Технические и эксплуатационные методы обеспечения экологической безопасности

Перспективные типы двигателей внутреннего сгорания, их экономичность; альтернативные виды топлива для ДВС. Изменение процессов подачи топлива, применение присадок; фильтры и катализаторы выхлопных газов. Системы локальной очистки воздуха над магистралями.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 05.08.2013
Размер файла 340,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

- Одно из направлений состоит в снижении токсичности отработавших газов в результате их рециркуляции, т. е. повторного засасывания в цилиндры (вместе с порцией новой горючей смеси) с целью дожигания СО и СН и снижения количества окислов азота непосредственно в цилиндрах двигателя. Однако это ведет к некоторому ухудшению характеристик двигателя, не говоря уже об усложнении конструкции двигателя.

Размещено на http://www.allbest.ru/

Катализаторы отработавших газов в выпускной системе бензиновых двигателей

В конце 60-х годов, когда мегаполисы Америки и Японии стали буквально задыхаться от смога, инициативу взяли на себя правительственные комиссии. Именно законодательные акты об обязательном снижении уровня токсичных выхлопов новых автомобилей вынудили промышленников усовершенствовать двигатели и разрабатывать системы нейтрализации.

В 1970 году в Соединенных Штатах был принят закон, в соответствии с которым уровень токсичных выхлопов автомобилей 1975 модельного года должен был быть в среднем наполовину меньше, чем у машин 1960 года выпуска: СН -- на 87%, СО -- на 82% и NOх -- на 24%. Аналогичные требования были узаконены в Японии и в Европе.

Первым делом инженеры бросились совершенствовать системы питания и зажигания. Но было очевидно, что добиться столь существенного улучшения ситуации с токсичностью без применения дополнительных устройств просто невозможно.

В 1975 году на американских машинах появились первые катализаторы отработавших газов -- тогда еще двухкомпонентные, так называемого окислительного типа. Двухкомпонентными они назывались потому, что могли нейтрализовать только два токсичных компонента -- СО и СН. Окислительными -- потому, что происходившие реакции представляли из себя окисление (то есть фактически дожигание) молекул СО и СН с образованием углекислого газа СО2 и воды Н2О.

В 1995 году фирма ”Эмитек” разработала технологию подогрева катализатора мощным электрическим сопротивлением. Основанная на этом принципе модель катализатора ”6С” (или ”Эмикэт”) была установлена на ”БМВ-Альпина В12”.

Ну и, наконец, в 2000 году появилась цеолитовая ловушка углеводородов (СН), задерживающая их при пуске мотора и лишь после нагрева до 220°С отдающая на "съедение" готовому к работе катализатору.

Система каталитического дожигания работает следующим образом.

Для дожигания лишнего СО необходима температура около 800 градусов. Естественно, что в середине выпускного тракта такой температуры нет. Катализатор как раз и служит такой печкой, которая работает на бензине и дает нужную температуру. Устройство его - керамические пластины с сотовой структурой для увеличения поверхности. Покрыты платиново-родиевым сплавом, который и есть катализатор. При попадании паров бензина при температуре около 300 градусов происходит каталитическая реакция окисления углеводорода - паров бензина- с выделением тепла. При этом температура повышается до необходимых 800 градусов и СО дожигается. Процессом подачи бензина управляет лямбда-зонд, дающий сигнал на Мотроник о необходимости обеднить или обогатить смесь. Состав выхлопа можно представить упрощенно следующим образом 100% = %(2СО + О2)+CO2. Лямбда-зонд как раз и измеряет содержание О2 в выхлопе. Если сгорание СО неполное, то % (2CO + О2) в выхлопе увеличивается. Датчик содержания кислорода-лямбда-зонд, подает сигнал на обогащение смеси. Температура сгорания в цилиндрах повышается, на катализатор попадает большее количество бензина и температура возрастает. При этом более интенсивно происходит окисление СО кислородом О2 до состояния СО2, т.е., углекислого газа, который безопасен.

Разрушение может начаться по причине спекания керамических пластин катализатора. Происходит это чаще всего при несоблюдении условий эксплуатации. Например, при попытке завести автомобиль «с толчка», если двигатель не заводится - на катализатор попадает чистый бензин. В этом случае после того, как двигатель заведется, температура на пластинах растет очень резко. Керамика трескается, могут появиться мелкие керамические частицы. При малейшем нарушении фаз газораспределения (изношенный ремень, распредвал) керамические частицы могут на некоторых режимах работы засасываться в цилиндры из выпускного тракта.

Способ очистки отработавших газов (патент RU (11) 2108140 (13) C1)

Использование: очистка отработавших газов химических и топливно-энергетических процессов, а также транспортных газовых выбросов для снижения эмиссии оксидов азота и продуктов неполного сгорания в атмосферу. Сущность изобретения: очистку газов осуществляют в две стадии обработкой на блочных высокопористых катализаторах: на первой стадии осуществляют окисление газов и используют оксидный катализатор на основе перовскита, а на второй стадии осуществляют восстановление при использовании катализатора на основе модифицированного цеолита с одновременным введением водорастворимых NH-содержащих восстановителей. Технический результат: повышение эффективности процесса и операционной стабильности при одновременной экономичности, а также возможность проведения очистки выхлопных газов холодного двигателя. 9 з.п. ф-лы, 6 табл.

Описание изобретения

Изобретение относится к технологии комплексной газоочистки и может быть использовано для детоксикации оксидов азота и продуктов неполного сгорания в отходящих газах стационарных топливно-энергетических установок и двигателей внутреннего сгорания бензинового или дизельного транспорта.

Основной традиционный способ очистки выхлопных газов основывается на использовании единого мультифункционального катализатора, который осуществляет наряду с окислением CO, углеводородов, сажевых аэрозольных частиц одновременное восстановление NOx до нейтральных молекул [1-3].

Для этого используются многокомпонентные каталитические системы, содержащие благородные металлы (Pt, Rh, Ir, Pb, Ru и промоторы, нанесенные на блочные носители и фильтры сотовой структуры [4 и 5].

Однако упомянутые каталитические методы не являются универсальными, они содержат дорогостоящие активные компоненты, склонные к отравлению и уносу. К тому же для нестационарных дизельных установок, работающих при пониженных температурах, в окислительных режимах, с большим содержанием твердых частиц и полиароматических углеводородов, а также серы, хлора существующие методы не могут обеспечивать достаточно полной защиты.

Наибольшее значение для очистки дизельных выхлопных газов с избытком кислорода приобретает проблема нейтрализации наиболее токсичных компонентов - оксидов азота (De-NOx). В этих условиях даже наиболее совершенные сажевые регенерируемые фильтры-катализаторы, несмотря на использование благородных металлов, не решают проблемы De-NOx требуемым образом. То же самое относится к механическим сажевым фильтрам, регенерация которых осуществляется с помощью специальных блоков катализаторов или электрических нагревателей, расположенных перед фильтром [6-8].

Для подавления оксидов азота в теплоэнергетических выбросах широкое распространение получил метод селективного каталитического восстановления (СКВ) аммиаком как восстанавливающим агентом [9].

Однако применение метода СКВ аммиаком или углеводородными восстановителями в нестационарных транспортных условиях с обедненной топливной смесью существенно осложняется.

Известен способ низкотемпературного селективного некаталитического восстановления (СНВ), где в качестве восстановителя используют соединения типа карбамида или его производных, бикарбоната аммония и др., которые удобно вводить в реакционное пространство в виде водного раствора [10 и 11]. Описан метод СНВ с использованием волокнистых [12] и гранулированных [10 и 13] носителей, полочного реактора из многослойных металлических тарелок [14].

В этом методе восстановитель-карбамид вводят на поверхность носителей и селективно расходуют в реакции нейтрализации до полного истощения. Этот метод имеет ряд существенных преимуществ перед СКВ: отпадает необходимость постоянно поддерживать требуемое соотношение реагентов, отсутствие дорогостоящего и нестабильного катализатора, отравляющегося примесями серы, возможность работы при избытке кислорода.

Однако рассматриваемый метод некаталитического восстановления не лишен многих существенных недостатков.

Значительным недостатком способа является высокое газодинамическое сопротивление используемых гранулированных носителей фракционного состава 0,5 - 5,0 мм, что создает низкие скорости пропускания газа 0,1-0,3 м/с, неприемлемые для очистки выхлопных газов.

Кроме того, используемые гранулированные носители [10, 12, 13] не обладают необходимой механической прочностью, влаго- и кислостойкостью (табл. 4). В процессе эксплуатации они достаточно быстро разрушаются, что приводит дополнительно к резкому повышению сопротивления слоя гранул и забиванию реактора.

Носители с низкой пористостью [12 и 14] имеют малый запас емкости восстановителя. Основным наиболее важным недостатком описанного метода СНВ является низкая степень улавливания монооксида азота - основного компонента топливным газов. Поэтому при использовании карбамида, хотя конверсия по NO2 и достигает 98%, конверсия по NO остается низкой 20-30%. Этот существенный недостаток в [15] устраняется введением специальных окислителей (O3, KMnO4, ClO2 и др.). Однако это не экономично, т.к. они в избытке расходуются в значительных количествах.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является двухстадийный способ очистки газов, включающий использование двух слоев катализаторов [16].

На первой стадии на оксидном цинкхромовом катализаторном слое осуществляется окисление метана, вводимого в качестве восстановителя в кислородсодержащую газовую среду. На второй стадии, очищаемые от оксидов азота газы в восстановительных условиях пропускают через второй слой оксидного алюмо-медь-никель-литиевого катализатора.

Недостатком данного способа является нерациональное расходование восстановительного агента - метана, особенно для обедненных топливных выбросов и дороговизна второго катализатора.

Использование катализаторов дожига перед катализаторами СКВ также не целесообразно [9].

Основная задача изобретения заключается в увеличении срока службы используемых пористых материалов и эффективности очистки в отношении не только NO2, и NO, но и продуктов неполного сгорания. Предварительное окисление в дизельных выбросах твердых сажевых частиц и органической фракции особенно важно для предотвращения забивания пор и каналов носителя, содержащего восстановитель.

С целью устранения указанных недостатков в предлагаемом способе очистки газов, включающем их обработку в две последовательные стадии с использованием двух катализаторов, предлагается осуществлять процесс в сочетании с некаталитическим восстановлением оксидов азота.

Согласно изобретению в способе очистки отработавших газов, включающем их обработку в две стадии с использованием соответствующего катализатора на каждой стадии новым является то, что на первой стадии осуществляют окисление и используют оксидный катализатор, а на второй стадии осуществляют восстановление оксидов азота при введении водорастворимых NH-содержащих реагентов и используют катализатор-адсорбент.

Дополнительными отличиями являются:

использование на каждой стадии катализаторов на блочных пористых керамических носителях или фильтрах сотовой структуры повышенной прочности на основе модифицированных или цеолитов, или гликозема, или кордиерита;

использование на первой стадии в качестве катализатора перовскита на носителе;

использование на первой стадии в качестве катализатора формованных с электропроводящими добавками блоков или фильтров с удельным сопротивлением 0,1-2,0 кОмсм;

использование в качестве электропроводящей добавки перовскита;

повышение температуры блочного катализатора первой стадии или фильтра на 100-300oC при проведении первой стадии обработки;

использование в качестве модификаторов переходных металлов в количестве 1-20 мас.%;

использование в качестве водорастворимых NH-содержащих реагентов карбамида, бикарбоната аммония и др. или их смесей;

пропускание окисленных газов перед второй стадией обработки через теплообменник и охлаждение их до точки росы;

впрыскивание перед второй стадией обработки в поток очищаемого газа воды или водных растворов восстановителей в количестве 50-100 г/м3, содержащих 50-400 г/л реагентов.

На первой стадии для дожигания токсичных продуктов используется эффективный катализатор полного окисления на блочном носителе.

На второй стадии для нейтрализации NOx используется метод низкотемпературного селективного восстановления водорастворимыми соединениями, введенными на поверхности второго слоя катализатора на носителе.

Для реализации двухстадийного способа очистки предложено использовать блочные носители и катализаторы повышенной пористости с параллельными каналами сотовой регулярной структуры и газопроницаемыми стенками между каналами для фильтрации газа.

Преимуществом используемых носителей на основе глинозема, кордиерита, цеолитов (природных и синтетических) является сочетание высоких прочностных характеристик сотовых блоков и пористостью стенок каналов (50-70%), что позволяет использовать их в качестве эффективных катализаторов и фильтров-катализаторов (табл. 1, 2, 3).

Для осуществления 1-й стадии необходимо сочетание эффективной окислительной способности и стабильности. Этими свойствами обладают термостойкие многокомпонентные оксиды со структурой типа перовскита следующего состава ABO3, где A - редко- и щелочноземельные элементы; B - переходные элементы, например, не содержащие благородных металлов.

В значительном числе публикаций отмечаются их уникальные каталитические, термические и электрофизические свойства, причем эффективность их в реакциях окисления CO, HC сравнима с платиновыми катализаторами [17, 18].

Отличительной особенностью данного способа является использование сочетания высоких каталитических, электро- и теплопроводных свойств этих материалов. Будучи нанесены на пористый керамический блок или экструдированы в виде сотовых керамических структур, перовскиты с высокой металлической или полупроводниковой проводимостью придают керамическому блоку электропроводящие свойства. Таким образом, нанесенный каталитический блок или сажевый фильтр становятся проводящими с удельным сопротивлением 0,1-2 км/см и могут быть нагреты на 100-300oC электрическим током. В результате эффективность терморегулируемого катализатора резко возрастает, и газоочистка может проводиться уже на холодном двигателе. Результаты работы такого каталитического дожигателя представлены в табл. 3.

Положительной особенностью данного способа является возможность осуществлять очистку бензиновых и дизельных выхлопных газов от CO, HC, а при использовании фильтра для улавливания твердых аэрозольных частиц с нагреваемым катализатором и дополнительную очистку от сажевых частиц и полиорганических соединений со степенью очистки 80-90%.

При этом помимо очистки отходящих газов от полимерных и сажевых канцерогенных веществ окислительный слой способствует работоспособности и чистоте поверхности второго восстановительного слоя. Одновременно подвергается окислению и монооксид азота.

В результате решается основная задача DeNOx, т.к. улавливание и нейтрализация NO протекают наиболее трудно.

В этом заключается новизна и логическая связь стадий данного способа очистки. Поэтому способ относится к комплексной очистке газовых выбросов, где наряду с дожиганием в комплексе решается задача удаления наиболее токсичных компонентов - оксидов азота.

На второй стадии решаются задачи восстановления NOx после первоначального окисления примесей, отходящих газов и снижение энергозатрат. Далее отходящие газы направлялись на блочный сотовый адсорбент-катализатор на основе модифицированного цеолита.

Чтобы устранить недостатки известных вариантов метода СНВ и добиться новых положительных результатов очистки, на 2-й стадии способа были внесены следующие существенные изменения.

1. Заменяли гранулированный слой носителя на монолитные механически более прочные кислото- и влагостойкие блоки, что позволяет увеличить ресурс очистной системы (табл. 4).

2. Сотовые высокопористые блочные носители не только предотвращают забивание реактора, но и значительно снижают газодинамическое сопротивление, что позволяет увеличить линейную скорость потока с 0,1-0,3 м/с [10] до 1,5-2,0 м/с без снижения эффективности, а следовательно, сократить габариты установки (табл. 5).

3. Высокая плотность каналов адсорбента-нейтрализатора дает возможность увеличить поверхность контакта с очищаемым газом и, как следствие, эффективность очистки (табл. 4, 5).

4. Осуществление непрерывной разбрызгивающей подачи раствора восстановителей или воды в виде тумана, дополнительно улавливающих оксиды азота, способствует их нейтрализации на поверхности пористого носителя (табл. 6).

5. Введение модифицирующих добавок в цеолиты в виде переходных металлов (меди, железа, марганца и др., 1-20 мас. %) способствует адсорбции и окислению части монооксида азота в диоксид и тем самым в дополнении к окислению на первой стадии облегчает его улавливание и нейтрализацию. Таким образом, в данном способе задача более полной нейтрализации NO решается с помощью двух катализаторов на основе перовскитов на 1-й стадии и модифицированных цеолитов на второй стадии. Необходимость использования катализаторов оправдывается возможным повышением температуры на 1-й стадии (выше 400oC), когда полнота окисления оксида азота определяется термодинамикой.

Пример 1. Смесь окисляющегося газа с воздухом, разбавленным азотом (50%), содержащую монооксид углерода (1%CO) или пропилен (2%), или метан (3%), или 0,1 NO пропускали через реактор, содержащий 45 мл блочного сотового катализатора, нанесенного на пористую керамику на основе глинозема (Г), кордиерита (К) или цеолита (Ц), характеристики которых представлены в табл. 1.

Нанесенные образцы содержали 20-30% катализатора (100-150 г/л), введенного в поры носителя совместно с пластификатором и связующим методом вакуумной пропитки. Перовскитные катализаторы готовились разложением нитратов или соосажденных гидроксидов соответствующих металлов при 900oC. Они вводились как методом пропитки из растворов и суспензий, так и формованием блоков с использованием пластификаторов и связующих компонентов.

Объемная скорость потока газа составляла 5000 ч-1, температура устанавливалась с помощью внешней печи или с использованием проводящего блочного нагревателя-катализатора. Использовался хроматографический анализ газов. В табл.2 представлены результаты каталитической эффективности превращения, выраженные в температурах достижения 90% и 50% конверсии (в скобках).

Пример 2. Иллюстрирует очистку дизельных газов судового двигателя Л-160, Шкода (6ЧНСП 16/22, 5, мощностью 140 кВт). На 1-й окислительной стадии блочный катализатор и фильтр располагались после турбины и исследовались при температуре отходящих газов - 190oC (без подогрева), а также при 300 и 400oC с использованием нагревателя-катализатора. На второй стадии после охлаждения газов в теплообменнике до 30-40oC исследовались два цеолитных блочных катализатора. В табл. 3 представлены степени конверсии токсичных продуктов выхлопных газов дизельного двигателя при различных температурах 1-ого слоя блочного (Б.) катализатора.

В табл. 3 приведены усредненные результаты за несколько часов работы (при оборотах двигателя 5500-7500 об/мин) в начальный период и в скобках через 20 ч работы системы очистки.

Пример 3. Преимущества, подтверждающие высокие прочностные характеристики блочных носителей и катализаторов в предлагаемом способе улавливания оксидов азота раствором карбамида, представлены в табл. 4. Степень разрушения носителей в реакторе с высотой слоя 120 мм определяли по фракционированному анализу гранул носителя размером 2 мм и монолитных блоков после проведения последовательных циклов введения раствора восстановителей, осушки носителей и проведения реакции восстановления NO2.

Таким образом, при использовании блочных катализаторов на высокопрочных керамических пористых носителях и применении смеси восстанавливающих веществ (карбамид+бикарбонат аммония, 1:1) существенно повысится ресурс работы нейтрализатора оксидов азота.

Пример 4. Сопоставление данных по эффективности очистки от оксидов азота на различных носителях и катализаторах после предварительной окислительной стадии и охлаждения газов ниже точки росы (высота слоя носителя 120 мм, температура реакции 30oC, обработка раствором карбамида, 200 г/л).

Предлагаемый способ позволяет таким образом решить главную задачу изобретения - добиться высокой эффективности и стабильности газоочистки.

Пример 5. Влияние на эффективность очистки подачи воды или раствора карбамида путем впрыскивания в поток газов. Предварительно окисленные на первой стадии газы (NOx 0,1 мг/л) охлаждались до 30-40oC и на второй стадии восстановления перед катализатором-адсорбентом впрыскивалась вода или раствор восстановителей 50-100 г/м3 (концентрация раствора 200 г/л).

Носитель, катализатор - конверсия оксидов азота, %

Б. цеолит 6 без 1-ой стадии, охлаждения и впрыскивания - 70

Б. цеолит 6 без впрыскивания - 93

Б. цеолит 6, 50 г воды/м3 - 98

Б. цеолит 6, 50 г раствора/м3 - 98

Б. цеолит 7 без впрыскивания - 92

Б. цеолит 7, 100 г раствора/м3 - 97

Табл. 6 дополнительно иллюстрирует необходимость использования в предлагаемом способе очистки совокупности операций: двухстадийной очистки, охлаждения газов и впрыскивания водного раствора восстановителей. При этом обеспечивается непрерывное и постоянное введение реагентов и снижение температуры процесса.

Сопоставительный анализ данного способа с разделением стадий окисления и восстановления и сочетанием каталитических и некаталитических реакций по сравнению с известными способами и прототипом показывает большую эффективность, полноту и стабильность предлагаемого энергосберегающего способа очистки. Возможность проведения комплексной окислительной и восстановительной очистки в две стадии на холодном двигателе, когда концентрации токсичных примесей наибольшие, также предлагается впервые.

Способ очистки воздуха от токсичных компонентов и фильтрующий модуль для очистки воздуха от газообразных токсичных компонентов

Имя изобретателя: Кумпаненко И.В.; Лосев В.В.; Шеляпин И.П.; Васильев Н.П.; Романчук Э.В.; Замараев Б.К.; Дейкун М.М.; Ермаков А.И.; Довидчук А.Н.

Имя патентообладателя: ООО "Экоспецстройснаб"

Адрес для переписки: 101000, Москва, ул. Мясницкая, 13, ООО "Экоспецстройснаб" (ЭССС)

Дата начала действия патента: 2000.11.21

Изобретение относится к сорбционно-каталитической очистке воздуха от загрязняющих веществ и может быть использовано для систем очистки от токсичных компонентов выхлопных газов. Предложены способ очистки воздуха от токсичных компонентов, включающий пропускание очищаемого воздуха через фильтр, улавливающий твердые частицы и аэрозоли, и через слой сорбента в фильтрующем модуле, через слой окислительно-восстановительного катализатора на основе окислов марганца и меди, при этом очищаемый воздух перед подачей в фильтрующий модуль нагревают до температуры, превышающей температуру окружающего воздуха на величину T = 5-30є, и фильтрующий модуль для очистки воздуха от газообразных токсичных компонентов, включающий цилиндрический корпус и расположенный в нем слой сорбента и слой окислительно-восстановительного катализатора на основе окислов марганца и меди, при этом слой катализатора выполнен в виде полого цилиндра, а слой сорбента, поглощающего углеводороды и другие органические соединения, размещен внутри цилиндрического каталитического слоя, и оба слоя установлены коаксиально с корпусом. Предложенные способ и модуль очистки выхлопных газов позволяют достигнуть десятикратного снижения концентрации вредных компонентов в вентиляционных выбросах при производительности 600 м3/ч на один модуль.

Описание изобретения

Изобретение относится к сорбционно-каталитической очистке воздуха от загрязняющих веществ и может быть использовано для систем очистки от токсичных компонентов выхлопных газов выбрасываемой в атмосферу вентиляционной вытяжки из многоэтажных, наземных и подземных гаражей-стоянок закрытого типа, станций техобслуживания, автодорожных тоннелей, складских помещений и терминалов с заездом внутрь автомобильного транспорта, а также для очистки приточной вентиляции помещений в случае забора воздуха в местах его высокого загрязнения выхлопными газами бензиновых и дизельных двигателей внутреннего сгорания. Главными загрязняющими веществами воздуха для рассматриваемых объектов с концентрациями, существенно превышающими ПДК, являются окись углерода СО, оксиды азота NO и NO2, углеводороды и другие органические соединения, двуокись серы SO2, а также аэрозоли и частицы сажи и пыли.

Известны установки и способы для очистки (регенерации) воздуха в закрытых помещениях для очистки воздуха, подаваемого в помещения, от загрязняющих веществ, присутствующих в повышенных концентрациях в атмосфере в местах его забора, и для очистки воздушно-газовых смесей, являющихся отходящими газами различных производств и ТЭЦ и автомобильного выхлопа.

Например, известны способы очистки отходящих газов различных производств, в частности, образующихся при плазменной обработке материалов, содержащих оксиды азота, углерода и пр. (RU, патент 2035976, кл. B 01 D 53/02, 1995), или для очистки воздуха от свинца, олова, канифоли и других соединений, выделяющихся при электротехнических работах (RU, патент 2112587, кл. B 01 D 53/02, 1998).

Способы предусматривают адсорбцию загрязняющих веществ специальными сорбентами. Способы непригодны для очистки воздуха от окиси углерода, так как она не адсорбируется на используемых в этих способах сорбентах.

Широко известен способ очистки выхлопных газов двигателей внутреннего сгорания путем глубокого каталитического окисления окиси углерода и углеводородов с их превращением в углекислый газ и воду, а также способ каталитического восстановления окислов азота до азота на базе проведения реакций на поверхности катализаторов.

Аналогичный способ применяется для очистки отходящих газов различных производств и ТЭЦ. Разработанные на основе этого способа нейтрализаторы выхлопных газов устанавливаются в настоящее время практически на всех зарубежных автомобилях и на автомобилях некоторых отечественных марок. Соответствующие устройства очистки отходящих газов широко используются для оборудования промышленных установок. Все эти способы и устройства предполагают протекание каталитических реакций при высоких температурах (200-400oC) и, как правило, с использованием дорогостоящих катализаторов на основе благородных металлов (платина, родий, палладий). Однако необходимость проведения реакций при высоких температурах делает невозможным применение указанных каталитических систем для очистки огромных воздушных вентиляционных потоков по соображениям экономии энергии.

Наиболее близким к предлагаемому способу очистки воздуха от токсичных компонентов по технической сущности является способ очистки воздуха, описанный в патенте (ЕР 0438282 B1, кл. B 01 D 53/04, 1991), посвященном производству особо чистого азота из воздуха для нужд электронной промышленности. Описанный в данном изобретении способ очистки воздуха заключается в последовательной очистке исходного воздуха: (1) от паров воды и CO2; (2) от окиси углерода; (3) от водорода и (4) повторно от паров воды и CO2.

Удаление паров воды из воздуха на 1-й стадии очистки осуществляют сначала путем его сжатия до 10 атм. с разогревом с последующим охлаждением и отделением жидкой воды, затем путем пропускания воздуха через слой сорбента, поглощающего воду и CO2 (окись алюминия, силикагель, цеолиты и их комбинация). Очистку воздуха от СО (вторая стадия) осуществляют пропусканием воздуха (после обезвоживания) через слой окислительно-восстановительного катализатора типа гопкалита на основе окислов переходных металлов (никель, марганец и медь), работающих при низких температурах (-20 - +50oC) (по прототипу при 5-20oС), при этом СО превращается в CO2. Для очистки от водорода воздух пропускают через слой катализатора на основе нанесенного палладия (для превращения H2 в H2O). Затем воздух повторно пропускают через новый слой сорбента, поглощающего воду и CO2. Из очищенного таким образом воздуха затем выделяют чистый азот. Производительность способа очистки воздуха 8,4 м3/час.

Существенными недостатками способа-прототипа являются его сложность, высокая энергоемкость и очень низкая производительность, что делает его неприемлемым для очистки больших объемов воздуха. Важно отметить, что при очистке воздуха от токсичных компонентов не требуется удаления из воздуха паров воды, CO2 и водорода, так как вода и CO2 нетоксичны, а водород присутствует в воздухе в чрезвычайно малых концентрациях (5·10-5 об. %). В способе-прототипе удаление воды на первой стадии очистки помимо решения задачи получения высокочистого воздуха позволило избежать отравления парами воды окислительно-восстановительного катализатора на основе окислов переходных металлов, так как известно, что такие катализаторы (в том числе гопкалит) резко снижают каталитическую активность под воздействием адсорбируемой на его поверхности воды (см., например, Беркман С., Моррелл Д. и Эглофф Г., Катализ в неорганической и органической химии, пер. с англ., кн. 1-2, М.-Л., 1949).

Для высокообъемных газовых потоков (порядка 500-600 м3/час - в прототипе 8,4 м3/час) путь, выбранный в прототипе, неприемлем. Например, объемная емкость окиси алюминия составляет от 0,07 до 0,1 мг-экв/г, а установка компрессора и другого необходимого оборудования дополнительно усложняет и удорожает процесс. Окислительно-восстановительный катализатор отравляется также и органическими соединениями, в частности углеводородами. В способе-прототипе не предусмотрена очистка воздуха от органических соединений, так как их концентрация в воздухе невелика, тем не менее, это привело к необходимости периодической регенерации или замены катализатора, что также усложняет и удорожает процесс, а при очистке воздуха, содержащего углеводороды и другие органические соединения в больших количествах, катализатор будет отравляться очень быстро и необратимо.

Наиболее близким к предлагаемому фильтрующему модулю для очистки воздуха от газообразных токсичных компонентов является фильтрующий модуль (фильтр-поглотитель см. Установка ФП-300; Техническое описание и инструкция по эксплуатации; ВД 250.503.000 ТО, К-6583), предназначенный для очистки воздуха, подаваемого в закрытые помещения, в которых находятся люди, от загрязняющих и отравляющих веществ различного происхождения.

Известный фильтрующий модуль (фильтр-поглотитель ФП-300) представляет собой цилиндрический корпус с размещенными в нем по ходу воздушного потока противоаэрозольным фильтром (для очистки воздуха от пыли, дыма и т.п.) и слоем сорбента, выполненного в виде полого цилиндра и расположенного вдоль боковых стенок корпуса модуля. Сорбирующий слой в фильтрующем модуле выполнен из активного хемосорбента, который во время прохождения через него загрязненного воздуха способен адсорбировать токсичные компоненты и удерживать их. Активный хемосорбент имеет специфические свойства, обеспечивающие удержание на его поверхности ряда отравляющих веществ за счет протекания химических реакций с веществом хемосорбента. Известный фильтрующий модуль отличается высокой производительностью вследствие высокой химической активности и газопроницаемости хемосорбента: объемный расход воздуха через установку в рабочем режиме очистки - 600 м3/час, при объединении 2 и 3 фильтрующих модулей в одну установку - 1200 и 1800 м3/час, соответственно. Однако данный фильтрующий модуль не рассчитан на очистку воздуха, содержащего большие количества окиси углерода, окислов азота и углеводородов, поскольку был предназначен для извлечения высокотоксичных веществ иной природы при их малых исходных концентрациях.

Задачей изобретения является создание более простого и дешевого способа очистки воздуха от токсичных компонентов, который позволит существенно повысить производительность процесса при высокой эффективности очистки воздуха, содержащего большие концентрации окиси углерода, окислов азота, углеводородов и других органических соединений, уменьшить энергозатраты и избежать необходимости периодической регенерации катализатора.

Задачей изобретения является также разработка фильтрующего модуля для очистки воздуха от газообразных токсичных компонентов, в частности вентиляционных выбросов из закрытых помещений от токсичных компонентов выхлопных газов двигателей внутреннего сгорания, обладающего высокой производительностью и высокой эффективностью очистки воздуха.

Решение поставленной задачи достигается предлагаемыми:

- способом очистки воздуха от токсичных компонентов, включающим его пропускание через слой сорбента, а затем через слой окислительно-восстановительного катализатора на основе окислов марганца и меди, в котором перед пропусканием воздуха через слои сорбента и катализатора его отфильтровывают от твердых частиц и аэрозолей, а затем нагревают до температуры, превышающей температуру окружающего воздуха на величину T, равную 5-30oC, а в качестве сорбента используют сорбент, поглощающий углеводороды и другие органические соединения.

В качестве сорбента можно использовать активированный уголь.

В качестве катализатора можно использовать гопкалит.

Слой сорбента и слой катализатора можно поместить в фильтрующий модуль.

- Фильтрующим модулем для очистки воздуха от газообразных токсичных компонентов, включающим цилиндрический корпус и расположенный в нем слой сорбента, причем в фильтрующем модуле содержится дополнительный слой окислительно-восстановительного катализатора на основе окислов марганца и меди, при этом слой катализатора выполнен в виде полого цилиндра, а слой сорбента, поглощающего углеводороды и другие органические соединения, размещен внутри каталитического слоя, и оба слоя установлены коаксиально с корпусом.

Слои сорбента и катализатора могут быть отделены друг от друга инертным разделительным слоем.

Слой сорбента может быть выполнен из активированного угля.

Слой катализатора может быть изготовлен из гопкалита.

Фильтрующий модуль может дополнительно содержать блок принудительного нагревания очищаемого воздуха.

Главным отличием предлагаемого способа от известного (прототипа) является принципиально иной путь решения проблемы предотвращения отравления катализатора на основе окислов переходных металлов парами воды. В прототипе воду из воздуха удаляют перед пропусканием через катализатор. В предлагаемом способе отравление катализатора водяными парами предотвращается небольшим повышением температуры очищаемого воздуха относительно температуры воздуха окружающей среды, что приводит к относительному смещению адсорбционно-десорбционного равновесия на поверхности катализатора и существенно предотвращает конденсацию на нем водяных паров.

Специально проведенные нами экспериментальные исследования, направленные на изучение адсорбционно-десорбционных процессов на поверхности катализатора и влияния на них температуры и влажности очищаемого воздуха, показали, что при нагревании воздуха, поступающего на катализатор, адсорбционно-десобционное равновесие на поверхности катализатора смещается в сторону десорбции с нее молекул воды, что позволяет беспрепятственно протекать на поверхности катализатора окислительно-восстановительным процессам. Важным результатом наших исследований было установление того факта, что при нагревании очищаемого воздуха наиболее важной характеристикой является не сама температура нагретого воздуха, а разность температур T между температурой нагретого воздуха и температурой воздуха, поступающего в систему очистки из внешней среды. Хотя очевидно, что чем выше T, тем больше смещение равновесия в сторону десорбции воды с поверхности катализатора, и тем больше его устойчивость к воздействию влаги воздуха, однако степень нагрева не может быть сколь угодно большой из соображений экономии энергии, расходуемой на нагрев. Минимальная допустимая величина нагрева T зависит от температуры и влажности воздуха, поступающего в систему очистки, и от свойств катализатора. При использовании в качестве катализатора окислов меди, марганца, их смеси или готового катализатора гопкалита воздух, подаваемый на катализатор, должен иметь температуру на 5-30oC выше, чем температура воздуха окружающей среды.

Гопкалиты - общее название нескольких марок катализаторов, содержащих окислы марганца, меди и др.

Разработанный нами принципиально новый путь предотвращения отравления катализатора парами воды в предлагаемом способе позволил существенно упростить процесс и снизить его энергоемкость.

Другим отличием предлагаемого способа от прототипа является наличие операции предочистки (до пропускания воздуха через слой катализатора) от углеводородов и других органических соединений пропусканием очищаемого воздуха через слой сорбента, поглощающего эти соединения. Пропускание очищаемого воздуха через слой сорбента позволяет не только осуществлять очистку воздуха от углеводородов и других органических соединений, являющихся токсичными компонентами, но и предотвращать протекание в каталитическом слое реакций превращения этих органических соединений, предохраняя тем самым катализатор от отравления, то есть введение этой операции в предлагаемый способ позволило повысить эффективность очистки воздуха и избежать стадии регенерирования катализатора.

Слой сорбента и слой катализатора удобно поместить в фильтрующий модуль.

Предлагаемый способ осуществляют следующим образом: поступающий в систему очистки воздух предварительно очищают на фильтре, улавливающем твердые частицы и аэрозоли, затем нагревают в блоке принудительного нагревания до температуры, которая превышает температуру окружающего воздуха на величину T = 5-30єC, и затем подогретый воздух последовательно пропускают через сорбционный и каталитический слои, после чего очищенный воздух поступает на выход.

Предлагаемый способ позволяет, по сравнению с прототипом, существенно повысить производительность очистки (не менее 600 м3/час), упростить процесс, снизить энергозатраты и избежать необходимости периодической регенерации катализатора. Способ обеспечивает высокую эффективность очистки воздуха - достигается десятикратное снижение концентрации вредных компонентов в вентиляционных выбросах гаражей.

Отличием предлагаемого фильтрующего модуля от известного (прототипа) является наличие в нем дополнительного каталитического слоя, выполненного из окислительно-восстановительного катализатора на основе окислов марганца и меди. Снабжение фильтрующего модуля дополнительным каталитическим слоем, в котором протекают реакции окисления СО до CO2 и восстановления окислов азота до молекулярного азота при низких температурах (-20 - +50oC), позволило эффективно очищать воздух от указанных токсичных веществ при сохранении высокой производительности модуля.

Отличием является также то, что содержащийся в предлагаемом фильтрующем модуле слой сорбента выполняет двойную функцию: благодаря адсорбции на нем углеводородов и других органических соединений, во-первых, осуществляется очистка воздуха от органических токсичных веществ, и во-вторых, предотвращается попадание этих органических веществ на катализатор и протекание на нем реакций их превращений, что предохраняет каталитический слой от отравления.

Как уже отмечалось, катализаторы на основе окислов переходных металлов легко адсорбируют на своей поверхности пары воды, что резко снижает каталитическую активность. При эксплуатации предлагаемого фильтрующего модуля возможны следующие пути решения проблемы сохранения активности катализатора.

Первый путь - наиболее распространенный - замена каталитического слоя после определенного срока работы фильтрующего модуля. Продолжительность срока сохранения катализатором высокой активности будет зависеть от влажности воздуха, его температуры и природы катализатора.

Второй путь, использованный в способе очистки воздуха, описанном в ЕР 0438282 B1, - удаление воды из воздуха перед пропусканием его через фильтрующий модуль. На сегодняшний день для больших объемов воздуха такой путь практически непригоден.

Третий путь - наиболее эффективный - снабжение предлагаемого фильтрующего модуля дополнительным элементом - блоком принудительного нагревания очищаемого воздуха, что позволяет избежать периодической замены каталитического слоя и, в то же время, не требует операции удаления воды из очищаемого воздуха.

Предлагаемый фильтрующий модуль предназначен для очистки воздуха от газообразных токсичных компонентов. Если очищаемый воздух загрязнен твердыми частицами и аэрозолями, его перед подачей в фильтрующий модуль пропускают через фильтр, улавливающий такие примеси.

Предлагаемый фильтрующий модуль состоит (см. фиг.) из цилиндрического металлического корпуса (1) с крышкой (2) и дном (3). Корпус имеет три отверстия диаметром условного прохода 150 мм: два торцевых (4), для входа, и одно боковое (5), для выхода воздуха. Одно из торцевых отверстий может либо закрываться заглушкой (6), либо, при необходимости, подсоединяться к соседнему модулю. В корпусе (1) помещаются сорбент (7), катализатор (8), разделительные перфорированные перегородки (9). Выходное отверстие (5) соединяется с патрубком для выхода воздуха (10). С помощью эластичных муфт (11) несколько модулей при необходимости соединяются между собой.

Адсорбционный (7) и каталитический (8) слои выполнены в виде полых цилиндров, при этом слой сорбента размещен внутри каталитического слоя, и оба слоя установлены коаксиально с корпусом.

Предлагаемый фильтрующий модуль работает следующим образом. Через входное отверстие (4) воздух поступает в полое пространство модуля и последовательно проходит сначала через сорбционный слой (7) и затем через каталитический слой (8), после чего через боковое отверстие (5) поступает на выход. При наличии в фильтрующем модуле блока принудительного нагревания (не показан) очищаемый воздух перед подачей на вход (4) подогревают до температуры, превышающей температуру окружающего воздуха на T = 5-30єC.

Предлагаемый фильтрующий модуль обеспечивает высокую эффективность очистки воздуха (достигается десятикратное снижение концентрации газообразных токсичных компонентов в вентиляционных выбросах гаражей) при производительности 600 3/час на один модуль.

Формула изобретения

1. Способ очистки воздуха от токсичных компонентов, включающий его пропускание через слой сорбента, а затем через слой окислительно-восстановительного катализатора на основе окислов марганца и меди, отличающийся тем, что перед пропусканием воздуха через слои сорбента и катализатора его отфильтровывают от твердых частиц и аэрозолей и затем нагревают до температуры, превышающей температуру окружающего воздуха на величину T, равную 5-30oC, а в качестве сорбента используют сорбент, поглощающий углеводороды и другие органические соединения.

2. Способ по п.1, отличающийся тем, что в качестве сорбента используют активированный уголь.

3. Способ по п.1 или 2, отличающийся тем, что в качестве катализатора используют гопкалит.

4. Способ по любому из пп.1-3, отличающийся тем, что слой сорбента и слой катализатора помещают в фильтрующий модуль.

5. Фильтрующий модуль для очистки воздуха от газообразных токсичных компонентов, включающий цилиндрический корпус и расположенный в нем слой сорбента, отличающийся тем, что он содержит дополнительный слой окислительно-восстановительного катализатора на основе окислов марганца и меди, при этом слой катализатора выполнен в виде полого цилиндра, а слой сорбента, поглощающего углеводороды и другие органические соединения, размещен внутри каталитического слоя, и оба слоя установлены коаксиально с корпусом.

6. Фильтрующий модуль по п.5, отличающийся тем, что слои сорбента и катализатора отделены друг от друга инертным слоем.

7. Фильтрующий модуль по п.5 или 6, отличающийся тем, что слой сорбента выполнен из активированного угля.

8. Фильтрующий модуль по любому из пп.5-7, отличающийся тем, что слой катализатора изготовлен из гопкалита.

9. Фильтрующий модуль по любому из пп.5-8, отличающийся тем, что он дополнительно содержит блок принудительного нагревания очищаемого воздуха.

5. Устройства для локальной очистки воздуха над магистралями

Комплекс очистки воздушной среды над транспортной магистралью (патент RU (11) 2115066 (13) C1)

Комплекс очистки воздушной среды над транспортной магистралью предназначен для снижения содержания вредных газов в крупных городах с интенсивным движением транспорта. Короба установлены по краям проезжей части магистрали и соединены трубопроводами с вентилятором и фильтром, а энергопитание вентилятора осуществляется за счет выступающей части вала за поверхность транспортной магистрали, способной взаимодействовать с колесами транспорта, причем вал соединен с генератором вентилятора. Комплекс позволяет производить очистку воздуха от вредных газов при собственном источнике питания, который способен обеспечить и аварийное питание каких-либо объектов. 3 ил.

Описание изобретения

Предложение относится к устройствам повышения экологической безопасности вблизи транспортных магистралей. Предложение может быть использовано преимущественно в больших городах с интенсивным движением транспорта. Преимущественное использование предложение имеет вблизи перекрестков, где наблюдается скопление значительного числа автомашин с работающими двигателями, что приводит к интенсивному скоплению окиси и закиси углерода, значительно превышающих предельно допустимую норму и воздействие на окружающих жителей в домах по обе стороны от проезжей части, а также на пешеходов, скапливающихся на переходах у перекрестков.

Широко используются газоанализаторы работниками ГАИ для определения степени загрязнения окружающей среды выхлопными газами путем их установки у выхлопной трубы и последующей регулировки системы поджига и подачи топлива. По определению вредных составляющих с помощью прибора газоанализатора, см., например, Автоматические приборы, регуляторы и управляющие машины. / Под ред. Комарского М.И. - М.: Машиностроение, 1968, с. 228 и 229. Такая регулировка позволяет снизить в продуктах горения окись углерода и, в идеале, получить только двуокись углерода, но и она является вредным отравляющим организм газом. Причем эти составляющие содержатся в продуктах горения любого энергоносителя, что не позволяет получить координальное решение проблемы.

Более близким устройством по конструктивным признакам и достигаемому эффекту являются технологические процессы по химической обработке деталей (Справочник металлиста. Т. 3. - М.: Машиностроение, с. 123-135). Практически все детали долговременного пользования покрываются либо гальванически, либо лакокрасочным покрытием. Эта совокупность процессов применяется, например, в автомобилестроении (автозавод ЗИЛ, АЗЛК, ФОРД и др.). Источники газовыделения оснащаются коробами над источниками газовыделения с трубопроводами и вентилятором с источником энергопитания и фильтрами.

К недостаткам известных устройств газоотбора можно отнести:

- энергозатраты из централизованной сети энергоснабжения;

- охват коробом всей площади газовыделения, что невозможно использовать для транспортных магистралей.

Целью предложения является устранение указанных недостатков, а именно:

- устранение отбора энергии из общей сети энергоснабжения;

- оптимальное размещение коробов для снижения загазованности.

Поставленная цель достигается тем, что короба размещаются над проезжей частью транспортной магистрали по ее краям в зоне остановки транспорта у светофоров, а источник энергопитания выполнен в виде по крайней мере одного вала, установленного перпендикулярно проезжей части транспортной магистрали и соединенного с генератором вентилятора, причем вал размещен в желобе с уклоном в сторону сливной магистрали и выступает за верхнюю поверхность транспортной магистрали.

На фиг. 1 представлен поперечный разрез транспортной магистрали; на фиг. 2 - разрез по А-А; на фиг. 3 - совмещенная пневмоэлектрическая схема.

Комплекс содержит короба 1 (показано 3 короба: посредине и по краям проезжей части). Короба выполнены в виде угловых форм с углом, который не позволяет удерживаться за счет трения снегу. Короба 1 закреплены на трубопроводах 2 с отверстиями 3 в площади коробов 1. Концы трубопровода 2 закреплены на осветительных стойках или силовых стойках линий электропередач 4. Трубопровод 2 у стоек 4 опускается вниз и одним концом соединен с вентилятором 5, а другой конец соединен с фильтром, который выполнен в виде изогнутой части трубопровода 6 в сливной магистрали 7, причем конец трубопровода 8 расположен ниже поверхности водной среды 9. На проезжей части магистрали 10 в желобе 11, который имеет уклон 12 в сторону сливной магистрали 13, расположен вал 14, соединенный с генератором 15. Генераторы соединены с блоком распределительным 16, содержащим буферный аккумулятор и соединение с вентилятором 5. Указанный блок 16 имеет также выход для отбора аварийного питания 17 для различных целей. Функционально блок 16 питает постоянным напряжением вентилятор 5, и излишки электроэнергии отдает либо в сеть города, либо в дополнительные аккумуляторы для аварийного использования. Разделительная полоса условно показана выступающей частью 18, как и пешеходная - 19.

Действует комплекс следующим образом. Вентилятор 5 постоянно работает, если он принудительно не отключен. Воздушный поток проходит через трубопровод 2 и засасывает воздушную массу через отверстия 3. Воздушная масса засасывает с выхлопными газами, и смесь попадает через изогнутый конец 6 трубопровода, барботируется через водную среду, и поступает в атмосферу очищенный воздух. Окись и двуокись углерода будут образовывать кислоты, которые вынесутся водной средой сливной магистрали 7. Энергия питания генераторов 15 поступает за счет вращения валов 14 проезжающими автомашинами, а когда нет проезжающих автомашин, то питание идет за счет блока 16 с аккумулятором.

Замечания к использованию комплекса:

1. Валы желательно устанавливать на уклонах-спусках, чтобы отбор энергии от автомашин был незначительным.

2. Летом грязь и пыль через зазоры в желобе 11 будет смываться и через уклоны 12 попадать в сливные магистрали 13. Даже при засорении силовое воздействие колеса с поверхностью вала 14 заставит его прокрутиться. Зимой, когда температура около 0oC, будет происходить такой же процесс. Если же температура резко понизиться, то и грязи не будет, и смывать нечего будет. Однако в сложных случаях возможна промывка теплой водой.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.