 Досвід використання українсько-російського КА “Океан-О” для вирішення задач землекористування, природоохорони та раціонального використання природних ресурсів

2.4.1 Космічний апарат “Океан-О”

Космічний апарат (КА) “Океан-О” (табл.2.3, рис.2.1) призначений для оперативного одержання інформації про Землю в оптичному, інфрачервоному та мікрохвильовому діапазонах спектра, а також для збору і передачі інформації з наземних платформ.

Робота вимірювальної апаратури здійснювалась на замовлення користувачів та за програмою наукових експериментів, розроблених провідними науково-дослідними організаціями академій наук і космічних агентств України та Російської Федерації.

Таблиця 2.3

Основні технічні характеристики КА “Океан-О”

Маса КА, кг

6150

Маса корисного навантаження, кг

1520

Похибка орієнтації, кут. хв.

10

Кутова швидкість стабілізації, град/с

0,0015

Потужність системи електропостачання:

в сеансі, Вт

середньодобова, Вт

3500

1700

Висота сонячно-синхронної орбіти, км

668

Нахил орбіти, град

98

Циклічність повторення під супутникової траси, доба

4-16

Термін активного існування, рік

до 3

Замовники:

Національне космічне агентство України

Російське космічне агентство

Розробник:

ДКБ “Південне” імені М.К. Янгеля

Виробник:

ВО “Південний машинобудівний завод”

Ракета-носій:

“Зеніт-2”

Місце запуску:

Байконур

Дата запуску:

17 липня 1999 року

Рис. 2.1. Українсько-російський КА “Океан-О”

2.4.2 Призначення КА “Океан-О”

оперативне отримання і передача користувачам даних дистанційного зондування для дослідження природних ресурсів Землі та Світового океану;

вирішення господарських завдань природокористування;

екологічний моніторинг;

попередження та контроль надзвичайних ситуацій.

2.4.3 Вимірювальна апаратура КА “Океан-О”

Таблиця 2.4

Вимірювальна апаратура

Довжина хвилі, спектральний діапазон

Просторове розрізнення

Смуга огляду

РЛС БО: радіолокаційна станція бокового огляду (2 комплекти - РЛС БО (П) з правостороннім оглядом і РЛС БО (Л) з лівостороннім оглядом

3,0 см

2,5х1,3 км*

455 км

МСУ-М: багатоканальний скануючий пристрій малого розрізнення (2 комплекти - основний і резервний)

0,5-0,6 мкм

0,6-0,7 мкм

0,7-0,8 мкм

0,8-1,1 мкм

2,5х1,3 км8

1975 км

МСУ-СК: багатоканальний скануючий пристрій середнього розрізнення (2 комплекти - МСУ-СК1 з переднім оглядом і МСУ-СК2 з заднім оглядом)

0,53-0,59 мкм

0,59-0,72 мкм

0,72-0,81 мкм

0,81-1,00 мкм

10,05-12,6 мкм

245х157 м*

245х157 м*

245х157 м*

245х157 м*

820х157 м*

620 км

МСУ-В: багатоканальний скануючий пристрій високого розрізнення

0,48-0,52 мкм

0,54-0,61 мкм

0,63-0,73 мкм

0,78-0,92 мкм

0,92-0,99 мкм

1,47-1,62 мкм

2,06-2,38 мкм

10,6-12,0 мкм

50 м

50 м

50 м

50 м

50 м

100 м

300 м

250 м

195 км

“Дельта-2Д”: багатоканальний скануючий мікрохвильовий радіометр

0,8 см**

1,35 см**

2,25 см**

4,3 см**

17х22 км*

28х37 км*

49х65 км*

91х120 км*

1130 км

Р-225: трасовий НВЧ-радіометр

2,25 см

130 км

Р-600: трасовий НВЧ-радіометр

6,0 см

135 км

“Трасер-О”: поляризаційний спектрорадіометр

411-809 нм

(31 підканал**)

135 км

2.4.4 Характерні особливості роботи КА “Океан-О”

Вимірювальна апаратура КА дає змогу здійснювати комплексні синхронні дослідження у видимому, інфрачервоному і мікрохвильовому діапазонах, а також синхронно вимірювати параметри довкілля з використанням апаратури збору даних з наземних платформ (рис. 2.2).

Рис. 2.2. Геометрія смуг огляду вимірювальної апаратури при передачі інформації через радіолінію КА “Океан-О”

Дві РЛС БО з правостороннім і лівостороннім оглядом дають змогу здійснювати повне охоплення земної поверхні радіолокаційною зйомкою.

Інформація РЛС БО і МСУ-М через радіолінію 137 ГГц може оперативно передаватися користувачам (понад 1000 приймальних станцій у світі) (рис.2.3).

2.4.5 Інформаційні системи КА “Океан-О”

Радіотелевізійний комплекс (РТВК-М)

Тип

Аналоговий

Частота несучої, ГГц

137,4

Смуга частот, кГц

2,4

Місткість пристрою що запам'ятовує, хв.:

5

Бортова інформаційна система уніфікована (БІСУ-П)

Тип

Цифровий

Частота несучої, ГГц

8,2

Швидкість безпосередньої передачі інформації, Мбіт/с

61,44 або 15,36

Швидкість запису інформації, Мбіт/с

15,36 або 0,96

Місткість пристрою що запам'ятовує, хв.:

для потоку 15,36 Мбіт/с

для потоку 0,96 Мбіт/с

6

100

Рис. 2.3. Схема передачі інформації з РЛС БО та МСУ-М КА “Океан-О” через радіолінію 137 ГГц

2.4.6 Схема організації наземного сегменту

Схема організації наземного сегменту обміну, обробки та розповсюдження інформації з КА “Океан-О” наведена на рис. 2.4.

Рис. 2.4. Схема організації наземного сегменту

2.5. Землекористування, природоохоронні та природоресурсні задачі

2.5.1 Роль космічної інформації у вирішенні задач землекористування та природоохорони

Для України характерні значна густота населення і досить висока концентрація промислового та сільськогосподарського виробництва. Тому потрібно здійснювати оперативний контроль екологічного стану екосистем, навантаження на які в деяких регіонах перевищує екологічно допустимі межі. Це ускладнюється і негативним впливом на природу наслідків аварії на Чорнобильській АЕС, а також загрозою проникнення токсикантів із системи вода - порода в підземні води, які забезпечують водопостачання 2/3 населених пунктів країни.

Для вирішення актуальних завдань раціонального природокористування необхідно створити сучасні засоби для отримання оперативної інформації про стан геосистем України.

Найбільш ефективними методами оперативного контролю геоекологічного стану є аерокосмічні методи зондування Землі в різних спектральних діапазонах. Сучасний рівень розвитку засобів дистанційного зондування Землі (ДЗЗ) дозволяє отримати дані про параметри суші та води з необхідними просторовими елементами розрізнення і періодичністю поновлення інформації. Досвід експлуатації природоресурсних ШСЗ показав перспективність та ефективність застосування методів ДЗЗ. Тому, згідно з Державною космічною програмою України здійснено запуск українського супутника “Січ-1” (1995 р.) та українсько-російського апарата “Океан-О” (1999 р.).

Як свідчить практика, найкращі результати досягаються за умови комплексного, синхронного проведення космічних і наземних досліджень, коли результати наземних вимірювань екстраполюються на картосхеми, одержані на основі космічних знімків.

2.5.2 Дослідження урбанізованих та техногенно змінених територій з небезпечними геологічними процесами

Геоекологічне дешифрування матеріалів сучасних багатозональних космічних зйомок та їх інтерпретація з геолого-картографічними даними на урбанізовані території з небезпечними геологічними процесами дозволяють оцінити і прогнозувати розвиток цих процесів.

На вміщеному геозображенні (рис. 2.5)(знімок в ближньому ІЧ-діапазоні, 4 канал МСУ-В, КА “Океан-О” від 10.11.99 р.) представлені результати дешифрування сучасних геологічних процесів: зсувів та підтоплення територій.

Рис. 2.5. Схематична класифікація ландшафтів Київської області (знімок А - з КА “Океан-О” та Б - з КА “Landsat”)

Зсуви чітко дешифруються. Вони поширені на правобережжі Києва. Виділяються дві зони зсувів - Придніпровська та Центральна (долина р. Либідь та її яружно-балкова мережа). На даний період нараховується близько сотні зсувів, більшість з яких стабілізована повністю або частково. Є ряд потенційно небезпечних ділянок з частково діючими зсувами або такими, що можуть активізуватися при обводненні верхніх горизонтів. Основні форми зсувів - ниркоподібні, зсуви-потоки, осипи пісків.

Картування глибин рівнів ґрунтових вод (Н) та визначення зон підтоплення здійснювалось за ландшафтно-індикаційною методикою, що базується на встановленні зв'язку між видимими на багатозональних знімках компонентами ландшафту (рельєф, ґрунти, поверхневі води, рослинність). Крім того, у межах території з проектним покриттям (СV) 30-35 % Н визначалась з використанням щільності фототону знімка ближнього ІЧ-діапазону (Р) згідно з отриманою емпіричною залежністю:

де і- коефіцієнти, що залежать від типу ґрунту та СV, визначаються на тест-ділянках за даними наземних визначень Н.

Як показали дослідження, на території міської агломерації поширене явище підтоплення ґрунтів. Підтоплення житлових і промислових будівель, транспортної мережі становить значну небезпеку для ряду ділянок Києва. Підтоплена майже вся заплава Дніпра, Либіді, Нивок та інших річок, особливо внаслідок впливу підпору Канівського водосховища і техногенних факторів. У деяких районах лівобережжя міста підтоплення набуло загрозливого характеру.

Постійно діючий моніторинг на базі космічних зйомок для дослідження небезпечних геологічних процесів на територіях міських агломерацій сприятиме вирішенню нагальних проблем геоекологічного стану урбанізованих територій, що динамічно розвиваються.

2.5.3 Вивчення геодинамічних зон

Важливе значення в геоекологічних дослідженнях за матеріалами космічних зйомок належить виявленню геодинамічних зон, які ототожнюються з розривними формами прояву сучасного тектогенезу в осадочному чохлі. Вони дешифруються за космічними знімками у вигляді лінійно організованих елементів ландшафтів, виражених на поверхні Землі, - зон лінеаментів (рис. 2.6).

Рис.2.6. Ділянки з потенційно небезпечними геологічними процесами в межах території м. Києва та його околиць 10.11.1999 р.

На картосхемі представлені геодинамічні зони, становище яких уточнено за результатами дешифрування матеріалів багатозональних космічних зйомок із КА “Океан-О”. Це зони відносної нестабільності та підвищеної міграції речовин. Окремі з них успадкували розломи фундаменту. До геологічних зон належить активізація розвитку певних геологічних процесів - зсувів, площинної та лінійної ерозії, суфозії, значних змін рівня ґрунтових вод. Особливо активного розвитку такі процеси набувають на площинах геодинамічних вузлів (рис. 2.7).

Рис. 2.7. Геодинамічні зони в межах території м. Київ та його околиць

2.5.4 Визначення техногенних змін сучасних ландшафтів

Нікопольський промисловий район зазнає значних техногенних змін від гірничодобувного, промислового та селітебного комплексів, транспортних та комунікаційних мереж, меліоративних робіт. Геологічне середовище зазнає незворотних змін, які потребують постійного нагляду, контролю та передбачення. Структура зображення та рисунок ландшафтів, отримані у кожному конкретному діапазоні, сприяють картографуванні території за ландшафтними особливостями та окремими природними та техногенними компонентами.

Розрізнювальна здатність зображення з КА “Океан-О” у діапазоні 0,63-0,69 мкм дозволяє збільшувати його до масштабу картографування 1:100000. Цей діапазон найдоцільніше використовувати для вивчення ділянок техногенного порушення поверхні, літологічних відмінностей поверхневого покриву та ґрунтів. В ньому чітко дешифруються кар'єри з видобутку марганцевих руд. До того ж, у даному каналі фіксуються не тільки діючі, а й засипані кар'єри і рекультивовані землі. Цей діапазон дозволяє також виявляти території з підвищеним рівнем ґрунтових вод, що проявляються на зображенні відмінностями спектральних характеристик (рис. 2.8).

Рис. 2.8. Нікопольський промисловий марганцево добувний район

Порівняння різночасових і різних за джерелами отримання (носіями та апаратами) знімків можливе після їх приведення до єдиного масштабу, корекції і трансформації та використання в близьких за характеристиками діапазонах спектру. На прикладі Орджонікідзенської марганцево-добувної ділянки виконано порівняльний аналіз двох різночасових знімків з інтервалом у 4 роки та зафіксовано зміни, що відбулися в розвитку порушеності геологічного середовища марганцевими кар'єрами в часі і просторі. На зображенні чітко фіксуються рекультивовані ділянки відпрацьованих кар'єрів та перезволожені ділянки з підвищеним рівнем ґрунтових вод. Наведено карту техногенезу (техногенних утворень) цієї ділянки, яку складено при порівнянні знімків з КА “Landsat-TM” від 10.06.96 р. У діапазоні 0,63-0,69 мкм (рис. А) та з КА “Океан-О”, МСУ-В від 21.08.2000 р. У діапазоні 0,63-0,73 мкм (рис. Б). Карта відображає техногенно порушені ландшафтні комплекси, тобто техногенні ландшафти, які зазнали значних змін за короткий проміжок часу. Загальна площа кар'єрів, зайнята відкритими розробками та відвалами, майже не змінилась, але їх просторове розташування зазнало суттєвих змін. Лише 60 % площі кар'єрів співпало з показниками 1996 року, тоді як на 40 % кар'єрів проведено засипку і часткову рекультивацію ландшафтних комплексів. За цей час збільшились і площі підтоплення внаслідок природного і техногенного впливу (рис. 2.9).

2.5.5 Визначення фітосанітарного стану та пожежонебезпечності лісів на прикладі Зони відчуження ЧАЕС

Як відомо, рослинність, що зазнає негативного впливу шкідників або несприятливих природних умов, за своїми оптичними властивостями відрізняється від здорової рослинності. За даними наземних досліджень, у зоні відчуження соснові ліси пошкоджені гусінню соснового шовкопряда та кореневої губки. Осику вражає осиковий трутовик, березу - березова губка.

Ліси, пошкоджені сосновим шовкопрядом, займають великі площі у центральній частині Зони відчуження. Інтенсивність пошкодження змінюється з часом: як правило, шовкопряд розвивається в одних і тих же районах протягом багатьох років. Єдиний метод боротьби з гусінню соснового шовкопряда - авіаційна обробка лісів. Площі лісів, пошкоджені шовкопрядом, легко визначаються за їх візуальним обстеженням.

Рис. 2.9. Карта техногенних змін Нікопольського промислового марганцеводобувного району: 1- ландшафтно-територіальні комплекси: а - селітебні; б - промислові; 2 - шквальні комплекси: а - природно-техногенного походження б - техногенного походження (шламонакопичувачі, відстійники); 3 - техногенно-порушені ландшафтні і літологічні комплекси зайняті кар'єрами, станом на 1996 р.; 4 - техногенно порушені ландшафтні і літологічні комплекси зайняті кар'єрами станом на 2000 р.; 5 - рекультивовані ландшафтно-техногенні комплекси: а - станом на 1996 р.; б - що рекультивувалися за період 1996-2000 рр.; 6 - ландшафтні комплекси з підвищеним рівнем ґрунтових вод: а - станом на 1996 р.; б - за період 1996-2000 рр.

Як свідчать наземні обстеження, значні площі соснових лісів пошкоджені кореневою губкою, що візуально фіксується лише на кінцевій стадії захворювання, коли дерева гинуть і в лісі з'являються поляни. Це значно ускладнює визначення площі уражених лісів, особливо на початковій стадії. На відміну від пошкодження сосни сосновим шовкопрядом, інтенсивність пошкодження кореневою губкою не змінюється в часі. Дані про вплив на дерева та розповсюдження осикового трутовика і березової губки дуже обмежені, що вплинуло на їх виділення за спектральними яскравостями.

Несприятливий вплив на стан соснових і листяних лісів спричинений зміною гідрологічного режиму в Зоні: після аварії припинено роботу дренажної системи, внаслідок чого підвищився рівень ґрунтових вод, заболочуються окремі території. Візуально фіксувати цей процес дуже складно, необхідні моніторингові дослідження, які зараз не проводяться.

Для визначення фітосанітарного стану лісів території що досліджується (рис. 2.10) з використанням матеріалів дистанційних зйомок було підібрано 48 характерних тестових ділянок для калі бровки матеріалів дистанційних зйомок, інформація про які стала базою наземної апріорної інформації.

Рис. 2.10. Схема фітосанітарного стану лісових масивів правобережжя р. Прип'ять в межах зони відчуження ЧАЕС (багатозональний знімок з КА “Spot-4”, 14.07.98 р.): - соснові ліси найбільш пошкоджені; - середнього ступеню пошкодженості; - послаблені дією негативних факторів

Аналіз оптичних властивостей соснових лісів, одержаних за багатозональним космічним знімком з КА “Spot-4”, дозволив виявити вплив вищезгаданих негативних факторів на зміни інтенсивності спектральних яскравостей рослинності. Найбільш чітко виявився вплив соснового шовкопряда, що знайшло відображення у підвищенні спектральних яскравостей в зеленій, червоній і середній ІЧ зонах спектру та зменшенні у ближній ІЧ зоні. За ступенем відмінності спектральних яскравостей здорові та пошкоджені сосновим шовкопрядом ліси були розподілені на дві групи - слабо пошкоджені та пошкоджені.

Вплив кореневої губки на оптичні властивості соснових лісів підібраний до впливу соснового шовкопряду, але менш чітко виражений. Виявилось, що оптичні властивості сосни, ушкодженої кореневою губкою, і сосни, слабо пошкодженої сосновим шовкопрядом, дуже близькі.

Вплив підтоплення на оптичні властивості сосни менш інтенсивний, ніж вплив пошкодження сосни сосновим шовкопрядом або кореневою губкою. Крім того, він визначається за характером змін спектральних яскравостей у різних каналах видимого спектру.

Отже, проведені дослідженні свідчать про те, що хвороби та несприятливі умови існування соснових лісів позначаються на їх оптичних властивостях, які можна зафіксувати за даними багатозональної космічної зйомки.

Аналіз спектральних яскравостей рослин дозволив визначити ліси, пошкоджені гусінню соснового шовкопряду та кореневою губкою.

Уражені кореневою губкою соснові ліси невеликі за площею. Простежується тісний просторовий зв'язок найбільших за площею ділянок, пошкоджених кореневою губкою, з ділянками початкового ушкодження сосновим шовкопрядом. Враховуючи характер розвитку цих захворювань, можна припустити, що сосновий шовкопряд пошкоджує передусім ліси, послаблені кореневою губкою.

Соснові ліси, пошкоджені гусінню соснового шовкопряда, займають декілька порівняно великих відокремлених ділянок, переважно в центрі Зони.

Схема фітосанітарного стану лісів, складена з використанням значень спектральних яскравостей і вегетаційних індексів, підтверджує, що соснові ліси широко розповсюджені на цій території. Виділяються площі, які майже повністю пошкоджені сосновим шовкопрядом. За спектральними характеристиками визначено площі лісів, більш-менш інтенсивно ушкоджених гусінню соснового шовкопряду. Проведена у польових умовах перевірка підтвердила надійність одержаних результатів досліджень, та передані для використання у виробничих умовах.

2.5.6. Картування ділянок підвищеної природної пожежобезпечності

Лісові пожежі, зокрема у зоні відчуження ЧАЕС, ускладнюють екологічну й радіологічну обстановку, спричиняючи повторне забруднення території повітряним перенесенням продуктів згоряння. Тому найактуальніше завдання - своєчасне їх попередження, проведення застережних протипожежних і спеціальних еколого-лісівничих довготривалих заходів для підвищення природної стійкості деревостанів, впорядкування лісокультурних площ.

Для оцінки пожежобезпечності рослинного покриву території зони відчуження ЧАЕС використано запропонований в Центральному агентстві з космічного дистанційного зондування (ЦАКЗД) НАН України методичний прийом, який враховує вегетаційні індекси та значення спектральних яскравостей у середньому ІЧ каналі знімка з КА “Spot-4”, що відповідають ступеню зволоженості поверхні Землі. На рисунку позначено три ступені природної небезпеки виникнення пожеж (рис. 2.11). Найбільш небезпечними є соснові ліси, які інтенсивно пошкоджені сосновим шовкопрядом і перетворилися в суцільний сухостій. Значно меншу небезпеку становлять листяні ліси, оскільки вони розповсюджені на більш зволожених та заболочених ділянках. Інші території віднесено до проміжного ступеню природної пожежобезпечності.

Рис.2.11. Схема природної пожежобезпечності центральної частини зони відчуження ЧАЕС (багатозональний знімок з КА “Spot-4”, 14.07.98 р.). Ступені пожежобезпечності у відповідності до стану рослинності на момент зйомки: соснові ліси - - висока; - середня; - порівняно низька; листяні ліси - - низька; перелоги, луки, згарники - - висока; - середня; - вода; - пісок та відкриті піщані ґрунти

Схема природної пожежобезпечності використовувалась у практичній роботі ДСВКЛП “Чорнобильліс”, а також для проведення застережних протипожежних заходів, упорядкування лісокультурних площ у 1999 році.

2.5.7 Вивчення рослинності

Це завдання вирішувалось на матеріалах досліджень Зони відчуження ЧАЕС, рослинність якої всебічно вивчена наземними та дистанційними методами. Інші райони України не охоплені таким повним набором дистанційних і наземних даних.

На територію Зони відчуження зроблено лише один знімок високої розрізнювальної здатності сканером МСУ-В з КА “Океан-О” (рис. 2.12). Але його виконано не в оптимальні для вивчення рослинності терміни: восени, 03.10.99 р., коли значна частина листя опала, а у хвойних деревах послаблені процеси обміну в голках. Порівняно з літнім періодом, восени на оптичні властивості рослинності має значний вплив відбиття (поглинання) випромінювання стовбурами та гілками дерев.

Рис. 2.12. Схема класифікації рослинності східної частини зони відчуження ЧАЕС за типами рослинних угруповань (багатозональні знімки з КА “Spot-4”, 03.10.99 р.): 1 - ліси з перевагою сосни; 2 - соснові ліси, пошкоджені сосновим шовкопрядом; 3 - розріджені змішані листяні ліси та площі, що заростають вербою; 4 - змішані листяні ліси з перевагою берези; 5 - залісення територій переважно молодою березою; 6 - змішані листяні ліси з перевагою вільхи; 7 - акація; 8 - луги та заплавні луки; 9 - перелоги; 10 - зварники; 11 - відкриті піщані ґрунти з рідкою трав'янисто-чагарниковою рослинністю; 12 - вода; 13 - техногенні об'єкти; 14 - хмари; 15 - тіні від хмар

З метою оцінки можливостей знімків з КА “Океан-О” для вивчення рослинності було проведено класифікацію з вивченням зображень знімка (рис.2.12) від 03.10.99 р. Її проведено за методом максимальної вірогідності - як найбільш інформативного, з використанням програмного продукту ERDAS Imagine. Об'єкти дослідження включали всі основні різновиди рослинного покриву, які були вибрані на підставі матеріалів лісовпорядкувальних робіт та відносно рівномірно розповсюджені на досліджуваній території. Крім різновидів рослинності враховані елементи ландшафту, які займають досить значну площу, - це водна поверхня, населені пункти, проммайданчик ЧАЕС та піщані дамби.

Встановлено, що в межах досліджуваної території відокремлюються всі основні елементи ландшафту. Це соснові ліси, пошкоджені сосновим шовкопрядом, ліси з перевагою вільхи або берези. Інші види листяних лісів виділити не вдалося. Помітно відокремлюються перелоги, добре видно їх ділянки, що заростають сосною та листяними породами дерев. Відносно добре відокремлюються зварники у лісах. За даними досліджень, у межах зварників відбувається інтенсивний процес заростання. Практично не виділились ті види рослинності, які займають невеликі відокремлені ділянки. Це деревостани з перевагою дуба та осики, посадки акації, сади тощо. Серед не пов'язаних з рослинністю елементів ландшафту найчіткіше відокремлюються природні й техногенні об'єкти. Відкрита водна поверхня також добре відрізняється, але місцями відокремлюються невеликі хибні водні поверхні. Не відокремились населені пункти і техоб'єкти.

За даними наземної перевірки, достовірність наведеної класифікації задовільна.

Співставлення результатів класифікації ландшафтів за даними знімків з КА “Океан-О” з результатами аналогічної класифікації ландшафтів за багатозональним знімком високої розрізнювальної здатності з КА “Spot”, зробленого 14.07.98 р. У чотирьох зонах спектру, показало, що на обох знімках чітко відокремлюються основні види рослинності, природні та техногенні елементи ландшафту, просторове розрізнення яких ідентичне.

Однак значно менша розрізнювальна здатність знімка з КА “Океан-О”, неоптимальний час проведення зйомки та менша кількість спектральних каналів обумовили те, що за даним знімком відокремилось менше класів ландшафту, ніж за знімком з КА “Spot”.

На рис. 2.12 наведено класифікацію рослинності зони відчуження, складену за результатами обробки двох знімків, але межі між ними встановити важко, що свідчить про близькість отриманих результатів.

ІІІ. ЕКОЛОГІЯ КОСМОСУ

Проникнення людини в космос - природний і логічний крок (рис. 3.1). Необхідність в цьому обумовлена двома основними причинами: отримання нових підходів і можливостей наукового дослідження і пізнання світу; пошук нових джерел для задоволення енергетичних потреб всього людства на планеті Земля, а отже, і вирішення однієї із глобальних екологічних проблем ресурсозберігання та природокористування.

Рис. 3.1. Робота людини в навколоземному космічному просторі

Перш за все, космічна техніка відкриває можливості по-новому поставити вивчення нашої планети, і в тому числі вирішити екологічні проблеми. Вже перші ШСЗ дозволяли з великою точністю визначити форму Землі, що при використанні наземних засобів потребувало би багаторічної праці. Вимірювання, які були проведені за допомогою супутників, космічних зондів, спрямованих до Місяцю, Венери, Марсу і інших планет Сонячної системи, ніби розсунули межі контактів Землі з світовим простором.

Космічні дослідження нерозривно пов'язані з енергетикою Землі. Сучасна енергетики орієнтована на використання, головним чином, не поновлюваних органічних палив (нафта, газ, вугілля), спалювання яких дає більше 80 % усієї використовуваної енергії.

Вирішення проблем енергетики Землі пов'язують зі створенням так званої “тривимірної” енергетики, сенс якої полягає у виносі до космосу перетворювачів сонячної енергії з наступною передачею енергії на Землю.

Конкретні приклади створення “тривимірної” енергетичної інфраструктури визначають роботу у декількох напрямках: створення космічних електростанцій для енергозабезпечення Землі і забезпечення транспортних операцій в навколоземному космічному просторі (рис. 3.2); освітлення районів Землі за допомогою орбітальних станцій, таких як “Мир”, яка за допомогою пристроїв відбиття освітила частину поверхні Землі на півдні Росії (подібний експеримент проводився і в Україні (див. рис. 3.3); створення космічних ліній передачі енергії на велику відстань; управління тепловим і світловими режимами районів Землі.

Рис. 3.2. Створення космічної електростанції для енергозабезпечення Землі

Сучасний світ неможливо уявити без космонавтики; достатньо зауважити, що супутники забезпечують точність роботи систем всього світу, а космічні системи забезпечують функціонування супутникового телебачення, прогнозують погоду, здійснюють космічний моніторинг Землі.

Рис. 3.3. Експеримент з освітлення районів Землі за допомогою орбітальної станції “Мир” (Росія)

Супутники раннього виявлення ядерних вибухів та інших техногенних катастроф забезпечують інформацією наземні служби спостереження практично в реальному масштабі часу. Але одночасно інтенсивне освоєння космічного простору в мирних (позитивних) цілях використовується також військово-промисловому комплексі (ВПК).

3.1 Ракетно-космічні комплекси

Ракетно-космічний комплекс (РКК) - це сукупність функціонально пов'язаних космічних апаратів (КА) і наземних технічних засобів, призначених для самостійного вирішення поставлених задач у космосі (рис. 3.4).

Рис. 3.4. Технологічні експерименти на орбіті Землі

Ракетно-космічний комплекс включає ракету-носій, космічний апарат, технічний комплекс, стартовий комплекс, засоби вимірювального комплексу космодрому і наземний комплекс керування космічним апаратом.

Космодром - це комплекс соціально підготовлених земельних територій зі спорудами і обладнанням, які забезпечують зборку, підготовку до пуску і пуск ракетно-космічної системи, вимірювання траєкторії її польоту, видачу команд, а також приймання і обробку телеметричної інформації, яка надходить з ракетно-космічної системи. До складу космодрому також входять земельні та водяні ділянки для падіння відпрацьованих ступенів ракет-носіїв і для посадки космічних об'єктів, які повертаються.

В теперішній час більш як 10 країн світу мають свої програми освоєння космосу. З них такі країни спроможні виводити до космосу за допомогою своїх носіїв: Росія, США, Франція, КНР, Великобританія, Індія.

За своєю структурою ракетно-космічні системи частіше за все представляють собою багатоступеневий комплекс, який включає до свого складу декілька ракетних блоків і корисне навантаження, яким може бути космічний корабель, космічна станція, штучний супутник планети, різного роду космічні апарати, включаючи і апарати військового призначення.

Таблиця 3.1

Класифікація ракет-носіїв

Клас РН

Стартова маса, т

Корисне навантаження, т

Легкі

до 100

до 5

Середні

до 300

5...20

Важкі

до 1000

20...100

Надважкі

Понад 1000

Понад 100

Таблиця 3.2

Загальна характеристика ракет-носіїв

Тип

Стартова маса, т/маса палива, т

Корисне навантаження, т

Кількість ступенів

Протон

600/500

20

3(4)

Енергія

2400/1806

100

2

Титан-СЛВ-5

630/548

20

2+2 приск.

Спейс-Шатл

2000/1806

100

2

Основною функцією ракети-носія (РН) є надання першої космічної швидкості (7,9 км/с) корисному навантаженню.

Визначають чотири класи РН. У табл. 3.1 - 3.2 наведені прийнята класифікація РН та загальні дані зі стартової маси і корисного навантаження РН, які під час старту здійснюють найбільш потужний вплив на всі шари атмосфери.

3.2 Фактори техногенного впливу космічного польоту на довкілля

В залежності від цілі, поставленої перед космічним апаратом, його можливо скеровувати в різні райони космічного простору. Аналіз цих районів довів, що експлуатація РКТ пов'язана з впливом на природне середовище в масштабах як екосфери Землі (літосфера, атмосфера, гідросфера), так і Сонячної системи.

Експлуатація ракетно-космічних комплексів ставить ряд екологічних проблем, найважливіші з яких є:

шкідливий вплив продуктів згорання ракетних палив на атмосферу Землі;

проблеми знищення озонового шару Землі і електронного компонента атмосфери;

забруднення космічного простору фрагментами ракетно-космічної техніки;

необхідність відчуження значних земельних територій під райони падіння окремих складових ракет-носіїв по трасам їх пусків.

Техногенні фактори, які впливають на навколишнє середовище при експлуатації РКТ, суттєво відрізняються за параметрами факторів від більш розповсюджених видів антропогенних факторів впливу на навколишнє середовище. До таких факторів відносяться:

принциповий характер можливого фізичного механізму впливу на оточуюче середовище;

масштаби можливого впливу (локальні або глобальні);

середовище, на яке здійснює вплив РКТ (суша, вода, атмосфера);

характер впливу (за терміном часу).

Можливість глобального впливу РКТ на природне середовище обумовлюється, по-перше, тим, що траєкторія руху РН при виведенні КА проходить крізь всі шари атмосфери над територіями регіонів, значно віддалених від місця старту, по-друге, тим, що КА і останні ступені ракет, які виведені на орбіту при гальмуванні у верхніх шарах атмосфери, при неповному їх згорянні в атмосфері представляють загрозу для великих територій на поверхні Землі, а ті з них, які можуть тривалий час існувати в навколоземному просторі, забруднюють його після припинення їх активного існування і являють собою загрозу для тих КА, які будуть виводитись в космічний простір.

До глобальних факторів екологічного впливу можна віднести:

викиди продуктів згоряння в атмосферу (в тому числі токсичні) при роботі РН на активній ділянці;

згоряння в атмосфері відпрацьованих ступенів РН та КА;

забруднення навколоземного простору фрагментами відпрацьованих пристроїв (КА, останні ступені РН, окремі елементи конструкції);

падіння в непередбачених ділянках території з відпрацьованих елементів конструкцій як РН, так і КА в аварійних ситуаціях.

До локальних факторів впливу можна віднести:

проливання токсичних компонентів палива при його транспортуванні до місця заправки і при самій заправці;

штатне падіння відпрацьованих ступенів РН;

розповсюдження звукового тиску і ударні хвилі при русі РН;

викиди продуктів згоряння при стендовому відпрацюванні двигунів.

3.3 Вплив ракетно-космічної техніки на озоновий шар Землі

Озон руйнується в результаті впливу водяної пари, який міститься в значній кількості в продуктах згоряння, а також оксидів азоту і кисню повітря під дією високих температур в факелах ракетних двигунів, і при польоті практично будь-якого РН в озоновому шарі утворюється озонове вікно. Модель руйнування озонового шару при одиночному пуску РН "Енергія” можна уявити у такий спосіб. У сліді ракети діаметром декілька сот метрів озон руйнується повністю на усіх висотах практично миттєво. Під впливом макротурбулентної дифузії речовини, що викидаються, перемішуються в радіусі багатьох кілометрів за декілька годин. Вміст озону в цьому стовпі на висотах 16...24 км зменшується на 15...20 % через 2 години, а потім озон поступово відтворюється. Хмара викидів в атмосфері після одного тижня досягає розмірів декілька сот кілометрів. Максимальне руйнування озону в хмарі відбувається на висотах 24...30 км приблизно через 24 доби після проходження РН. Одночасно в тропосфері і іоносфері відбувається відтворення озону. З урахуванням комплексного позитивного ефекту загальний вміст озону у районі пуску РН “Енергія” (в межах вертикального стовпа діаметром 550 км) знижується через 24 доби на 1,7 %, або у масовому відношенні на 27 тис. т. В табл. 3.3-3.4 наведені дані руйнування озонового шару.

Таблиця 3.3

Діаметр зони руйнування озону при реакції з СО на різних висотах

Ракета-носій

Висота, км

20

30

40

50

Аріон-4

0,9

1,0

2,6

9,2

Протон

1,2

1,4

3,5/2,7

9,7

Атлас

1,5

1,7

4,3

15,3

Титан

4,6

5,4

13,5/1,7

6,0

Спейс-Шаттл

3,6

4,3

10,7

0

Енергія

3,2

3,8

9,5

0

Дельта

2,9/1,8

1,3

3,2/0,8

2,8

Скаут

1,2/0,9

1,0

2,5/1,2

4,3

Таблиця3.4

Розмір (Г) зони локального руйнування озону в результаті фотодисоціації для різних РН і час (t) її досягнення

Ракета-носій

Висота, км

40

50

Г, км

t, год

Г, км

t, год

Енергія

5,6

2,5

34,0

9,0

Аріон-4

1,3

0,8

10,0

3,7

Атлас

0,77

0,5

5,0

2,4

Протон

0,24

0,22

1,8

1,0

Дельта

0,19

0,17

1,5

0,83

3.4 Вплив пусків ракетоносіїв на іоносферу

При польоті в іоносфері основний продукт згоряння важких РН, що працюють на киснево-водневому паливі, - вода. Враховуючи відсутність води на великих висотах, сам факт її появи в іоносфері є

фактором забруднення природного середовища, що становить потенційну небезпеку порушення природної рівноваги.

На висотах 70...90 км, де найбільш низька температура, молекули води швидко перетворюються у кришталики льоду. На ще більших висотах в іоносфері спостерігається взаємодія водяного пару з іоносферною плазмою. В результаті утворюються зони з пониженою щільністю електронів, які змінюють характер розповсюдження радіохвиль різних частот, що призводить до порушення зв'язку тощо. Спостерігається також аномальне світіння.

Часто ефекти, пов'язані з впливом пусків РН на іоносферу, називають іоносферними "діркамиШ. Вперше утворення іоносферних дірок було зафіксовано у 1973 році при виведенні на навколоземну орбіту американської станції Scylab, за допомогою РН ”Сатурн-5”, двигуни якої працювали включно до висот 300 - 500 км. На цих висотах іонізація іоносфери максимальна.

В місті проходження РН концентрація електронів зменшилась більш ніж у 2 рази, а площа дірки досягла 1 млн. км кв.

Питання, пов'язані зі зниженням антропогенного впливу на іоносферу, знаходяться на стадії дослідження утворення іоносферних “дірокШ. Жодних методів зниження техногенного впливу поки що не розроблено.

3.5 Космічне сміття

Кожний запуск КА в космічний простір супроводжується утворенням на орбітах декількох десятків елементів конструкції, що відділяються від супутників і ракет-носіїв. За роки космічної ери на навколоземних орбітах було зареєстровано більш ніж 20 тис космічних об'єктів штучного походження розміром близько 10 см. Служба нагляду за космосом США на початок 1992 року вела стеження за 7200 об'єктами штучного походження (ОШП). З них тільки 5 % є функціонуючими ШСЗ, 23 % відпрацьовані ШСЗ, 10 % відпрацьовані ступені РН. Решта 63 % фрагментарні залишки РКС. В числі 7200 об'єктів 58 супутників (діючих і непрацездатних) мають на борту в енергетичних установках радіоактивні речовини масою більш ніж одна тонна.

Екстраполяція за допомогою математичних моделей показує, що число фрагментів розміром 40 мм становить понад 18 тис.

Крім того, накопичилося 50...70 тис. часток розміром 1...2 см. Кількість ще дрібніших частинок оцінюється десятками мільйонів.

Основна небезпека космічного сміття пов'язана з космічними швидкостями зіткнення орбітальних фрагментів з КА. Наприклад, частинка діаметром 0,5 мм може пробити космічний скафандр. Найбільша їх концентрація в діапазоні висот 300...1600 км.

В найближчий час видалення фрагментів космічного сміття уявляється проблематичним і потребує економічних витрат і подальшої роботи в цьому напрямку.

3.6 Дистанційний агро моніторинг

3.6.1 Мета сучасної системи агромоніторингу

Сучасна система моніторингу сільськогосподарських об'єктів має остаточну мету - визначення стану посівів сільськогосподарських культур (для прийняття рішень щодо управління продукційними процесами), прогнозу їх урожайності та визначення угідь і ґрунтів.

3.6.2 Недоліки існуючої системи збору інформації

Методи оцінки продуктивності й моделі прогнозування врожайності, розроблені в УкрДНДПТІ "Агроресурси", базуються на наземній агрометеорологічній та агробіологічній інформаціях, які збирають у певні фази вегетації рослин. Надходження такої інформації забезпечує мережа агро-метеостанцій Держкомгідромету, системи пунктів сигналізації та прогнозу поширення шкідників, хвороб і бур'янів, системи карантину, сортовипробувань, станцій захисту рослин. Моніторинг ґрунтів складається з періодичних обстежень ґрунтового покриву та угідь і оновлення на їх основі карт ґрунтів та землекористування. Ці роботи виконують в Інституті Укрземпроект та його обласних філіях.

Таким чином, існуюча система збору інформації є досить громіздкою. Вона не завжди забезпечує оперативність отримання інформації (наприклад, характеристик стану ґрунтів). У виробничому режимі можливе одержання результатів спостережень лише в окремих точках на невеликій кількості ділянок метеостанцій, станцій захисту рослин та ін. Тобто, наявна мережа наземних спостережень не може забезпечити адекватною інформацією для завдань прогнозування на великих площах різних територіально-адміністративних рівнів. Це вносить значну похибку при прогнозуванні за рахунок вирівнювання просторових неоднорідностей у розподіленні параметрів.

При використанні дистанційних методів інформаційна база для оцінки продуктивності та прогнозу врожайності може бути значно розширена. Про це свідчить сучасний досвід США (експеримент LАКІЕ, програма LАМР та ін.), Франції (АСТІОN IV), Великій Британії.

3.6.3 Принципові можливості дистанційних методів агромоніторингу

Для вирішення згаданих завдань найважливіші такі принципові можливості дистанційних методів:

проведення регулярного оперативного контролю за станом об'єктів;

одержання просторово визначених характеристик посівів і ґрунтів з різною просторово-часовою роздільною здатністю;

одночасність прямого виміру важливих агрофізичних параметрів;

одержання послідовного ряду зйомок для виявлення сезонних та довгострокових змін;

визначення змін, необхідних для програм регулювання при оновленні інформації про стан місцевості;

порівняно невисокі витрати на моніторинг;

включення зйомок у систему сучасного моніторингу;

одержання значень таких параметрів посівів, наземні виміри яких у виробничих умовах, як правило, не проводять через велику трудомісткість контактних методів (наприклад, фітомаси).

Сучасний стан розвитку дистанційних досліджень дає змогу встановлювати певний перелік показників, необхідних для моделювання прогнозу врожайності в різні фази вегетації.

Раціональне поєднання даних, одержаних дистанційними засобами спостереження, враховуючи їх можливості, і даних наземних метеорологічних та агробіологічних спостережень дасть змогу підвищити рівень інформаційного забезпечення прогнозування стану та врожайності сільськогосподарських культур.

Вирішення зазначеної проблеми забезпечується проведенням науково-дослідних та дослідно-конструкторських робіт УкрДНДПТІ "Агроресурси" щодо створення та поетапного введення в експлуатацію галузевої інформаційної системи комплексної обробки аерокосмічної та наземної інформації (ГІСКОАНІ).

3.6.4 Функціональне призначення галузевої системи комплексної обробки аерокосмічної та наземної інформації (ГІСКОАНІ)

Передбачається, що функціональним призначенням такої системи має стати систематичне дистанційне спостереження за станом сільськогосподарських культур, рослинності, угідь та ґрунтів у процесі господарської діяльності з метою поступової оцінки (контролю), прогнозу та видачі рекомендацій щодо управління і забезпечення користувачів на всіх ієрархічних рівнях управління оперативною, середньостроковою та довгостроковою інформацією.

Об'єктом досліджень такої системи має бути система агроландшафтів та їх складових і характеристик (табл.2.1).

Таблиця 2.1

Об'єкти досліджень ГІСКОАНІ

Об'єкти досліджень, їх складові та характеристики

Регіональний рівень

Локальний та детальний рівень

1

2

3

Посіви сільськогосподарських культур:

види культурної рослинності;

+

+

ступінь розвитку рослин;

-

+

загальний стан посівів.

Стан посівів диференційовано:


Подобные документы

  • Основні типи космічних апаратів для аерокосмічного моніторингу. Основні види даних дистанційного зондування Землі, що використовуються для моніторингу і прогнозування майбутнього стану довкілля. Зйомка поверхні Землі: технології збору та обробки даних.

    курсовая работа [2,0 M], добавлен 07.08.2013

  • Аналіз раціонального комплексу експрес-методів еколого-геологічного моніторингу забруднення довкілля нафтою і нафтопродуктами. Дослідження природи локальних температурних аномалій у приповерхневих шарах, пов’язаних із забрудненням ґрунтів нафтопродуктами.

    автореферат [52,5 K], добавлен 22.11.2011

  • Екологічний моніторинг довкілля як сучасна форма фіксації процесів екологічної діяльності, його основні задачі. Що таке регіональний екологічний моніторинг. Система моніторингу довкілля в Чернівецькій області. Планування природоохоронної діяльності.

    доклад [17,1 K], добавлен 11.11.2010

  • Сутність екологічного моніторингу. Суб’єкти системи моніторингу навколишнього природного середовища України та координація їх діяльності. Організація охорони навколишнього середовища в Європейському Союзі та правові основи співпраці із Україною.

    дипломная работа [1,5 M], добавлен 07.06.2013

  • Основні методи та структура екологічних досліджень. Еволюція та склад біосфери. Джерела забруднення довкілля. Види та рівні екологічного моніторингу. Характеристика основних показників екологічного нормування. Екологічні права та обов'язки громадян.

    шпаргалка [177,5 K], добавлен 16.01.2010

  • Історія екології, її підрозділи та основні поняття. Міжнародне співробітництво у галузі охорони довкілля та моніторинг навколишнього середовища. Основні завдання екологічного забезпечення професійної діяльності. Антропогенний вплив на довкілля.

    курс лекций [589,4 K], добавлен 04.01.2009

  • Екологічний моніторинг як засіб визначення екологічного стану навколишнього середовища. Особливості регіонального екологічного моніторингу агросфери. Система екологічного моніторингу м. Києва. Проблеми глобального екологічного моніторингу.

    курсовая работа [330,1 K], добавлен 10.04.2007

  • Екологічний стан об'єктів навколишнього середовища на територіях, порушених діяльністю гірничої промисловості, з використанням біоіндикаційних та фізико-хімічних методів дослідження. Стан здоров'я населення, яке мешкає у гірничопромислових центрах.

    автореферат [269,8 K], добавлен 03.04.2009

  • Дослідження обґрунтування організації екологічного моніторингу. Аналіз та оцінка викидів, скидів та розміщення відходів підприємства у навколишньому середовищі. Характеристика шляхів зменшення негативного впливу трубопрокатного виробництва на довкілля.

    дипломная работа [1,6 M], добавлен 18.05.2011

  • Екологічний контроль як функція державного управління природокористуванням. Контроль як гарантія ефективності механізму охорони навколишнього середовища. Цілі державної екологічної експертизи. Екологічний моніторинг, його форми і методи проведення.

    реферат [26,1 K], добавлен 20.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.