Переработка отходов полимеров

Переработка и утилизация отходов как сложная, многофакторная экологическая и экономическая проблема. Знакомство с основными направлениями утилизации и ликвидации отходов полимеров: сжигание вместе с бытовыми отходами, захоронение на полигонах и свалках.

Рубрика Экология и охрана природы
Вид дипломная работа
Язык русский
Дата добавления 19.08.2013
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Технологический процесс изготовления линолеума из отходов искусственной кожи осуществляется по схеме, приведенной на рис.4., на оборудовании, обычно используемом в производстве линолеума и искусственной кожи.

Рис.4. Схема процесса производства трехслойного линолеума с применением отходов искусственной кожи

При химическом восстановлении отходов ПВХ материалов с последующим разделением на полимер и пластификаторы можно утилизировать любой тип отходов, в том числе различные пленки, листовые материалы, обивочные, галантерейные, обувные и другие искусственные кожи.

Способ включает следующие стадии:

8. измельчение отходов, обработку их в полярном растворителе в течение времени, достаточного для полного растворения полимера;

9. фильтрация полученной смеси и отделение фильтрата, содержащего полимер, от твердого осадка, содержащего нерастворимые компоненты отходов;

10. осаждение полимера из раствора добавлением воды, насыщенного углеводорода, имеющего более низкую температуру кипения, чем использованный растворитель, или смеси указанного углеводорода и алифатического спирта;

11. восстановление осажденного полимера или сополимера.

Схема химической переработки отходов искусственных кож с ПВХ покрытием представлена на рис.5.

Рис.5. Схема химической переработки отходов искусственных кож с ПВХ покрытием

Разрезанные отходы измельчают на мелкие кусочки размером около 3 мм. Затем 40 массовых частей отходов обрабатывают в 100 массовых частях растворителя или смеси растворителей при температуре 50 С. Применяемые растворители должны в неограниченном объеме смешиваться с водой. Для этого могут быть использованы: формамид, диметилформамид, ацетамид, гексаметилтриамид фосфора, диметилсульфоксид.

Полученный раствор фильтруется. Осадок на фильтре, содержащий кусочки текстильной основы и наполнители полимерной композиции, высушивается и сепарируется.

Фильтрат, содержащий растворенные ингредиенты, при быстром перемешивании обрабатывается водой. Осажденные водой ингредиенты, в том числе ПВХ, проходят обжимные валки, обработка на которых повторяется несколько раз, после чего получают продукт, содержащий 95% твердых веществ и 5% воды и растворителя. Его сушат под вакуумом при температуре 50°С и получают ПВХ композицию, включающую первоначальные ингредиенты и сохранившую свойства исходного материала. Все промывные воды очищают в единой емкости, а полярный растворитель дистилляцией отделяют от воды. Описанный способ дает возможность получать ПВХ композицию, близкую по свойствам к исходной.

При модификации способа вместо воды для осаждения ПВХ используют органические жидкости -- ненасыщенные углеводороды (например, гексан, октан, нонан, керосин) или циклические углеводороды как сами по себе, так и смешанные с алифатическими спиртами (метиловым, этиловым). При этой обработке отделяются пластификаторы и антиоксиданты. Полученный осадок содержит в основном ПВХ, термостабилизатор, смазки и пигменты. Пластификатор, термостабилизатор и антиоксидант остаются в растворе. Органическая жидкость отгоняется на последней стадии путем дистилляции, после которой остается смесь пластификатора и растворителя. Смесь разделяют перегонкой. Для экстрагирования пластификаторов применяют метанол, этанол, циклогексанол, циклопентан, гексан, гептан, октан, авиационный бензин, низкокипящий керосин.

Вторичная переработка промышленных отходов ПВХ материалов методами химической регенерации позволяет получить значительную экономию энергии (до 80%) и ценное химическое сырье высокого качества.

Так же можно выделить следующие методы переработки отходов поливинилхлорида:

12. литье под давлением;

13. прессование;

14. каландрование.

Исследования показали, что изделия из вторичных ПВХ-материалов удовлетворительного качества можно получить по пластизольной технологии. Процесс включает измельчение отходов пленок и листов, приготовление пасты ПВХ в пластикаторе, формование нового изделия методом литья. Изучение реологии пластизолей на основе вторичного ПВХ ротационной вискозиметрией показало, что вязкость «вторичных» паст так же, как и первичных, при относительно низких скоростях сдвига носит ньютоновский характер, но значение вязкости для пластизолей на основе вторичного сырья заметно выше.

Это объясняется тем, что часть вторичного ПВХ, претерпевая при первичной переработке деструкцию подобно наполненным полимерным композициям. Это вызывает также более раннее по скоростям сдвига отклонение течения «вторичного» пластизоля от ньютоновского. С учетом особенностей вязкостных свойств необходимо корректировать режимы литьевого формирования, в первую очередь, повышать температуру и давление литья (приблизительно до 1 атм). В результате процесс литья становится «низконапорным» по сравнению с литьем первичных пласт, которое принято называть «безнапорным». Повышение энергозатрат при этом незначительно и «перекрывается» экономией сырья за счет использования вторичного материала.

Для переработки отходов наполненных ПВХ-пластиков в общем случае предлагается следующая схема.

Предварительно рассортированные отходы измельчают на ножевых дробилках, вводят в них необходимые добавки и в процессе регрануляции гомогенизируют смесь. Регрануляты перерабатывают на литьевых машинах, получая защитные покрытия для педалей, грязезащитные полотна для грузовых автомобилей и т.д. Изделия обладает гладкой поверхностью, которая может быть окрашена, а также достаточной стойкостью к истиранию и образованию трещин.

Рис.6. Схема впрыска при получении сэндвич - изделий по одноканальной технологии: А - начало процесса; Б - конец процесса

Для переработке отходов методом литья под давлением, как правило, применяют машины, работающие по типу интрузии, с постоянно вращающимся шнеком, конструкция которого обеспечивает самопроизвольный захват и гомогенизацию отходов.

Одним из перспективных методов использования отходов пластмасс является многокомпонентное литье. При таком способе переработки изделие имеет наружный и внутренний слои из различных материалов. Наружный слой - это, как правило, товарные пластмассы высокого качества, стабилизированные, окрашенные, имеющие хороший внешний вид.

Метод двойного вспрыска, применяемый при сэндвич-литье основан на различной скорости затвердевания расплава в центре литьевой формы и у сравнительно холодных ее стенок. Процесс литья осуществляют таким образом, что наружная оболочка изделия изготавливается из тонкого сплошного слоя первичного, а сердцевина - из вторичного сырья. Для этого вначале впрыскивают в форму расплав первичного материала в количестве, не достаточном для заполнения всей полости формы, а затем не прерывая процесса литья, производят впрыск расплава вторичного материала. При этом первичный материал образует сплошной наружный слой будущего изделия, а вся полость формы заполняется вторичным материалом. Схема впрыска по одноканальной технологии показана на рис.6.

Два цилиндра с червяками расположены под прямым углом и снабжены общей головкой, где имеются центральный и кольцевой каналы для первичного и вторичного материалов. Для получения качественных изделий и обеспечения экономичности литья важно определить соотношение доз впрыска первичного и вторичного материалов и установить характер их распределения в различных зонах полости формы, а следовательно, и в изделии. Экспериментальные данные свидетельствуют о том, что содержание вторичного материала в виде внутреннего слоя может достигать 60% от массы изделия, при этом толщина сплошного облицовочного слоя из первичного материала составляет 10-15% от толщины готового изделия.

Переработка термопластов данным методом позволяет значительно экономить дефицитное первичное сырье, сокращая его потребление более, чем в 2 раза. Разработчиком метода и производителем соответствующего оборудования является немецкая фирма «Баттенфельд»

Одним из традиционных методов переработки отходов полимерных материалов является прессование. Помол отходов равномерной толщины на транспортерной ленте подают в печь и расплавляют. Пластицированная таким образом масса затем спрессовывается. Предложенным методом перерабатывают смеси пластмасс с содержанием посторонних веществ более 50 %. Размолотые отходы подают в смеситель, куда добавляют 10 % связующего материала, пигменты, антипирены, наполнители (для усиления). Из этой смеси прессуют пластины в двухленточном прессе. Пластины имеют толщину от 8 до 50 мм при плотности около 650 кг/мі. Благодаря пористости пластины обладают тепло- и звукоизоляционными свойствами. Они находят применение в машиностроении и в автомобильной промышленности в качестве конструкционных элементов. Для улучшения внешнего вида изделий полимерные отходы помещают в емкость, например из полиэтилена, которую устанавливают в форму и прессуют в изделия. При этом емкость разрушается и обволакивает куски отходов на поверхности изделия.

Аналогично при внесении расплава в гнездо формы укладывают пленку, выбранную по цвету и структуре поверхности, и прессование ведут обычным способом. В настоящее время разработан и применяется другой технологический способ, основанный на вспенивании в форме. Разработанные варианты отличаются методами введения порообразователей во вторичное сырье и подводом теплоты. Порообразователи могут быть введены в закрытом смесители или экструдере. Однако производительнее метод формового вспенивания, когда процесс порообразования проводят в прессе (рис.7.)

Рис.7. Пресс-форма для вспенивания отходов ПВХ: 1-датчик давления; 2-термоэлемент; 3-датчик массы; 4-терморегулятор

Существенным недостатком метода прессового спекания полимерных отходов является слабое перемешивание компонентов смеси, что приводит к снижению механических показателей получаемых материалов.

Переработка отходов методом каландрования заключается в каландровании материала (рис. 18) и получении плит и листов, которые применяются для производства тары и мебели. Удобство такого процесса для переработки отходов различного состава заключается в легкости его регулировки путем изменения зазора между валками каландра для достижения хорошего сдвигового и дисперсирующего воздействия на материал. Хорошая пластикация и гомогенизация материала при переработке обеспечивает получение изделий с достаточно высокими прочностными показателями.

Рис.8. Схема переработки отходов ПВХ методом каландрования: 1 - бункер для смеси отходов; 2 - каландр; 3 - смесительные вальцы; 4 - прижимное устройство; 5- намоточное устройство.

Способ экономически выгоден для термопластов, пластицируемых при относительно низких температурах, в основном это мягкий ПВХ.

В таблице 3 перечислены типы пленочных изделий, получаемых из отходов ПВХ.

Таблица 3 Типы пленочных изделий, полученных из отходов ПВХ.

Виды изделия

Материал основы

Масса, 1мІ, г

Искусственная кожа для одежды

Искусственная кожа для сумок, обуви, автомобилей

Обои, книжные переплеты

Настилы для полов

Ленточные транспортеры

Изделия типа «сэндвич»

Вентиляционные трубы

Надувные палатки

Крыши теплиц

Гидроизоляционные материалы для кровли

Брезент для грузовиков

Палатки, крыши для кемпинга, палубы для лодок

Легкие защитные брезенты, свертывающиеся жалюзи

Подложки для ковров

Облицовка багажника автомобиля

Натуральные и синтетические ткани, трико, нетканые материалы

То же

Бумага

Войлок, джут, стеклохолст

Специальные ткани

Натуральные и синтетические ткани

Решетчатые стеклоткани

Стеклоткани

Решетчатые стеклоткани

Решетчатые стеклоткани

Стеклоткани

Стеклополиамидные ткани

То же

Войлочные ковровые покрытия полов

Войлочные, игольнопробивные ковры

100-250

250-800

100-200

800-1200

800-1600

600-1000

600-800

850

300

1000-1800

600-700

250-600

350

1000-2000

1000-2000

Для подготовки отходов искусственных кож и линолеума разработан агрегат немецкой фирмы «Фогель», состоящий из ножевой дробилки, смесительного барабана и трехвалковых рафинировочных вальцев. Компоненты смеси в результате большой фрикции, высокого прессующего давления и перемешивания между вращающимися поверхностями еще больше измельчаются, пластицируются и гомогенизируются. Уже за один проход через машину материал приобретает достаточно хорошее качество. Агрегат имеет производите6льность около 250 кг/ч. Дальнейшую переработку материала можно проводить с помощью экструдеров, смесительных вальцев и каландров.

Выбор технологии переработки поливинилхлорида в пленочные изделия.

Поскольку ПВХ широко применяют при изготовлении рулонных материалов на текстильной основе, ниже мы рассмотрим особенности переработки отходов именно таких текстильно-полимерных материалов, которые образуются в значительных количествах и при изготовлении, и при их применении.

Только на автомобильных заводах России при вырубке деталей обивки и облицовки салонов автомобилей ежегодно образуются сотни тонн отходов искусственных кож и пленочных материалов на основе ПВХ. Такие отходы могут быть использованы для получения вторичных материальных ресурсов и для последующего изготовления из них линолеума, упаковочных пленочных материалов и другой продукции.

Технологический процесс изготовления искусственной кожи и пленочных материалов из отходов осуществляется по схеме представленной на рис.9. По такой схеме можно изготавливать различные покрытия для полов (линолеум, линолеумную плитку), искусственные кожи технического назначения и другие материалы.

Рис.9. Схема производства пленочных изделий из отходов ПВХ: 1-узел сортировки отходов; 2-дробилка; 3-моечная машина; 4-центрифуга; 5-сушилка; 6-вальци; 7-экструзионные прессы; 8-гранулятор; 9-смеситель; 10-каландр;11- намоточное устройство

Отходы искусственных кож сначала поступают на узел сортировки отходов 1. Идеальная сортировка отходов должна обеспечить их разделение не только по видам, маркам и цвету, но и по форме, степени загрязненности, содержанию инородных материалов, физико - механических свойств. Далее на измельчение в дробилку 2. Из дробилки получившаяся крошка выталкивается в накопительную емкость.

При переработке отходов сильно загрязненных ПВХ пленок важным процессом подготовки является их очистка и промывка, которые осуществляются в промывочном устройстве 3, включающем мешалку с вертикальными лопастями. Мешалка расположена таким образом, что весь внутренний объем промывочного устройства делится на две зоны: зону турбулентного потока, который образуется ниже лопастей мешалки, и зону ламинарного потока над ними.

Через дозирующее устройство крошка непрерывно поступает в промывочное устройство 3 сначала в турбулентную зону, а затем в зону ламинарного потока. Отходы всплывают на поверхность промывного раствора, плотность которого больше плотности крошки, и отбираются с помощью специального подъемного устройства.

Улавливающие воронки, расположенные в днище промывочного устройства ниже зоны турбулентности, создаваемой мешалкой, собирают включения, отделенные от крошки, и выводят их через трубопровод. Крошка, поднятая вертикальным транспортером, разгружается на желоб, по которому она стекает во входное отверстие, питающее воздуходувку, и из нее выдувается на вихревое сито. После очистки и промывки отходов вода отжимается на центрифуге 4, и сушатся в сушилке 5. Подсушенная в сушилке 5 крошка падает вниз и захватывается поперечным потоком подогретого воздуха, создаваемым подъемной воздуходувкой. Высушенная крошка по трубопроводу через циклоны направляется на гомогенизацию на рифайнер-вальцы 6. Время обработки на вальцах 6 составляет 1-5 мин, что вполне достаточно для разрушения текстильной основы и гомогенизации смеси. В экструзионных прессах 7 смесь плавится и перемешивается. Полученная гомогенная смесь поступает на экструдер-гранулятор 8. С этой целью разработаны специальные машины и установки для получения вторичного сырья, которое по своим свойствам и размерам соответствует первичному сырью. В смесители 9 вторичное сырье смешивается в заданных пропорциях с первичным. На вальцах сырье снова пластицируется. В каландр 10 поступает ткань, на которую уже наносится рисунок. Готовое изделие наматывается на намоточное устройтво 11. После чего происходит отделка и упаковка. Далее готовая продукция поступает на склад.

Предложенная схема переработки отходов ПВХ улучшает состояние окружающей среды, позволяет экономить первичное сырье и электроэнергию.

3. Выбор технологии переработки отходов полимеров переменного состава

В России ежегодно образуется около 6млн тонн отходов пластмасс в виде использованных бутылок, одноразовой посуды, тары различного вида и т.п. Эти отходы утилизируют путем сжигания или закапывают в землю. При сжигании на свалках, на мусоросжигательных заводах в атмосферу выделяются токсичные продукты, в частности диоксины. Повторное использование этих отходов для изготовления различных изделий приводит к постепенной деградации полимеров и снижению потребительских свойств.

Переработку отходов пластмасс целесообразно организовать следующим образом. Во первых, наладить производство различных изделий, главным образом не пищевого назначения, во вторых, считать основным принципом, которым следует руководствоваться при решении проблемы утилизации полимерных отходов, рациональное использование сохранившихся свойств и, прежде всего, высокой стойкости к климатическим факторам и агрессивным средам. Этот принцип требует применения термомеханических методов переработки малочувствительных к разбросу технологических параметров и загрязненности вторичного полимерного материала и накладывает ограничения на номенклатуру изделий из него. В частности, изделия из полимерных отходов должны иметь достаточно большой срок эксплуатации, по крайней мере не менее 10 лет, чтобы ограничить их попадание на третичную переработку.

Попытка найти эффективное решение проблемы утилизации полимеров привела ученых к идеи использовать технологию получения композитных материалов для производства изделий различного назначения. В настоящее время наибольшее распространение получили неорганические композиты, имеющие либо керамическую, либо металлическую матрицу. Такие композиты относительно дорогие материалы, технология их производства достаточно сложна, используются они преимущественно при производстве тяжело нагруженных изделий ответственного назначения.

3.1 Анализ технологий переработки отходов полимеров переменного состава

1. Способ переработки полимерных отходов с получением строительного материала

Изобретение относится к области строительства и может быть использовано при производстве на основе полимерных отходов стеновых, отделочных и дорожно-строительных композиционных материалов для гражданского строительства. В изобретении используют несортированные отходы термопластичных полимеров - ПЭНД, ПЭВД в количестве 10-50%. Отходы предварительно измельчают. Смешивают с глиной влажностью 8-12%. Формуют и прессуют изделие при удельном давлении 10 МПа. Далее проводят температурную обработку со скоростью подъема температуры 20°С/мин. Продолжительность выдержки при температуре плавления полимера - 90-180 мин. Технический результат состоит в снижении энергоемкости, упрощении способа и получении материала с высокими технико-эксплуатационными свойствами.

2. Композиционные материалы звукоизоляционного назначения на основе некоторых вторичных полимеров

На основании теоретических и экспериментальных исследований предложена комплексная технология переработки вторичных полимеров с получением товарной продукции востребованных высокоэффективных звукоизоляционных композитов.

Результаты теоретических и экспериментальных исследований используются в производстве с существенным экономическим эффектом.

Объектами исследования являются композиционные материалы на основе вторичных полимеров звукоизоляционного назначения. Рассмотрена принципиально новая технологическая схема переработки отходов. Проведены экспериментальные исследования по переработке отходов пластмасс в звукоизоляционный материал, детально охарактеризован технологический процесс переработки; проведен анализ физико-механических характеристик исследуемого композиционного материала на основе стандартов на продукцию и методов контроля.

3. Переработка отходов полимеров в Полимерпесчаную черепицу

Вся невероятность и уникальность этой технологии в том, что сырьё, используемое при производстве полимерпесчаной черепицы полимерные отходы в различных видах: упаковка, пластиковая тара, пришедшие в негодность изделия быта. Недостатка в сырье не предвидится, а наоборот, объёмы полимерных отходов будут только расти, а потребность в строительных материалах только увеличится. Конечно, существуют эффективные технологии их переработки, позволяющие использовать полимеры повторно. Как правило, требуется тщательная сортировка отходов пластмасс, их отмывка, сушка. Это дорогие и трудоёмкие процессы. Да и качество переработанного сырья низкое, и не позволяет использовать его на 100% взамен исходного.

Предлагаемая технология производства полимернопесчаной черепицы из полимерных отходов не предполагает очистку и глубокую сортировку сырья. Предлагается лишь придерживаться соотношения 40-50/60-50 так называемых мягких (полиэтилены) и жёстких (полипропилены, полистиролы, АБС пластики, ПЭТ и пр.) полимеров. В таком примерно соотношении отходы и находятся на свалках. не подходят тугоплавкие полимеры (поликарбонаты, фторопласты) и резины. Легкоплавкие, типа ПВХ, могут частично выгорать, но на качество полимерпесчаной черепицы это не влияет. Также выгорают примеси (бумага, пищевые отходы), испаряется влага.

Кроме отходов полимеров в производстве черепицы требуется песок. Он используется как наполнитель и должен быть сухим, просеянным без глинистых и пылевидных включений. Не имеет значения, какого цвета песок и происхождения. Допустимая фракция песка до 3х мм. Может и использоваться другой наполнитель, более доступный в выбранной местности, но прежде промышленного его использования необходимо исследовать его влияние на качество продукции. Таким образом, эта невероятная новая технология получения стройматериалов из бесплатного сырья.

3.2 Предлагаемая технология переработки отходов полимеров переменного состава в строительные материалы

Широкое применение полимерного сырья в различных отраслях народного хозяйства явилось причиной появления большого количества отходов, представляющих угрозу экологической обстановке. В рамках решения этой проблемы предпринимаются попытки их переработки в строительные звукоизоляционные композиты. Сочетание различных полимеров и вспенивающих добавок приводит к созданию вспененного материала, свойства которого количественно и качественно отличаются от свойств каждого отдельного компонента.

Преимущества вспененного полимерного композита - пористого материала, заключается в уникальном сочетании звукоизоляционных и конструктивных свойств, и ставят его в ряд с долговечными строительными звукоизоляционными материалами. Причинами того, что промышленное производство пеноматериалов из вторичных полимеров до сих пор недооценено и не получило широкого применения в практике строительства, являются не эксплуатационные его характеристики, а технологические особенности переработки вторичных полимеров. Технология переработки полимерных отходов всегда была и остается достаточно сложной и дорогостоящей задачей по сравнению с другими материалами.

В качестве вспенивающего агента применяют отходы ПВХ, при разложении которых образуется газ, с повышением температуры приобретающий большую скорость. В результате вспенивания скорость физических и химических процессов может ускориться или замедлится. Молекулы газа, двигаясь, стремятся найти выход, вследствие чего образуются открытые поры, сообщающиеся между собой, что благоприятно влияет на коэффициент звукоизоляции.

Газообразные продукты термической деструкции полимерных компонентов смесей отходов полимерного состава представляют собой тяжелых газов, таких, как углеводороды фракции С3 - С5, СО2 и т.п., молекулярная масса которых значительно превышает молекулярную массу хлористого водорода - основой газообразного агента, выделяющегося при деструкции поливинилхлорида. Кроме того, высокая текучесть расплава смеси отходов пластмасс приводит к образованию преимущественно открытых ячеек сообщающихся между собой.

Таким образом, полученная композиция имеет высокие звукоизоляционные свойства.

Переработка отходов пластмасс по данной технологии позволяет получить звукоизоляционный материал с характерной пористо-ячеистой структурой, применяемой в строительстве, как в жилых, так и не жилых сооружениях.

Динамические свойства звукоизоляционной композиции: предел прочности при сжатии 0,30 МПа, коэффициент звукопоглощения при частоте 2000Гц - 0,42, средняя плотность 36 кг/м3.

Образцы звукоизоляционных плит соответствуют санитарно-гигиеническому нормативу ГН 2.16. 1338-03.

На рис.10. представлена геометрическая зависимость коэффициентов звукоизоляционных материалов от структурообразующих факторов.

Из этого следует, что при увеличении температуры происходит термическое разложение отходов. Необходимо учитывать, что вспенивающим агентом являются ПВХ, при разложении образуется газ, который диспергирует в полимерном полуфабрикате и создает условия для выделения газовой фазы непосредственно в объем отверждаемого продукта. Известно, что скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры и давления.

Рис.10. Зависимость коэффициента звукопоглощения от температуры, вспенивающего агента ПВХ и давления

В результате повышения температуры до верхнего предела, молекулы газа приобретают большую скорость, за счет давления прилагаемого на композицию. С ростом температуры число активных молекул вспенивающего агента увеличивается, что, и приводит к резкому возрастанию процесса вспенивания. Это, связано с тем, что молекулы газа, обладают достаточной энергией, чтобы создать возможность образования открытых пор, сообщающихся между собой.

При понижении температуры до нижнего предела, вспенивающий агент также подвергается деструкции. При поддержании процесса, при такой температуре смесь композиции приобретает вязкотекучее состояние, что ведет преимущественно к образованию закрытых ячеек, наполненных газом. При таком образовании ячеистого материала физические свойства его меняются.

Известно, что при воздействии температуры и давления в интервалах max и min, смесь композиции приобретает вязкотекучее состояние. К наилучшему результату можно прийти, лишь снизив давление до 7 МПа и повысив температуру в пределах 220-240 0С и ПВХ до 30 %.

Разложение ПВХ начинается, как правило, уже на стадии плавления композиции и завершается при окончательном переходе всей массы в вязкотекучее состояние. Для вспенивания композиции необходимо нужное количество вспенивающего агента ПВХ. Из рисунков 1, 2 видно, что содержание ПВХ влияет на исследуемые факторы.

Пористость вспененных материалов составляет 80%. Следовательно, именно пористость материала обуславливает его звукоизоляционные свойства, и чем выше пористость материала, тем лучшей изолирующей способностью он обладает.

Изменение средней плотности вспененных материалов приводит к изменению исходной пористости, которая, в свою очередь, влияет на звукоизоляционные свойства вспененного композита. Так, если увеличить давление, прилагаемое на композицию в момент формования, то происходит уплотнение порообразований и ячеистая структура образуется в соответствии с заданными нами свойствами, при этом увеличивается разрушающее напряжение композиции. При уменьшении давления наблюдается обратная тенденция.

При сжатии вспененного материала, происходит увеличение площади контакта структурных элементов материала, при этом пористость ячеистой структуры уменьшается. Эти факторы приводят к уменьшению звукоизоляции материала, и увеличивают коэффициент звукопоглощения композиции.

Из сравнительного анализа структурообразующих факторов и количественного содержания полимеров в композиционных материалах можно сделать заключение, что увеличение ПВХ, температуры и уменьшение давления должно изменять коэффициент звукопоглощения, при этом происходит уменьшение средней плотности и предела прочности при сжатии композиций. Принципиальная технологическая схема переработки отходов пластмасс с получением звукоизоляционных материалов представлена на (рис.11.)

Рис.11. Принципиальная технологическая схема переработки отходов пластмасс переменного состава в звукоизоляционный материал

Первая и вторая стадии процесса (рис.11.) включают сортировку отходов по внешнему виду и их классификацию. В результате третьей стадии дробления, отходы пластмасс приобретают размеры (d = 15 мм), достаточные для того, чтобы можно было осуществить четвертую стадию.

Четвертая стадия является одной из наиболее ответственных в процессе. В результате полимерные отходы интенсивно смешиваются при температуре 100-130 0С и приобретают однородную массу.

Пятая стадия необходима для измельчения полимерных отходов в крупнозернистую крупку (d = 0,80 мм). Шестой стадией процесса является плавление и вспенивание гомогенизированной массы (t0 = 220-240 0C).

На седьмом этапе вспененная масса при температуре < 100 0С направляется на формовочный узел. Восьмой заключительной стадией процесса является охлаждение готового изделия.

Рис.12. Аппаратурно-технологическая схема по переработке отходов пластмасс в звукоизоляционную плиту: 1 - бункер-накопитель, 2 - конвейер; 3 - классификатор пластмассовых отходов, 4 - дробилка I, 5 - экструдер, 6 - дробилка II, 7 - плавильно-нагревательная печь, 8 - траспортер, 9 - формовочное устройство, 10 - станок для вертикальной обрезки, 11 - скруббер

Установлено, что коэффициент теплопроводности и звукопоглощения уменьшается с уменьшением плотности материала, как показано на рис.13.

Рис.13. Зависимость звукопоглощения от плотности

Как видно из графиков, с увеличением плотности материала коэффициент теплопроводности и звукопоглощения также увеличивается, что объясняется увеличением доли полимера и уменьшением объема газа в структурах полученного материала. По сравнению с широко используемым для теплоизоляции стеклянным штапельным волокном, коэффициент теплопроводности предлагаемого материала составляет 0,041 Вт/(м•К), по сравнению с 0,047 Вт/(м•К) у стеклянного волокна при одинаковой плотности - 30 кг/м3. Это говорит о более эффективном использовании предлагаемой композиции для теплоизоляции. Что касается звукопоглощения, то предлагаемый материал соответствует второму классу ГОСТ 23499-79 «Материалы и изделия строительные, звукопоглощающие и звукоизоляционные. Классификация и общие технические требования».

Таблица. Физико-механические свойства композиционных материалов на основе вторичных полимеров.

Полимеры

Состав композиции, % масс.

Поливинилхлорид

15

20

25

30

Полиэтилен

35

25

15

5

Полиэтилентерефталат

40

45

50

55

Каучук

10

10

10

10

Прочность при сжатии, МПа

0,56

0,51

0,46

0,35

Коэффициент звукопоглощения, б

0,68

0,63

0,52

0,42

Переработка отходов полимеров по данной технологии позволяет получить звукоизоляционный материал с характерной пористо-ячеистой структурой, применяемой в строительстве, как в жилых, так и не жилых сооружениях. Соответствует ГОСТ 12.3.030-83 ССБТ. «Переработка пластических масс. Требования безопасности». Предлагаемая технология улучшает состояние окружающей среды, позволяет экономить первичное сырье и электроэнергию.

Заключение

В данной работе я провел анализ основных видов отходов полимеров, способов их сокращения, утилизации и обезвреживания. Изучил методы переработки отходов полимеров в полимерное сырье и повторное его использование для получения изделий. Предложить технологическую схему переработки отходов полимеров переменного состава. Переработка отходов пластмасс по данной технологии позволяет получить звукоизоляционный материал с характерной пористо-ячеистой структурой, применяемой в строительстве, как в жилых, так и не жилых сооружениях. Предлагаемая технология улучшает состояние окружающей среды, позволяет экономить первичное сырье, электроэнергию и перерабатывать отходы полимеров переменного состава, которые не подлежат утилизации известными способами.

Список литературы

1.Бобович Б. Б. Переработка промышленных отходов: Учебник для вузов. - М.: "СП Интермет Инжиниринг", 1999. - 445 с.

2.Вторичное использование полимерных материалов , Под ред. Е.Г. Любешкиной.- М.: Химия, 1995. -51с.

3.Зорин В.П., Лубенская С.А. Использование вторичного полимерного сырья, Химическая промышленность: Обзорная информация.-Сер. Переработка пластмасс. С.17

4.Лебедева Т.М., Шалайкая С.А. Переработка вторичного поливинилхлоридного сырья. -Л.: О-во «Знание» РСФСР, ЛО, ЛДНТП,1991.-24с., ил.

5.Лукасик В.А. Разработка технологии переработки высокомолекулярных отходов.- Волгоград, 1998.

6.Новый способ захоронения отходов: Экспресс-инф. "Ресурсо-сберегающие технологии". - М.: ВИНИТИ, 1996. - № 1. - С. 25 - 26.

7.Переработка отходов термопластов / Л. М. Варданян, А. Ф. Пиняев, В. И. Жданова и др. Обзор, инф. - М.: НИИТЭИхимпром, 1985. - 50 с.

8.Сметанин В.И. Защита окружающей среды от отходов потребления

9.Тороян, Р.А. Технология переработки отходов пластмасс в тепло- и звукоизоляционные материалы / Р.А. Тороян, В.И. Каблуков // Сбор. науч. тр. аспирантов и студентов ЮРГТУ (НПИ) «Студенческая научная весна - 2007» / Юж.-Рос. гос. техн. ун-т. - Новочеркасск: ЮРГТУ (НПИ), 2007. - С. 327-329.

10.www.fips.ru Способ переработки полимерных отходов с получением строительного материала.

11.Состояние и перспективы развития вторичной переработки и утилизации полимерных материалов. http://www.polimech.com/theory.html

12.Полимерпесчаная черепица. http://cherepitza.boom.ru/

13.Тороян Р.А., Микитаев А.К., Беданоков А.Ю., и др. Основные способы переработки и утилизации полимерных отходов в строительный материал / Р.А. Тороян, А.К. Микитаев, А.Ю. Беданоков, В.А. Борисов, Г.О. Молоканов, Ю.Е. Дорошенко // Пластические массы. - № 1. - 2008. - С. 53-56.

14.Тороян, Р.А. Способ переработки отходов пластмасс в строительный материал / В.И. Каблуков, Р.А. Тороян // Экология и промышленность России. - № 1. - 2007. - С. 20-21.

15.Способ переработки отходов пластмасс в строительный материал: пат. № 2302433 Рос. Федерация, МПК C 08 J 11/04 / В.В. Фомин, В.И. Каблуков, Р.А. Тороян, А.Н. Ожев, патентообладатель Кубанский государственный аграрный университет. - № 2006117965/04; заявл. 24.05.06; опубл. 10.07.2007. Бюл. № 19. - 3 с.

16.Способ изготовления строительного материала: пат. №2302434 Рос. Федерация, МПК С08 L 23/06/ В.В. Фомин, В.И. Каблуков, Р.А Тороян, патентообладатель Кубанский государственный аграрный университет. - № 2006117933/04; заявл. - 24.05.06; опубл. 10.07.2007. Бюл. № 19. - 3 с.

Размещено на Allbest.ru


Подобные документы

  • Типы бытовых отходов, проблема утилизации. Биологическая переработка промышленных отходов, отходов молочной промышленности. Отходы целлюлозно-бумажной промышленности. Переработка отходов после очистки воды. Переработка ила, биодеградация отходов.

    курсовая работа [78,1 K], добавлен 13.11.2010

  • Проблемы утилизации отходов в России, пути их решения. Способы утилизации и переработки вторичного сырья. Переработка отходов за рубежом. Затраты на переработку отходов. Повышение экологической безопасности эксплуатации автомобильного транспорта.

    курсовая работа [222,9 K], добавлен 22.01.2015

  • Особые виды воздействия на биосферу, загрязнение отходами производства, защита от отходов. Сжигание твердых отходов: диоксиновая опасность, плата за хранение и размещение отходов. Утилизация отдельных видов отходов и люминисцентных ламп, переработка.

    курсовая работа [476,3 K], добавлен 13.10.2009

  • Актуальность проблемы утилизации бытовых отходов. Определение, разновидности, норма накопления бытовых отходов. Принципы комплексного управления отходами (КУО). Системы сбора и промежуточного хранения отходов. Виды переработки и утилизации мусора.

    курсовая работа [62,7 K], добавлен 21.11.2009

  • Воздействие бытовых отходов на окружающую среду. Ликвидация твердых отходов. Рециклизация как вторичная переработка. Комплексная программа ликвидации. Опыт использования технологий утилизации мусора. Виды разлагаемых пластиков и способы их утилизации.

    контрольная работа [577,0 K], добавлен 03.07.2009

  • Классификация отходов по виду и разделение по классу опасности. Способы их утилизации и размещение на свалках. Влияние бытовых отходов на окружающую среду и здоровье человека. Переработка мусора как основное направление экологии в борьбе за чистоту.

    контрольная работа [33,6 K], добавлен 22.02.2017

  • Экономическая оценка возможности и целесообразности использования твердых бытовых отходов (ТБО) как топлива. Вторичное использование после сортировки, захоронение на полигонах, термическая переработка ТБО. Объемы производства ТБО в Новосибирской области.

    статья [260,9 K], добавлен 09.12.2013

  • Оценка проблемы утилизации мусора в Казани. Анализ достоинств и недостатков существующих способов утилизации и переработки отходов. Способы утилизации твердых бытовых отходов в европейских странах и в России. Массовое сознание и пути решения проблемы.

    контрольная работа [38,1 K], добавлен 21.11.2011

  • Особенности утилизации отходов от машиностроительного комплекса, переработки древесины и производства строительных материалов. Анализ тенденций к обработке промышленных отходов на полигонах предприятий с заводской технологией обезвреживания и утилизации.

    реферат [21,2 K], добавлен 27.05.2010

  • Проблема утилизации отходов Уральских городов. Инвестиции и план развития завода по переработке твердых бытовых отходов (ТБО). Интервью у министра природных ресурсов. Проблемы переработки и утилизации промышленных отходов. Методы переработки отходов.

    реферат [169,7 K], добавлен 02.11.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.