Биосфера и ее свойства. Последствия парникового эффекта

Состав и свойства биосферы. Функции и свойства живого вещества в биосфере. Динамика экосистем, сукцессии, их виды. Причины возникновения парникового эффекта, подъем Мирового океана как его последствие. Способы очистки выбросов от токсичных примесей.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 18.05.2011
Размер файла 50,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Государственное образовательное учреждение

Высшего профессионального образования

"ЧИТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"

(ЧитГУ)

Контрольная работа

по дисциплине: Экология

Выполнил ст. гр.

Проверил: преподаватель

Чита 2010

Содержание

  • Биосфера. Основные функции и свойства живого вещества в биосфере
  • Границы биосферы
  • Состав и свойства биосферы
  • Свойства биосферы
  • Живое вещество биосферы
  • Функции живого вещества
  • Основные функции живого вещества в биосфере
  • Динамика экосистем, сукцессии, их виды
  • Парниковый эффект и подъем мирового океана
  • Причины возникновения парникового эффекта
  • Последствия парникового эффекта
  • Способы очистки выбросов от токсичных примесей
  • Список используемой литературы

Биосфера. Основные функции и свойства живого вещества в биосфере

Впервые понятие биосфера, как "область жизни", было введено в науку Ж.Б. Ламарном в начале 19 века, а в геологию Э. Зюссом в 1875 г. Он понимал под этим термином совокупность всех организмов. Это определение близко к современному понятию биота.

Вернадский пошел значительно дальше. Его "биосфера не есть только так называемая область жизни". Это единство живого и косного вещества планеты. Но не только. Это еще и связь с космосом, с космическими излучениями, принимаемыми нашей планетой, строящими ее биосферу.

Биосфера составляет верхнюю оболочку или геосферу, одной из больших концентрических областей нашей планеты Земли.

Если с понятием "биосферы" по Зюссу связывалось только наличие в трех сферах земной оболочки (твердой, жидкой, газообразной) живых организмов, то по В.И. Вернадскому, им отводится роль главнейшей геохимической силы.

В таком случае под понятием биосферы понимается все пространство, где существует или когда-либо существовала жизнь, то есть, где встречаются живые организмы или продукты их жизнедеятельности.

Биосфера охватывает часть атмосферы, верхнюю часть литосферы и гидросферу. Верхняя граница биосферы проходит на высоте примерно 20 км над поверхностью Земли, а нижняя на 6-7-километровой глубине. Биосфера принципиально отличается от прочих земных оболочек поскольку является "комплексной". Она не только "покров" из живого вещества, но и среда обитания миллионов видов живых существ, в том числе и человека.

Вернадский не только сконкретизировал и очертил границы жизни в биосфере, роль живых организмов в процессах планетарного масштаба. Он показал, что в природе нет более мощной геологической средообразующей) силы, чем живые организмы и продукты их жизнедеятельности. Ту часть биосферы, где живые организмы встречаются в настоящее время обычно называют современной биосферой, или необиосферой, а древние биосферы относят к палеобиосферам, или к белым биосферам.

Границы биосферы

Биосфера в атмосфере простирается примерно до озонового экрана (у полюсов - 8-10 км, у экватора - 17-18 км, над остальными территориями - 20-25 км).

Гидросфера практически вся, в том числе и самая глубокая впадина (Марианская) Мирового океана (11022 м) занята жизнью. К необиосфере следует относить также и донные отложения, где возможно существование живых организмов.

В литосферу жизнь проникает на несколько километров, но в основном ограничивается почвенным слоем, но по отдельным трещинам и пещерам она распространяется на сотни метров.

Границы палеобиосферы в атмосфере примерно совпадают с необиосферой, под водами к палеобиосфере следует относить и осадочные породы, которые практически полностью претерпели переработку живыми организмами. Это толща от сотен метров до десятков километров. Это применимо и к литосфере, пережившей водную стадию функционирования.

Таким образом, границы биосферы определяются наличием живых организмов или "следами" их жизнедеятельности.

Живое вещество образовало ничтожно тонкий слой в общей массе геосфер Земли. Его масса составляет 2420 млрд. тонн, что более чем в 2 тысячи раз меньше массы самой легкой оболочки Земли - атмосферы. Но эта ничтожная масса живого вещества встречается практически повсюду - в настоящее время живые существа отсутствуют лишь в областях обширного оледенения и в кратерах действующих вулканов.

"Всюдность жизни" в биосфере обязана потенциальным возможностям и масштабу приспособляемости организмов, которые постепенно, захватив моря и океаны, вышли на сушу и захватили ее.В.И. Вернадский считал, что этот захват продолжается.

Пределы толерантности температур у различных организмов - от абсолютного 0 до +180°С, а некоторые бактерии могут существовать в вакууме. Широк диапазон химических условий среды для ряда организмов - от жизни в уксусе до жизни под действием ионизирующей радиации (бактерии в котлах ядерных реакторов). Более того, выносливость некоторых живых существ по отношению к отдельным факторам выходит даже за пределы биосферы, то есть у них есть еще определенный "запас прочности" и потенциальные возможности к распространению. Однако все организмы выживают еще и потому, что везде, где бы ни было их место обитания, существует биогенный ток атомов. Этот ток не смог бы иметь места, во всяком случае, в наземных условиях, если бы не было почвы.

В целом экологический диапазон распространения живого вещества очень велик.

В 1977 г. в океане на глубине нескольких километров были обнаружены горячие вулканические зоны, в которых при температуре 350°С существуют многочисленные термофильные бактерии.

В экспериментах американского исследователя Камерона сине-зеленые водоросли на протяжении нескольких месяцев не теряли жизнеспособности в условиях, которые соответствовали марианским.

Живое вещество не гибнет в жидком азоте.

Некоторые виды, например, те же сине-зеленые водоросли, не гибнут под действием мощного ионизирующего излучения и поселяются в эпицентре ядерного взрыва уже после нескольких дней его действия.

Живое вещество может сохраняться даже в условиях открытого космоса. Так, третья экспедиция американских астронавтов забыла на Луне телекамеру. Когда через полгода ее возвратили на Землю, на внутренней стороне крышки были обнаружены земные бактерии, которые без каких-либо вредных последствий пережили длительное нахождение за пределами родной планеты.

Состав и свойства биосферы

Биосфера, являясь глобальной экосистемой (экосферой), как и любая экосистема, состоит из абиотической и биотической части.

Абиотическая часть представлена:

Почвой и подстилающими ее породами до глубины, где еще есть живые организмы, вступающие в обмен с веществом этих пород и физической средой порового пространства.

Атмосферным воздухом до высот, на которых возможны еще проявления жизни.

Водной средой - океаны, реки, озера и т.п.

Биотическая часть состоит из живых организмов всех таксонов, осуществляющих важнейшую функцию биосферы, без которых не может существовать сама жизнь: биогенный ток атомов. Живые организмы осуществляют этот ток атомов благодаря своему дыханию, питанию и размножению, обеспечивая обмен веществом между всеми частями биосферы.

В основе биогенной миграции атомов в биосфере лежат два биохимических принципа:

стремиться к максимальному проявлению, к "всюдности" жизни;

обеспечить выживание организмов, что увеличивает саму биогенную миграцию.

Эти закономерности проявляются, прежде всего, в стремлении живых организмов "захватить" все мало-мальски приспособленные к их жизни пространства, создавала экосистему или ее часть. Но любая экосистема имеет границы, имеет свои границы в планетарном масштабе и биосфера.

биосфера парниковый эффект токсичный

При общем рассмотрении биосферы, как планетарной экосистемы, особое значение приобретает представление о ее живом веществе, как о некой общей живой массе планеты.

Под живым веществом В.И. Вернадский понимает все количество живых организмов планеты как единое целое.

Его химический состав подтверждает единство природы - он состоит из тех же элементов, что и неживая природа, только соотношение этих элементов различное и строение молекул иное.

Свойства биосферы

Биосфере, как и составляющим ее другим экосистемам, более низкого ранга, присуща система свойств, которые обеспечивают ее функционирование, саморегулирование, устойчивость и другие параметры. Рассмотрим основные из них.

Центральным звеном ее выступают живые организмы (живое вещество).

Биосфера - открытая система. Ее существование немыслимо без поступления энергии извне. Она испытывает воздействие космических сил, прежде всего солнечной активности.

Биосфера - саморегулирующаяся система, для которой, как отмечал Вернадский, характерна организованность. В настоящее время это свойство называется гомеостазом, понимая под ним способность, возвращаться в исходное состояние, гасить возникающие возмущения включением ряда механизмов. Биосфера за свою историю пережила ряд таких возмущений, справляясь о *** (извержение вулканов, встречи с астероидами, землетрясения, горообразование и т.п.), благодаря действию гомеостатических механизмов и, в частности, принципа Ле-Гиателье-Брауна при действии на систему сил, выводящих ее из состояния устойчивого равновесия, последнее смещается в том направлении, при котором эффект этого воздействия ослабляется.

Опасность современной экологической ситуации связана прежде всего с тем, что нарушается линия механического гомеостаза и принцип Ле-Гиателье-Брауна, если не в планетарных, то в крупных региональных масштабах. Результат - распад экосистем, либо появление неустойчивых, практически лишенных свойств гомеостаза систем типа агроценоза или урбанизированных комплексов.

Биосфера - система, характеризующаяся большим разнообразием.

Разнообразие - важнейшее свойство всех экосистем. Биосфера как глобальная экосистема, характеризующаяся максимальным среди других систем разнообразием. Разнообразие рассматривается как основное условие устойчивости любой экосистемы и биосферы в целом. Это условие так универсально, что сформировалось в качестве закона.

Важнейшее свойство биосферы - наличие в ней механизмов, обеспечивающих круговорот вещества и связанного с ним неисчерпаемость отдельных химических элементов и их соединений.

Живое вещество биосферы

"На земной поверхности нет химической силы, могущественней по своим конечным последствиям, чем живые организмы, взятые в целом".

Что принципиально отличает нашу планету от какой-либо другой планеты Солнечной системы? Наявность жизни. "Если бы на Земле не было жизни, лицо ее было бы точно также неизменным и химическим инертным, как недвижимое лицо Луны, как инертные обломки небесных светил".

Живое вещество биосферы есть совокупность всех ее живых организмов. Как ученый В.И. Вернадский понимает, что объект его исследований требует некоторых характеристик, а поэтому отмечает: "Я буду называть совокупность организмов, сведенных к массе, химического состава и энергии, живым веществом". Живое вещество в его понимании - это форма активной материи, и ее энергия тем больше, чем больше масса живого вещества. Понятие "живое вещество" ввел в науку В.И. Вернадский и понимал над ним совокупность всех живых организмов планеты.

Какие же свойства живого вещества?

Живое вещество биосферы характеризуется огромной свободной энергией, которую можно было бы сравнить разве что с огненным потоком лавы, но энергия лавы не долговременна.

В живом веществе, благодаря присутствию ферментов, химические реакции происходят в тысячи, а иногда и в миллионы раз быстрее, чем в неживой. Для жизненных процессов характерно то, что полученные организмом вещества и энергия перерабатываются и отдаются в значительно больших количествах. Например, масса насекомых, которых съедает синица за день, равна ее собственной массе, а некоторые гусеницы употребляют и перерабатывают за сутки в 200 раз больше еды, чем весят сами.

Индивидуальные химические элементы (белки, ферменты, а иногда и отдельные минеральные соединения синтезируются только в живых организмах).

Живое вещество стремится заполнить собой все возможное пространство. В.И. Вернадский называет две специфические формы движения живого вещества:

а) пассивную, которая осуществляется размножением, и присуща как животным, так и растительным организмам;

б) активную, которая осуществляется за счет направленного движения организмов (меньшей мерой характера для растений).

Живое вещество проявляет значительно большее морфологическое и химическое разнообразие, чем неживое. В природе известно более 2 млн. органических соединений, которые входят в состав живого вещества, тогда когда количество минералов неживого вещества составляет около 2 тыс., то есть на три порядка ниже.

Живое вещество представлено дисперсными телами - индивидуальными организмами, каждый из которых имеет свой собственный генезис, свой генетический состав. размеры индивидуальных организмов колеблется от 2 нм у наименьших до 100 м (диапазон более 109). Крупнейшими из растений считаются секвойи, а из животных - киты. По мнению Вернадского, минимальные и максимальные размеры организмов определяются граничными возможностями их газового обмена со средой.

Будучи дисперсным, живое вещество никогда не попадается на Земле в морфологически чистой форме, например в виде популяционного вида. Она может существовать только в виде биоценоза: "… даже простенький биоценоз какого-то сухого соснячка на песочке есть группировка, которая состоит приблизительно из тысячи видов живых организмов".

Принцип Реди (флорентийский академик, врач и натуралист, 1626-1697: "все живое из живого" - является отличительной особенностью живого вещества, которое существует на Земле в форме беспрерывного чередования поколений и характеризуется генетической связью с живым веществом всех прошлых геологических эпох. Неживые абиогенные вещества, как известно, поступают в биосферу из космоса, ним же выносятся порциями из оболочки земного шара. Они могут быть аналогичными по составу, но генетической связи в общем случае у них нет. "Принцип Реди … не указывает на невозможность абиогенеза вне биосферы или при установлении наличия в биосфере (теперь или раньше) физико-химических явлений, не принятых при научном определении этой формы организованности земной оболочки".

Живое вещество в лице конкретных организмов, в отличие от неживого, осуществляет на протяжении своей исторической жизни грандиозную работу. По сути, только биогенные вещества метабиосферы - это интеграл массы живого вещества, тогда как масса неживого вещества земного происхождения является величиной постоянной в геологической истории: 1 г архейского гранита и сегодня остается 1 г того же вещества, а та же масса живого вещества, то есть 1 г, на протяжении миллиардов лет существовала за счет изменения поколений и все это время выполняла геологическую работу.

Функции живого вещества

Какие же функции живого вещества в биосфере?

В.И. Вернадский называет такие: а) газовая; б) кислородная; в) описательная; г) кальционная; д) восстановительная; е) концентрационная; ж) разрушения органических веществ; з) восстановительного распада; и) метаболизма и дыхания организмов.

Основные функции живого вещества в биосфере

Энергетическая.

Поглощение солнечной энергии в процессе фотосинтеза, а химической энергии путем распада энергонасыщенных веществ; передача энергии пищевыми цепями разнородного живого вещества

Концентрационная.

Выборочное накопление в ходе жизнедеятельности отдельных видов вещества: а) использованной для создания тела организма; б) выделенной из него в процессе метаболизма

Деструкционная.

Минерализация небиогенного органического вещества (1); разложение неживого неорганического вещества (2); всасывание созданных веществ в биохимический круговорот (3)

Средообразующая.

Превращение физико-химических параметров среды (главным образом за счет небиогенного вещества).

Транспортная.

Перенос вещества против силы тяжести и в горизонтальном направлении.

Первой названа энергетическая функция. "Только жизнь с его морфологическим осложнением может удерживать солнечное излучение на Земле миллионы лет, как мы увидим на примере каменного угля. Действительно, только благодаря "зеленому экрану" биосферы - фотоавтотрофам - солнечная энергия не просто отбивается от поверхности планеты, нагревая только поверхностный слой, а глубоко проникает в толщи земной коры и является энергетическим источником, по сути, для всех экзогенных процессов".

Динамика экосистем, сукцессии, их виды

Понятие о динамике экосистем. Экосистемы подвержены непрерывным изменениям. Одни виды постепенно отмирают или вытесняются, уступая место другим. Внутри экосистем постоянно протекают процессы разрушения и новообразования. Например, старые деревья отмирают, падают и перегнивают, а покоящиеся рядом до поры до времени в почве семена прорастают, давая новый цикл развития жизни.

Постепенные процессы изменения экосистем могут носить иной характер в случае катастрофических воздействий на них. Если разрушение биоценоза вызвано, например, ураганом, пожаром или рубкой леса, то восстановление исходного биоценоза происходит медленно.

Изменение экосистемы во времени в результате внешних и внутренних воздействий носит название динамики экосистемы.

Изменения сообществ отражаются суточной, сезонной и многолетней динамикой экосистем. Такие изменения обусловлены периодичностью внешних условий.

Суточная динамика экосистем. Составляющие любую экосистему виды не одинаково реагируют на факторы внешней среды. Поэтому одни из них более активны в дневное время суток, другие - к вечеру и ночью. Суточная динамика происходит в сообществах всех зон - от тундры до влажных тропических лесов.

Наиболее четко суточная динамика выражена в природных зонах с резким колебанием факторов среды на протяжении суток. Например, в пустыне жизнь летом в полуденные часы замирает, хотя некоторые животные и проявляют определенную активность.

В умеренной зоне в дневное время господствуют насекомые, птицы и некоторые другие животные. В сумеречное и ночное время активными становятся ночные насекомые, например, бражники, комары, многие млекопитающие, из птиц - козодои, совы и др. (рис.2.9). Суточная динамика прослеживается и у растений. Большинство покрытосеменных раскрывают свои цветки только в дневное время.

Однако у некоторых растений наблюдается увеличение жизненной активности к ночи. Так, вечером усиливается аромат такой представительницы семейства орхидейных, встречающейся в наших лесах, как любка двулистная, что служит для привлечения ночных насекомых-опылителей.

Чрезвычайно интересное суточное явление наблюдается у представителей животного планктона (зоопланктона) в морях и пресных водоемах. Днем они держатся на глубине, а ночью поднимаются в поверхностные слои.

Сезонная динамика экосистем определяется сменой времен года. Это выражается в изменении не только состояния и активности организмов отдельных видов, но и их соотношения. В первую очередь сезонная динамика затрагивает видовой состав. Неблагоприятные сезонные погодные условия заставляют многие виды мигрировать в районы с лучшими условиями существования. У видов же, остающихся зимовать в экосистеме, значительно изменяется их жизненная активность. Большинство видов деревьев и кустарников на зиму сбрасывает листву. Приостанавливается активное деление клеток образовательной ткани. Вегетативные органы однолетних растений отмирают. У многолетних трав жизнеспособными остаются только корневая система и зимующие почки, прикрытые от замерзания почвой и снежным покровом. Некоторые виды оседлых животных впадают в спячку, предварительно накопив запасы энергетического сырья - жира. Другие ведут зимой активный образ жизни и способны обеспечить себя кормом.

Со сменой сезонов года связано изменение флористического состава экосистем. Так, войдя в березняк, осинник или дубраву ранней весной, когда еще не распустились листья на деревьях, можно увидеть целые пятна цветущих растений-первоцветов. Эту группу растений составляют виды из семейства лютиковых (ветреница дубравная, чистяк весенний, перелеска благородная, сон-трава) и некоторые другие. Их раннее развитие является приспособлением к более полному использованию условий местообитания. Снег уже сошел, света и тепла достаточно, а вегетация основных растений еще не началась. А если вы войдете в тот же лес в конце мая-начале июня, то не узнаете этого места. Здесь развились уже другие травы, и ничто не говорит о бывшем буйном весеннем цветении первоцветов.

Таким же образом к смене сезонов года приспособились и животные. Весной у них появляется потомство. Активизация жизненных процессов приходится на летний период, а осенью они уже начинают готовиться к предстоящей зимовке.

Сукцессии. Экологической сукцессией называется постепенная, необратимая, направленная смена одних биоценозов другими на одной и той же территории под влиянием природных факторов или воздействия человека.

Наблюдать сукцессию можно на заброшенных полях раннего возраста, песчаных дюнах или песчаных морских и речных берегах. Если мы будем рассматривать сукцессию на брошенных землях, которые не используются в сельском хозяйстве, то можно видеть, что бывшие поля быстро покрываются разнообразными однолетними растениями. Сюда же могут попасть, преодолев иногда большие расстояния с помощью ветра или животных, семена древесных пород: сосны, ели, березы, осины.

Вначале изменения происходят быстро. Затем, по мере появления растений, растущих более медленно, скорость сукцессии снижается. Всходы березы образуют густую поросль, которая затеняет почву, и даже если вместе с березой прорастают семена ели, ее всходы, оказавшись в весьма неблагоприятных условиях, сильно отстают от березовых. Светолюбивая береза является серьезным конкурентом для ели. К тому же специфические биологические особенности березы дают ей преимущества в росте. Березу называют"пионером леса", так как она почти всегда первой поселяется на нарушенных землях и обладает широким диапазоном приспособляемости.

Березки в возрасте 2-3 лет могут достигать высоты 100-120 см, тогда как елочки в том же возрасте едва дотягивают до 10 см. Постепенно, к 8-10 годам березы формируют устойчивое березовое насаждение высотой до 10-12 м. Под развивающимся пологом березы начинает подрастать и ель, образуя разной степени густоты подрост. Перемены происходят и в нижнем, травяно-кустарничковом ярусе. Постепенно, по мере смыкания крон березы, светолюбивые виды, характерные для начальных стадий сукцессии, начинают исчезать и уступают место теневыносливым.

Изменения касаются и животного компонента рассматриваемого биоценоза. На первых стадиях поселяются майские хрущи, березовые пяденицы, затем появляются многочисленные птицы: зяблики, славки, пеночки. Поселяются мелкие млекопитающие: землеройки, кроты, ежи. Изменение условий освещения начинает благоприятно сказываться на молодых елочках, которые ускоряют свой рост. Если на ранних этапах сукцессии прирост елочек составил 1-3 см в год, то по прошествии 10-15 лет он достигает уже 40-60 см. Где-то к 50 годам ель догоняет березу в росте, и образуется смешанный елово-березовый древостой. Из животных появляются зайцы, лесные полевки и мыши, белки. Заметны сукцессионные процессы и среди птичьего населения. Появляются иволги, питающиеся гусеницами.

Смешанный елово-березовый лес постепенно сменяется лесом еловым. Ель перегоняет в росте соперницу-березу, создает значительную тень, и светолюбивая белоствольная красавица, не выдержав конкуренции, постепенно выпадает из древостоя. Таким образом, происходит сукцессия, при которой вначале березовый, затем смешанный елово-березовый лес сменяется чистым ельником. Естественный процесс смены березняка ельником длится более 100 лет. Именно поэтому иногда процесс сукцессии называют вековой сменой.

Если развитие сообществ идет на вновь образовавшихся, ранее никем и ничем не заселенных местообитаниях, - на песчаных дюнах, застывших потоках лавы, породах, обнажившихся в результате эрозии или отступления льдов, то такая сукцессия называется первичной.

В качестве примера первичной сукцессии приведем процесс заселения вновь образованных песчаных дюн, где растительность прежде отсутствовала. Здесь вначале поселяются многолетние растения, способные переносить засушливые условия. Они укрепляют поверхность дюны и обогащают песок органическими веществами. Вслед за многолетниками появляются однолетники. Их рост и развитие часто способствуют обогащению субстрата органическим материалом, так что постепенно создаются условия, подходящие для произрастания таких растений, как ива, толокнянка, чабрец. Эти растения предшествуют появлению проростков сосны, которые закрепляются здесь и, подрастая, образуют через много поколений сосновые леса на песчаных дюнах.

Парниковый эффект и подъем мирового океана

В последнее время деятельность человека оказывает беспрецедентное по масштабам и интенсивности воздействие на окружающую среду и глобальные системы жизнеобеспечения. Доказательство тому - одна из многих экологических проблем - глобальное потепление климата - парниковый эффект. Скоро атмосфера станет непроницаемой для тепла, и последствия могут быть очень глобальными - неизбежное повышение уровня мирового океана в результате таяния материковых и горных ледников, морских льдов, теплового расширения вод океана. Такое потепление климата вызовет серьёзные изменения экологических условий в тундре, в зонах "вечной мерзлоты": увеличится сезонное протаивание грунтов, что создаст угрозу дорогам, строениям и коммуникациям, активизируется процесс заболачивания, ухудшится состояние лесных массивов на вечной мерзлоте.

Причины возникновения парникового эффекта

Еще в 1827 году французский физик Жозеф Фурье предположил, что атмосфера земли выполняет функцию своего рода стекла в теплице: воздух пропускает солнечное тепло, не давая ему при этом испариться обратно в космос. И он был прав. Этот эффект достигается благодаря некоторым атмосферным газам второстепенного значения, каковыми являются, например, водяные испарения и углекислый газ. Они пропускают видимый и "ближний" инфракрасный свет, излучаемый солнцем, но поглощают "далекое" инфракрасное излучение, имеющее более низкую частоту и образующееся при нагревании земной поверхности солнечными лучами. Если бы этого не происходило, Земля была бы примерно на 30 градусов холоднее, чем сейчас, и жизнь бы на ней практически замерла.

Исходя из того, что "естественный" парниковый эффект - это устоявшийся, сбалансированный процесс, вполне логично предположить, что увеличение концентрации "парниковых" газов в атмосфере должно привести к усилению парникового эффекта, который в свою очередь приведет к глобальному потеплению климата. Количество СО2 (углекислоты) в атмосфере неуклонно растет вот уже более века из-за того, что в качестве источника энергии стали широко применяться различные виды ископаемого топлива (уголь и нефть). Кроме того, как результат человеческой деятельности в атмосферу попадают и другие парниковые газы, например метан, закись азота и целый ряд хлорсодержащих веществ. Несмотря на то, что они производятся в меньших объемах, некоторые из этих газов куда более опасны с точки зрения глобального потепления, чем углекислый газ.

Сегодня уже мало кто из ученых, занимающихся этой проблемой, оспаривает тот факт, что деятельность человека приводит к повышению концентрации парниковых газов в атмосфере. По мнению Межправительственной комиссии по изменению климата, "увеличение концентрации парниковых газов приведет к разогреву нижних слоев атмосферы и поверхности земли. Любое изменение в способности Земли отражать и поглощать тепло, в том числе вызванное увеличением содержания в атмосфере тепличных газов и аэрозолей, приведет к изменению температуры атмосферы и мировых океанов и нарушит устойчивые типы циркуляции и погоды".

Тем не менее, ведутся ожесточенные споры вокруг того, какое конкретно количество этих газов вызовет потепление климата и в какой степени, а также как скоро это произойдет. Дело в том, что даже когда изменение климата действительно происходит, в этом трудно быть стопроцентно уверенным. Мировые средние температуры могут сильно колебаться в пределах нескольких лет и десятилетий - причем по естественным причинам. Проблема в том, что считать средней температурой, и на основании каких критериев судить, действительно ли она изменилась в ту или другую сторону.

В конце восьмидесятых - начале девяностых годов несколько лет подряд среднегодовая глобальная температура была выше обычной. Это вызвало опасения в том, что вызванное человеческой деятельностью глобальное потепление уже началось. Среди ученых существует консенсус, что за последние сто лет среднегодовая глобальная температура поднялась на 0,3 - 0,6 градусов Цельсия. Однако среди них нет согласия в том, что именно вызвало это явление. Трудно с уверенностью сказать, происходит глобальное потепление или нет, так как наблюдаемый рост температуры все еще находится в пределах естественных температурных колебаний.

Неопределенность в вопросе глобального потепления порождает скепсис по поводу грозящей опасности. Проблема заключается в том, что когда гипотеза об антропогенных факторах глобального потепления подтвердится, уже поздно будет что-либо предпринимать.

Парниковый газ.

Парниковые газы - газы, которые предположительно вызывают глобальный парниковый эффект.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар, углекислый газ, метан, озон, галоуглероды и оксид азота.

Водяной пар.

Водяной пар - основной естественный парниковый газ, ответственный более, чем за 60 % эффекта. Прямое антропогенное воздействие на этот источник незначительно. В то же время, увеличение температуры Земли, вызванное другими факторами, увеличивает испарение и общую концентрацию водяного пара в атмосфере при практически постоянной относительной влажности, что, в свою очередь, повышает парниковый эффект. Таким образом, возникает некоторая положительная обратная связь. С другой стороны, облака в атмосфере отражают прямой солнечный свет, тем самым, увеличивая альбедо Земли, что несколько уменьшает эффект.

Углекислый газ.

Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность организмов, деятельность человека. Антропогенными источниками является сжигание ископаемого топлива, сжигание биомассы (в т. ч. сведение лесов), некоторые промышленные процессы (например производство цемента). Основными потребителями углекислого газа являются растения. В норме биоценоз поглощает приблизительно столько же углекислого газа, сколько и производит (в т. ч. за счет гниения биомассы).

Основными антропогенными источниками метана являются пищеварительная ферментация у скота, рисоводство, горение биомассы (в т. ч. сведение лесов). Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов). В период с 1000 по 1700 годы концентрация метана упала на 40 %, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель и пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов

Последствия парникового эффекта

Главная проблема это повышение уровня Мирового океана. При очень значительном потеплении катастрофически начнет сокращаться (примерно в 3 - 5 раз) площадь горного оледенения, в Арктике уменьшатся площадь и толщина морских льдов, начнут таять материковые ледники Гренландии и Антарктиды.

Поднятие уровня океана, даже незначительное, может иметь весьма негативные экологические и социально - экономические последствия: Будут затоплены приморские равнины, ухудшится водоснабжение прибрежных районов. Если же уровень океана повысится существенно, будут затоплены значительные участки суши и ущерб будут огромным. Подсчитано, что при подъёме уровня мировых вод на 1м будет затоплено 20% территории Бангладеш, сельскохозяйственные земли Египта, некоторые крупные города Китая, катастрофическим наводнениям подвергнется Венеция.

Потепление климата, скорее всего, благоприятно отразится на растительности, в частности на лесных экосистемах и сельском хозяйстве. При этом потеплении изменится и режим атмосферных осадков в сторону их увеличения, что также улучшит условия произрастания растений во многих регионах. Специалисты предполагают, что при повышении температуры воздуха на 1 оС количество осадков над континентами в среднем возрастёт на 10%.

Повышение концентрации СО2 в атмосфере может увеличить интенсивность фотосинтеза и, значит, способствовать росту и развитию растений.

Увеличение концентрации диоксида углерода в атмосфере может оказать благоприятное воздействие на урожайность многих сельскохозяйственных культур.

Глобальное потепление климата может привести к изменению структуры и местоположения биомов Земли. Учёными на основе исследований составляются прогнозы изменения растительных природных зон при увеличении температуры на 1,4 оС (2000 год) и на 2,2 оС (к 2025 году). Согласно этому прогнозу учёных, при глобальном потеплении будет наблюдаться существенное уменьшение площадей наших тундры и лесотундры - более чем в 2 раза при потеплении на 1,4 оС и более чем в 6 раз при повышении температуры на 2,2 оС. При этом будут изменяться природные зоны.

Способы очистки выбросов от токсичных примесей

Основные меры защиты атмосферы от загрязнений промышленными пылями и туманами предусматривают широкое использование пыле - и туманоулавливающих аппаратов и систем. Исходя из современной классификации пылеулавливающих систем, основанной на принципиальных особенностях процесса очистки, пылеочистное оборудование можно разделить на четыре группы: сухие пылеуловители, мокрые пылеуловители, электрофильтры и фильтры. Пылеуловители различных типов, и том числе и электрофильтры, применяют при повышенных концентрациях примесей в воздухе. Фильтры используются для тонкой очистки воздуха с концентрациями примесей менее 100 мг/м3. Если требуется тонкая очистка воздуха при высоких начальных концентрациях примесей, то очистку ведут в системе последовательно соединенных пылеуловителей и фильтров.

К сухим пылеуловителям относятся все аппараты, в которых отделение частиц примесей от воздушного потока происходит механическим путем за счет сил гравитации, инерции, Кориолиса. Конструктивно сухие пылеуловители разделяют на циклоны, ротационные, вихревые, радиальные, жалюзийные пылеуловители и др.

Аппараты мокрой очистки газов имеют широкое распространение, так как характеризуются высокой эффективностью очистки от мелкодисперсных пылей с dч? (0,3-1,0) мкм, а также возможностью очистки oт пыли горячих и взрывоопасных газов. Аппараты мокрой очистки работают по принципу осаждения частиц пыли либо на поверхность капель жидкости, либо на поверхность пленки жидкости. Осаждение частиц пыли на жидкость происходит под действием сил инерции и броуновского движения.

Электрическая очистка газов. Основана на ионизации электрическим зарядом под действием постоянного электрического тока (напряжением до 90 кВ) взвешенных в газах твердых и жидких частиц с последующим осаждением их на электродах.

Фильтрование широко используются в промышленности для тонкой очистки вентиляционного воздуха от примесей, а также для промышленной и санитарной очистки газовых выбросов. При этом способе газоочистки газовые потоки проходят через пористые фильтровальные перегородки, пропускающие газ, но задерживающие твердые частицы. Фильтры служат для улавливания весьма тонких фракций пыли (менее 1 мкм) и характеризуются высокой эффективностью при очистке газов.

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используются волокнистые фильтры, принцип действия которых основан на осаждении капель на поверхности пор с последующим стеканием жидкости под действием сил тяжести. Осаждение капель жидкости на поверхности пор происходит под действием всех ранее рассмотренных механизмов отделения частиц загрязнителя от газовой фазы на фильтроэлементах.

Процессы очистки технологических и вентиляционных выбросов машиностроительных предприятий от газо - и парообразных примесей характеризуется рядом особенностей: во-первых, газы, выбрасываемые в атмосферу, имеют достаточно высокую температуру и содержат большое количество пыли, что существенно затрудняет процесс газоочистки и требует предварительной подготовки отходящих газов; во-вторых, концентрация газообразных и парообразных примесей чаще в вентиляционных и реже в технологических выбросах обычно переменна и очень низка. Методы очистки промышленных выбросов от газообразных примесей по характеру протекания физико-химических процессов делятся на четыре группы: промывка выбросов растворителями примеси (метод абсорбции); промывка выбросов растворами реагентов, связывающих примеси химически (метод хемосорбции); поглощение газообразных примесей твердыми активными веществами (метод адсорбции); поглощение примесей путем применения каталитического превращения.

Очистка промышленных сточных вод заключается в снижении концентраций жиров, нефтепродуктов, масел и взвешенных веществ.

При выборе способов и технологического оборудования для очистки сточных вод от примесей необходимо учитывать, что заданные эффективность и надёжность работы любого очистного устройства обеспечивается в определённом диапазоне значений концентрации примесей и расходов сточной воды. Большинство цехов машиностроительных предприятий характеризуется постоянством расхода и состава сточных вод, однако в некоторых технологических процессах имеют место кратковременные изменения, что может существенно уменьшить эффективность работы очистных устройств или вывести их из строя.

Очистка сточных вод от твёрдых частиц в зависимости от их свойств, концентрации и фракционного состава на машиностроительных предприятиях осуществляется методами процеживания, отстаивания, отделения твёрдых частиц в поле действия центробежных сил и фильтрования. Процеживание - первичная стадия очистки сточных вод - предназначено для выделения из сточных вод крупных нерастворимых частиц размером до 25мм, а также более мелких волокнистых загрязнений, которые в процессе дальнейшей обработки стоков препятствуют нормальной работе очистного оборудования. Процеживание осуществляется пропусканием воды через решётки и волокноуловители.

Отстаивание основано на особенностях процесса осаждения твёрдых частиц в жидкости. При этом может иметь место свободное осаждение неслипающихся частиц, сохранивших свои формы и размеры, и осаждение частиц склонных к коагулированию и изменяющих при этом свою форму и размеры. Закономерности свободного осаждения частиц практически сохраняются при объёмной концентрации осаждающихся частиц до 1%, что соответствует их массовой концентрации не более 2,6 кг/м3.

Отделение твёрдых примесей в поле действия центробежных сил осуществляется в открытых или напорных гидроциклонах и центрифугах.

Фильтрование сточных вод предназначено для очистки от тонкодисперсных твёрдых примесей с небольшой концентрацией. Процесс фильтрования применяется также после физико-химических и биологических методов очистки, так как некоторые из этих методов сопровождаются выделением в очищаемую жидкость механических загрязнений.

Очистка промышленных стоков методом напорной флотации. Для осуществления очистки промышленных сточных вод от нефтепродуктов, масел, взвешенных веществ и других, нерастворимых в воде загрязнений, проектируются и строятся очистные сооружения на базе установок напорной безреагентной флотации типа "АФ" (аппарат флотационный). Кроме того, флотационная очистка промышленных сточных вод применяется как первая стадия в общей схеме очистных сооружений на нефтехимических, машиностроительных, пищевых, коммунальных и текстильных предприятиях, на водоканале, а также может быть использована на автотранспортных парках, железных дорогах и в других местах, где используются нефтепродукты.

Технология очистки промышленных сточных вод на установках типа "АФ" предусматривает:

насыщение воздухом загрязненных промышленных сточных вод под давлением;

активный процесс десорбции воздуха с образованием микропузырьков за счёт резкого падения давления;

всплывание образующихся при этом агрегатов и образование на поверхности флотационной емкости пены (нефтешлама);

удаление образовавшегося в процессе флотации шлама в шламовую емкость.

Биологическая очистка промышленных сточных вод - метод очистки промышленных стоков, при котором происходит минерализация (извлечение) органических веществ микроорганизмами-сапробионтами. Основан на биохимическом разложении органических веществ аэробными бактериями, а также уменьшении количества болезнетворных организмов в воде до пределов, установленных санитарно-гигиеническими требованиями.

Для осуществления очистки промышленных сточных вод близких по составу к хозяйственно-бытовым стокам (с невысоким содержанием ПДК 350мг/л) - проектируются и строятся очистные сооружения на базе установок типа "БОС" (Биологическая Очистка Стоков), производительностью от 10 м3/сутки и более, предназначенных для биологической очистки сточных вод хозяйственно-бытового характера, к примеру, технологических вод помывки стеклотары, помывки мясных и рыбных полупродуктов и т.д.

Технология очистки промышленных стоков на установках типа "БОС" предусматривает: развитие активного ила на специальной пластмассовой загрузке; чередование восстановительных и окислительных процессов; мелкодисперсную аэрацию; биофильтрацию; тонкослойную сепарацию осадка; автоматическое управление механическим оборудованием очистки промышленных стоков.

В результате экспериментальных исследований и производственных испытаний разработана технологическая схема сверхглубокой очистки сточных вод, которая включает в себя следующие процессы и сооружения: биологическая очистка в двухступенчатых аэротенках-отстойниках, доочистка от фосфатов, органики и взвешенных веществ на фильтрах-биореакторах, тонкая очистка на фильтрах с активным углем и озоном, обессоливание на ионообменных или на мембранных фильтрах, обеззараживание воды озоном, обработка осадка в аэробных стабилизаторах и обезвоживание на фильтр прессах или на иловых площадках. Наличие двух групп микроорганизмов с разными скоростями размножения обусловливает целесообразность осуществления ступенчатых процессов в аэротенке, когда в первой ступени происходит окисление углеродсодержащих загрязнений и аммонификация, а во второй - осуществляется нитрификация сточных вод. Одновременно процесс очистки сточных вод в аэротенках интенсифицирован за счет повышения рабочей концентрации активного ила.

Наиболее универсальным методом для глубокой доочистки сточных вод, в особенности от биорезистентных и токсичных соединений (СПАВ, фенолы и др.), которые необходимо удалять, является адсорбция на активированном угле. Одновременно для более полного использования сорбционной способности активного угля в технологической схеме используется окислительно-сорбционный способ доочистки сточных вод. Метод заключается во введении в воду окислителя (озона) и фильтрования через слой гранулированного угля.

Твердые отходы в машиностроении образуются в процессе производства продукции в виде лома, шлаков и золы, шламов, осадков и пылей (отходы систем очистки воздуха) и др. Отходы от механической обработки образуются в виде высечки, обрезков, стружки и опилок и др.

Отвальные шлаки и прочие отходы производства, технология переработки которых еще не разработана, складируются и хранятся до появления новой (рациональной) технологии переработки отходов. Утилизация и ликвидация промышленных отходов проводится методами обработки твердых отходов, обезвреживание и захоронение радиоактивных отходов, утилизация и ликвидация осадков сточных вод.

Список используемой литературы

1. Белов, С.В. Охрана окружающей среды / С.В. Белов, Ф.А. Барбинов, А.Ф. Козьяков и др. - М.: Высшая школа, 2003. - С.264.

2. Каменская, А.А. Воздействие производств обработки металлов резанием машиностроительных предприятий на окружающую среду и способы снижения наносимого ущерба / А.А. Каменская, Р.И. Ковалова, В.М. Лабецкий; Ред. к. х. н.В. В. Бордунов. - Новосибирск, 2002. - 102 с.

3. Новиков, Ю.В. Экология, окружающая среда и человек: Учебное пособие для вузов, средних школ и колледжей. - 3-е изд. / Ю.В. Новиков. - М.: ФАИР-ПРЕСС, 2005. - 736 с.

4. Протасов, В.Ф. Экология, здоровье и охрана окружающей среды в России: Учебное и справочное пособие. / В.Ф. Протасов. - 3-е изд. - М.: Финансы и статистика, 2001. - 355 с.

5. Терехов, Л.Д. Исследование технологии магнитной и биологической очистки воды / Л.Д. Терехов, М.И. Коробко, Ю.М. Акимова. - Хабаровск: ДальГУПС, 2004. - 44 с.

6. Швецов, В.Н. Научное обоснование и разработка эффективных инженерно-технических решений технологических схем и методов расчета систем сбора, отведения и очистки поверхностного стока с территорий городов и промышленных предприятий / В.Н. Швецов, А.К. Хачатуров, Е.В. Мясникова и др. - М: НИИ ВКНГ, 2003. - 133 с.

Размещено на Allbest.ru


Подобные документы

  • Причины возникновения парникового эффекта. Отрицательные экологические последствия парникового эффекта. Положительные экологические последствия парникового эффекта. Эксперименты протекания парникового эффекта в разных условиях.

    творческая работа [11,4 K], добавлен 20.05.2007

  • Природа и количественное определение парникового эффекта. Парниковые газы. Решения проблемы изменения климата в разных странах. Причины и последствия парникового эффекта. Интенсивность солнечной радиации и инфракрасного излучения поверхности Земли.

    курсовая работа [856,9 K], добавлен 21.04.2011

  • Сущность парникового эффекта. Пути исследования изменения климата. Влияние диоксида углерода на интенсивность парникового эффекта. Глобальное потепление. Последствия парникового эффекта. Факторы изменения климата.

    реферат [20,6 K], добавлен 09.01.2004

  • Понятие парникового эффекта. Потепление климата, повышение среднегодовой температуры на Земле. Последствия парникового эффекта. Накопление в атмосфере "парниковых газов", пропускающих кратковременные солнечные лучи. Решение проблемы парникового эффекта.

    презентация [1,3 M], добавлен 08.07.2013

  • Глобальная экосистема. Границы, состав и свойства, живое вещество биосферы. Свойства и функции живого вещества. Геохимические циклы, круговороты кислорода, углекислого газа, азота. Биогенная миграция атомов. Глобальные проблемы компонентов биосферы.

    курсовая работа [31,9 K], добавлен 30.09.2008

  • Основные причины возникновения парникового эффекта. Парниковые газы, их воздействие на тепловой баланс Земли. Негативные последствия парникового эффекта. Киотский протокол: сущность, главные задачи. Прогнозирование экологической ситуации в мире.

    реферат [17,0 K], добавлен 02.05.2012

  • Причины возникновения парникового эффекта. Парниковый газ, его особенности и характеристика проявлений. Последствия парникового эффекта. Киотский протокол, его сущность и описание основных положений. Прогнозы на будущее и методы решения этой проблемы.

    реферат [60,7 K], добавлен 16.02.2009

  • Причины и последствия постепенного роста температуры поверхностного слоя атмосферы Земли и Мирового океана. Отрицательные показатели парникового эффекта. Возможные пути решения проблемы глобального потепления и меры по снижению выбросов парниковых газов.

    контрольная работа [20,2 K], добавлен 20.04.2015

  • Парниковый эффект: исторические сведения и причины. Рассмотрение влияния атмосферы на радиационный баланс. Механизм парникового эффекта и его роль в биосферных процессах. Усиление парникового эффекта в индустриальную эпоху и последствия этих усилений.

    реферат [24,6 K], добавлен 03.06.2009

  • Причины и последствия "парникового эффекта", обзор методов решения данной проблемы. Экологическое прогнозирование. Пути снижения воздействия парникового эффекта на состояние климата Земли. Киотский протокол к Рамочной конвенции ООН об изменении климата.

    контрольная работа [53,6 K], добавлен 24.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.