Экологическая система

Понятие экологической системы. Структура биогеоценоза, отличие биогеоценоза от экосистемы. Воздействие экологических факторов на живой организм. Диапазон действия экологического фактора. Понятие предельно допустимой концентрации. Продуценты и консументы.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 24.03.2012
Размер файла 210,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Контрольная работа

по дисциплине

«Экология»

Экологическая система - совокупность совместно обитающих разных видов организмов от представителей царства бактерий до животных и условий их существования, находящихся в закономерной связи руг с другом.

Понятие «экосистема» можно применить к объектам разной сложности и размера. Экосистемой может быть отдельная кочка на болоте и все болото, лужа, озеро и океан, луг, лес и Земля в целом. Таким образом, каждая конкретная экосистема характеризуется определенными границами (экосистема елового леса, экосистема низинного болота). Однако само понятие «экосистема» обладает признаком безразмерности, ей не свойственны территориальные ограничения. Обычно экосистемы отграничивают друг от друга элементами абиотической среды, например, рельефом, видовым разнообразием, почвенными условиями и т.п. Термин «экосистема» применяется и по отношению к искусственным образованиям, например, экосистема парка, сельскохозяйственная экосистема.

Экосистемы по размерам можно разделить на микроэкосистемы (экосистема гниющего пня или дерева в лесу, прибрежные заросли водных растений), мезоэкосистемы (болото, сосновый лес) и макроэкосистемы (океан, море, пустыня).

Для естественной экосистемы характерны три признака:

· экосистема обязательно представляет собой совокупность живых и неживых компонентов;

· в рамках экосистемы осуществляется полный цикл круговорота веществ, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие;

· экосистема сохраняет устойчивость в течение определенного времени.

Таким образом, любая экосистема включает в себя две принципиально отличающиеся компоненты:

1) живую - биоценоз;

2) неживую - экотоп;

Экотоп - включает в себя водную среду, геологическую среду и почво-грунты (эдафотоп), климат во всех его многообразных проявлениях, в том числе микроклимат (климатоп).

Биогеоценоз - это совокупность растений, животных, грибов и микроорганизмов, почвы и атмосферы на однородном участке суши, которые объединены обменом веществ и энергии в единый природный комплекс. Важной особенностью биогеоценоза является то, что он связан с определенным участком земной поверхности. Биогеоценоз - это один из вариантов наземной экосистемы.

Структура биогеоценоза. Биогеоценоз включает живую часть, или биоценоз - совокупность живых организмов, и неживую, абиотическую часть, которую слагают климатические факторы данной территории, почва и условия увлажнения (биотоп).

Биогеоценоз и экосистема - понятия сходные, но не одинаковые. Каждый биогеоценоз является экосистемой. Но не каждая экосистема соответствует биогеоценозу.

В чем отличие биогеоценоза от экосистемы? Прежде всего, любой биогеоценоз выделяется только на суше. На море, в океане и вообще в водной среде биогеоценозы не выделяются. Биогеоценоз имеет конкретные границы. Они определяются границами растительного сообщества - фитоценоза. Образно говоря, биогеоценоз существует только в рамках фитоценоза. Там, где нет фитоценоза, нет и биогеоценоза. Понятия «экосистема» и «биогеоценоз» тождественны только для таких природных образований, как лес, луг, болото, поле. Лесной биогеоценоз = лесная экосистема; луговой биогеоценоз = луговая экосистема и т.п. Для природных образований, меньших или больших по объему, нежели фитоценоз, либо там, где фитоценоз выделить нельзя, применяется только понятие «экосистема». Например, кочка на болоте - экосистема, но не биогеоценоз. Текущий ручей - экосистема, но не биогеоценоз. Точно так же только экосистемами являются море, тундра, влажный тропический лес и т.п. В тундре, тропическом лесу можно выделить не один фитоценоз, а множество. Это совокупность фитоценозов, представляющих более крупное образование, нежели биогеоценоз.

Экосистема может быть пространственно и мельче, и крупнее биогеоценоза. Таким образом, экосистема - образование более общее, безранговое.

Биогеоценоз же ограничен границами растительного сообщества - фитоценоза и обозначает конкретный природный объект, занимающий определенное пространство на суше и отделенный пространственными границами от таких же объектов.

Биоценоз в экосистеме.

Экологический фактор - условие среды, на которое живое реагирует приспособительными реакциями. Экологические факторы определяют условия существования организмов. Различают абиотические, биотические, природные и антропогенные экологические факторы.

Воздействие экологических факторов на живой организм весьма многообразно. Одни факторы оказывают более сильное влияние, другие действуют слабее; одни влияют на все стороны жизни, другие - на определенный жизненный процесс. Тем не менее в характере их воздействия на организм и в ответных реакциях живых существ можно выявить ряд общих закономерностей, которые укладываются в некоторую общую схему действия экологического фактора на жизнедеятельность организма.

На рис. по оси абсцисс отложена интенсивность (или «доза») фактора (например, температура, освещенность, концентрация солей в почвенном растворе, рН или влажность почвы и х д.), а по оси ординат - реакция организма на воздействие экологического фактора в его количественном выражении (например, интенсивность фотосинтеза, дыхания, скорость роста, продуктивность, численность особей на единицу площади и т.д.), т.е. степень благотворности фактора.

Диапазон действия экологического фактора ограничен соответствующими крайними пороговыми значениями (точки минимума и максимума), при которых еще возможно существование организма. Эти точки называются нижним и верхним пределами выносливости (толерантности) живых существ по отношению к конкретному фактору среды. Точка 2 на оси абсцисс, соответствующая наилучшим показателям жизнедеятельности организма, означает наиболее благоприятную для организма величину воздействующего фактора - это точка оптимума. Для большинства организмов определить оптимальное значение фактора с достаточной точностью зачастую трудно, поэтому принято говорить о зоне оптимума. Крайние участки кривой, выражающие состояние угнетения организмов при резком недостатке или избытке фактора, называют областями пессимума или стресса. Вблизи критических точек лежат сублетальные величины фактора, а за пределами зоны выживания - летальные.

Подобная закономерность реакции организмов на воздействие экологических факторов позволяет рассматривать ее как фундаментальный биологический принцип: для каждого вида растений и животных существует оптимум, зона нормальной жизнедеятельности, пессимальные зоны и пределы выносливости по отношению к каждому фактору среды.

Предельно допустимая концентрация (ПДК) - утвержденный в законодательном порядке санитарно-гигиенический норматив содержания вредного вещества в окружающей (или производственной) среде, практически не влияющего на здоровье человека и не вызывающего неблагоприятных последствий.

Максимально-разовое значение ПДК устанавливается для предотвращения рефлекторных реакций человека при кратковременном действии примесей. Среднесуточное значение ПДК устанавливается для предупреждения общетоксического, канцерогенного, мутагенного и сенсибилизирующего действия вещества на организм человека.

ПДК = С порог/ n, nf1

C лим = С порог

Значение ПДК всегда устанавливают таким образом, чтобы она была ниже С лим, во избежание необратимых патологических изменений в живом организме.

Продуценты - (от лат. producens - производящий, создающий) - это автотрофные организмы, способные строить свои тела за счет неорганических соединений. Они ассимилируют неорганические ресурсы, образуя с помощью световой или химической энергии «упаковки» молекул органических веществ: углеводов, белков и т.д. Таким образом, первичная биопродукция на Земле сегодня создается в клетках зеленых растений под действием солнечной энергии (фотосинтеза), а также другими организмами: некоторыми бактериями вследствие химических процессов (хемосинтеза).

Консументы - (от лат. consume - потребляю) это гетеротрофные организмы, которые потребляют первичную продукцию и накопленную в ней энергию, т.е. для для них продуценты представляют собой единственный источник питания. К консументам относят всех животных, часть микроорганизмов, паразитические и насекомоядные растения. Консументы I порядка питаются растениями, консументы II порядка преимущественно питаются растительноядными организмами - плотоядные первичные хищники. Консументы III порядка питаются более слабыми хищниками и т.д.

Завершают трофическую цепь, замыкая биологический круговорот, редуценты.

Редуценты или деструкторы - (от лат.reducens - возвращающий, destructio - разрушение) - это организмы, которые в ходе всей своей жизнедеятельности превращают органические остатки в неорганические вещества. Разрушая остатки мертвых организмов, упрощая их структуру, подчас до несложных неорганических соединений, делают их доступными для питания продуцентов, тем самым и замыкают биологический круговорот.

Функции белков в организме

Функции белков в организме разнообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков.

Белки - незаменимый строительный материал. Одной из важнейших функций белковых молекул является пластическая. Все клеточные мембраны содержат белок, роль которого здесь разнообразна. Количество белка в мембранах составляет более половины массы.

Многие белки обладают сократительной функцией. Это, прежде всего белки актин и миозин, входящие в мышечные волокна высших организмов. Мышечные волокна - миофибриллы - представляют собой длинные тонкие нити, состоящие из параллельных более тонких мышечных нитей, окруженных внутриклеточной жидкостью. В ней растворены аденозинтрифосфорная кислота (АТФ), необходимая для осуществления сокращения, гликоген - питательное вещество, неорганические соли и многие другие вещества, в частности кальций.

Велика роль белков в транспорте веществ в организме. Имея функциональные различные группы и сложное строение макромолекулы, белки связывают и переносят с током крови многие соединения. Это, прежде всего гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок - миоглобин.

Еще одна функция белка - запасная. К запасным белкам относят ферритин - железо, овальбумин - белок яйца, казеин - белок молока, зеин - белок семян кукурузы.

Регуляторную функцию выполняют белки-гормоны.

Гормоны - биологически активные вещества, которые оказывают влияние на обмен веществ. Многие гормоны являются белками, полипептидами или отдельными аминокислотами. Одним из наиболее известных белков-гормонов является инсулин. Этот простой белок состоит только из аминокислот. Функциональная роль инсулина многопланова. Он снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов, влияет на обмен фосфора, обогащает клетки калием. Регуляторной функцией обладают белковые гормоны гипофиза - железы внутренней секреции, связанной с одним из отделов головного мозга. Он выделяет гормон роста, при отсутствии которого развивается карликовость. Этот гормон представляет собой белок с молекулярной массой от 27000 до 46000.

Одним из важных и интересных в химическом отношении гормонов является вазопрессин. Он подавляет мочеобразование и повышает кровяное давление. Вазопрессин - это октапептид циклического строения с боковой цепью. Регуляторную функцию выполняют и белки, содержащиеся в щитовидной железе - тиреоглобулины, молекулярная масса которых около 600000. Эти белки содержат в своем составе йод. При недоразвитии железы нарушается обмен веществ.

Другая функция белков - защитная. На ее основе создана отрасль науки, названная иммунологией.

В последнее время в отдельную группу выделены белки с рецепторной функцией. Есть рецепторы звуковые, вкусовые, световые и др. рецепторы.

Следует упомянуть и о существовании белковых веществ, тормозящих действие ферментов. Такие белки обладают ингибиторными функциями. При взаимодействии с этими белками фермент образует комплекс и теряет свою активность полностью или частично. Многие белки - ингибиторы ферментов - выделены в чистом виде и хорошо изучены. Их молекулярные массы колеблются в широких пределах; часто они относятся к сложным белкам - гликопротеидам, вторым компонентом которых является углевод.

Если белки классифицировать только по их функциям, то такую систематизацию нельзя было бы считать завершенной, так как новые исследования дают много фактов, позволяющих выделять новые группы белков с новыми функциями. Среди них уникальные вещества - нейропептиды (ответственные за жизненно важные процессы: сна, памяти, боли, чувства страха, тревоги).

В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т.е. в мягких условиях. Вещества, которые окисляются в клетках человека и животных, сгорают быстро и эффективно, обогащая организм энергией и строительным материалом. Но те же вещества могут годами храниться как в консервированном (изолированном от воздуха) виде, так и на воздухе в присутствие кислорода. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря присутствию в клетках особых биологических катализаторов - ферментов.

Ферменты - это специфические белки, входящие в состав всех клеток и тканей живых организмов играющие роль биологических катализаторов. О ферментах люди узнали давно. Еще в начале прошлого века в Петербурге К.С. Кирхгоф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды - глюкозу и фруктозу. Это были первые исследования в ферментологии. Хотя на практике применение ферментативных процессов было известно с незапамятных времен (сбраживание винограда, сыроварение и др.).

В разных изданиях применяются два понятия: «ферменты» и «энзимы». Эти названия идентичны. Они обозначают одно и тоже - биологические катализаторы. Первое слово переводится как «закваска», второе - «в дрожжах».

Долгое время не представляли, что же происходит в дрожжах, какая сила, присутствующая в них, заставляет вещества разрушаться и превращаться в более простые. Только после изобретения микроскопа было установлено, что дрожжи - это скопление большого количества микроорганизмов, которые используют сахар в качестве своего основного питательного вещества. Иными словами, каждая дрожжевая клетка «начинена» ферментами способными разлагать сахар. Но в то же время были известны и другие биологические катализаторы, не заключенные в живую клетку, а свободно «обитающие» вне ее. Например, они были найдены в составе желудочных соков, клеточных экстрактов. В связи с этим в прошлом различали два типа катализаторов: считалось, что собственно ферменты неотделимы от клетки и вне ее не могут функционировать, т.е. они «организованы». А «неорганизованные» катализаторы, которые могут работать вне клетки, называли энзимами. Такое противопоставление «живых» ферментов и «неживых» энзимов объяснялось влиянием виталистов, борьбой идеализма и материализма в естествознании. Точки зрения ученых разделились. Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратиться и действие фермента. Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки.

В 1871 г. русский врач М.М. Манасеина разрушила дрожжевые клетки, растирая их речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар. Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5*10 Па. Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода (IV):

Работы А.Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представления в теории биологического катализа, а термины «фермент» и «энзим» стали применять как равнозначные.

В наши дни ферментология - это самостоятельная наука. Выделено и изучено около 2 тыс. ферментов.

Белки играют важнейшую роль в жизнедеятельности всех организмов. При пищеварении белковые молекулы перевариваются до аминокислот, которые, будучи хорошо растворимы в водной среде, проникают в кровь и поступают во все ткани и клетки организма. Здесь наибольшая часть аминокислот расходуется на синтез белков различных органов и тканей, часть на синтез гормонов, ферментов и других биологически важных веществ, а остальные служат как энергетический материал. Т.е. белки выполняют каталитические (ферменты), регуляторные (гормоны), транспортные (гемоглобин, церулоплазмин и др.), защитные (антитела, тромбин и др.) функции

Белки - важнейшие компоненты пищи человека и корма животных. Совокупность непрерывно протекающих химических превращений белков занимает ведущее место в обмене веществ организмов. Скорость обновления белков у живых организмов зависит от содержания белков в пище, а также его биологической ценности, которая определяется наличием и соотношением незаменимых аминокислот

5. Климакс - финальная стадия развития экосистемы. Примеры климаксных природных экосистем.

Последовательная смена биоценозов, преемственно возникающих на одной и той же территории в результате влияния природных факторов (в том числе внутренних противоречий развития самих биоценозов) или воздействия человека, называется сукцессией (от лат. succesio - следую, преемственность).

Сукцессия происходит в силу действия экологического принципа (закона) сукцессионного замещения: природные биотические сообщества последовательно формируют закономерный ряд экосистем, ведущих к наиболее устойчивому в данных условиях к состоянию климакса. Климакс (от греч. klimax - лестница) - «заключительная» фаза биогеоценотической сукцессии, находящаяся в наиболее полном единстве с биотом и климатом данной местности. Климакс выражается, прежде всего, в формировании относительно устойчивого, коренного фитоценоза. Каждый из нас может наблюдать сукцессии, посещая городские парки, или находясь в лесу, наблюдая данное место в течении нескольких (многих) лет. Классическими примерами сукцессии с образованием устойчивого биоценоза (климакса) являются зарастание озера и возникновение на его месте торфяного болота, зарастание мест пожаров, формирование елового леса на брошенных пашнях, последовательное освоение комплексом организмов упавшего дерева.

Еловый лес в своем развитии проходит несколько этапов. Первыми на бывшей пашне появляются светолюбивые и быстрорастущие травянистые растения («трава») и лиственные древесные породы: березы, осина, ольха (семена этих деревьев легко разносятся ветром). Наиболее стойкие представители успешно заселяют и утверждаются на данной территории. Благодаря их жизнедеятельности изменяется среда. Климатоп изменяется по параметрам освещенности, температуры, альбедо, аэродинамическим (ветрового режима). Состав почвы претерпевает меньшие изменения. Разросшиеся лиственные постоянно начинают угнетать травянистые растения. По прошествии 10-20 лет появится возможность для укоренения и прорастания всходов хвойных деревьев. Наиболее благоприятные условия для елей создаются только после смыкания крон берез, по прошествии 30-50 лет. Постепенно формируется смешанный лес. Он существует сравнительно недолго, так как светолюбивые березы не выносят затемнения и под пологом елей их возобновления не происходит. Устойчивый еловый лес на заброшенной пашне образуется примерно через 80-120 лет после первых всходов березы. В процессе развития березняков, ольховиков, а затем и елового леса в биоценоз включаются все новые виды растений и животных. Происходит и замещение одних видов другими. По мере увеличения числа видов в сообществе возникают и заполняются новые экологические ниши. Экологическая ниша организма - это совокупность всех его требований к условиям среды и место, где эти требования удовлетворяются, или вся совокупность множества биологических характеристик и физических параметров среды, определяющих условия существования того или иного вида, преобразование им энергии, обмен информацией со средой и себе подобными. Еловый лес является прекрасной пищевой базой для некоторых видов насекомых, обеспечивает им экологическую нишу и при определенных климатических условиях чрезмерное размножение этих насекомых может привести к распаду популяции хвойной породы и ее замене популяциями лиственных пород (осины, березы, ивы и др.).

Таким образом, сукцессия протекает как медленное и в какой-то мере случайное замещение одних популяций другими, а не путем резкой, скачкообразной смены сообществ. Климакс представляет собой длительное подвижно-стабильное состояние, соответствующее прежде всего данным абиотическим условиям (условиям неживой составляющей природы: температурно-влажностному режиму, освещенности, гранулярному составу почвы и др.). Различают сукцессии: первичные - начинающиеся на субстратах, не затронутых процессами почвообразования (скальные породы, песчаные дюны, вулканическая лава); вторичные - происходящие на месте сформировавшихся биоценозов после их нарушения (в результате лесных пожаров, вырубки леса, засухи, эрозии и др.) или без такового. Различают множество форм сукцессии: циклические, восстановительные, антропогенные, ландшафтные, фитогенные, зоогенные и др.

Понятия «сукцессия» и «климакс» особо важны для ведения лесного хозяйства, при проведении лесозаготовок. Последним должна сопутствовать восстановительная сукцессия. Пример этой сукцессии рассмотрен выше. Из наблюдения за сукцессиями в природных системах, следует, что, как правило, не эффективно на вырубках создавать искусственные хвойные насаждения путем посева семян или посадки выращенных в питомниках саженцев. Если предшествовавшим ходом сукцессии в бывшей экосистеме не подготовлена смена хвойными, то культуры неизбежно будут отторгнуты и погибнут. В целях их сохранения человек обязан будет взять на себя все управление энергетикой экосистемы, что не экономично. Необходимо будет вносить удобрения, бороться с консументами (копытными, членистоногими, бактериями, грибами). Так же необходимо учесть, что сукцессия сопровождается жестким статическим эффектом естественного отбора, а 4-5 тыс. практически одинаковых саженцев не дают материала для отбора. Эпидемия какой-либо болезни уничтожит их полностью. Таким образом, энергозатраты людей на изменение сукцессионных процессов экосистемы будут соизмеримы с затратами солнечной энергии на закономерное течении сукцессии.

Непродуманное вмешательство в сукцессионный процесс без глубокого знания конкретной системы может привести к ее распаду. Например, вспышки массового размножения насекомых в лесах - проявление сукцессионного процесса. Подавление этих вспышек посредством ядохимикатов может иметь не только положительные, но и отрицательные последствия, так как уничтожение одного из участников сукцессии прямо или косвенно влияет на других.

Хозяйственная деятельность человека обусловливает антропогенные сукцессии. Этот тип сукцессии связан с рекреационным (для отдыха) или пастбищным использованием экосистем. Он имеет место на болотах, подвергнутых осушению, при пахотном ведении сельского хозяйства и др. Антропогенные сукцессии могут либо приводить разрушению (дигрессии) экосистем и снижению их продуктивности, либо иметь восстановительный характер. Примерами антропогенных восстановительных сукцессий являются восстановление экосистемы после лесного или степного пожара, пастбищные восстановительные сукцессии.

В природных условиях Российской Федерации сукцессии, как правило, имеют циклический характер длительного периода. При этом природная система при отсутствии вмешательства человека стремится вернуться в прежнее состояние, наиболее соответствующее данному экотопу.

Устойчивые по биоразнообразию экосистемы, климаксы, являются например таежные экосистемы, целинные ковыльные степи.

Парниковый эффект, его суть и причины. Экологические последствия парникового эффекта, «плюсы» и «минусы».

Природа парникового эффекта

Парниковый эффект атмосфер обусловлен их различной прозрачностью в видимом и дальнем инфракрасном диапазонах. На диапазон длин волн 400-1500 нм (видимый свет и ближний инфракрасный диапазон) приходится 75% энергии солнечного излучения, большинство газов не поглощают в этом диапазоне; рэлеевское рассеяние в газах и рассеяние на атмосферных аэрозолях не препятствуют проникновению излучения этих длин волн в глубины атмосфер и достижению поверхности планет. Солнечный свет поглощается поверхностью планеты и её атмосферой (особенно излучение в ближней УФ- и ИК-областях) и разогревает их. Нагретая поверхность планеты и атмосфера излучают в дальнем инфракрасном диапазоне: так, в случае Земли () 75% теплового излучения приходится на диапазон 7,8-28 мкм, для Венеры () - 3,3-12 мкм.

Атмосфера, содержащая газы, поглощающие в этой области спектра (т. н. парниковые газы - H2O, CO2, CH4 и пр. существенно непрозрачна для такого излучения, направленного от её поверхности в космическое пространство, т.е. имеет в ИК-диапазоне большую оптическую толщину. Вследствие такой непрозрачности атмосфера становится хорошим теплоизолятором, что, в свою очередь, приводит к тому, что переизлучение поглощённой солнечной энергии в космическое пространство происходит в верхних холодных слоях атмосферы. В результате эффективная температура Земли как излучателя оказывается более низкой, чем температура её поверхности.

Влияние парникового эффекта на климат Земли.

Еще в 1827 году французский физик Жозеф Фурье предположил, что атмосфера земли выполняет функцию своего рода стекла в теплице: воздух пропускает солнечное тепло, не давая ему при этом испариться обратно в космос. Этот эффект достигается благодаря некоторым атмосферным газам второстепенного значения, каковыми являются, например, водяные испарения и углекислый газ. Они пропускают видимый и «ближний» инфракрасный свет, излучаемый солнцем, но поглощают «далекое» инфракрасное излучение, имеющее более низкую частоту и образующееся при нагревании земной поверхности солнечными лучами. Если бы этого не происходило, Земля была бы примерно на 30 градусов холоднее, чем сейчас, и жизнь бы на ней практически замерла.

Исходя из того, что «естественный» парниковый эффект - это устоявшийся, сбалансированный процесс, увеличение концентрации «парниковых» газов в атмосфере должно привести к усилению парникового эффекта, который в свою очередь приведет к глобальному потеплению климата. Количество СО2 в атмосфере неуклонно растет вот уже более века из-за того, что в качестве источника энергии стали широко применяться различные виды ископаемого топлива (уголь и нефть). Кроме того, как результат человеческой деятельности в атмосферу попадают и другие парниковые газы, например метан, закись азота и целый ряд хлорсодержащих веществ. Несмотря на то, что они производятся в меньших объемах, некоторые из этих газов куда более опасны с точки зрения глобального потепления, чем углекислый газ.

Деятельность человека приводит к повышению концентрации парниковых газов в атмосфере. Увеличение концентрации парниковых газов приведет к разогреву нижних слоев атмосферы и поверхности земли. Любое изменение в способности Земли отражать и поглощать тепло, в том числе вызванное увеличением содержания в атмосфере тепличных газов и аэрозолей, приведет к изменению температуры атмосферы и мировых океанов и нарушит устойчивые типы циркуляции и погоды.

Тем не менее, ведутся ожесточенные споры вокруг того, какое конкретно количество этих газов вызовет потепление климата и в какой степени, а также как скоро это произойдет. Даже когда изменение климата действительно происходит, в этом трудно быть стопроцентно уверенным. Мировые средние температуры могут сильно колебаться в пределах нескольких лет и десятилетий - причем по естественным причинам. Проблема в том, что считать средней температурой, и на основании каких критериев судить, действительно ли она изменилась в ту или другую сторону.

В конце восьмидесятых - начале девяностых годов XX века несколько лет подряд среднегодовая глобальная температура была выше обычной. Это вызвало опасения в том, что вызванное человеческой деятельностью глобальное потепление уже началось. Среди ученых существует консенсус, что за последние сто лет среднегодовая глобальная температура поднялась на 0,3 - 0,6 градусов Цельсия. Однако среди них нет согласия в том, что именно вызвало это явление. Трудно с уверенностью сказать, происходит глобальное потепление или нет, так как наблюдаемый рост температуры все еще находится в пределах естественных температурных колебаний. Неопределенность в вопросе глобального потепления порождает скепсис по поводу грозящей опасности.

Возможные последствия глобального потепления климата.

Если сохранится тенденция глобального потепления, это приведет к изменению погоды и увеличению количества осадков, что, в свою очередь, приведет к подъему уровня мирового океана. Ученые уже отметили изменения в картине выпадения осадков. Они подсчитали, что в США и бывшем СССР последние 30-40 лет выпадает осадков на 10 процентов больше, чем в прошлом. В то же время, количество осадков над экватором сократилась на те же десять процентов. Дальнейшее изменение в системе выпадения осадков окажет огромное воздействие на сельское хозяйство, смещая зоны возделывания культур в северные районы Северной Америки и Евразии. Наиболее благоприятные условия для выращивания культур сложатся в сельскохозяйственных регионах России, и обильные осадки будут выпадать в Северной Африке, где засуха продолжается с 1970-го года. Кроме того, повышение температуры увеличит испарение влаги с поверхности океана. Это приведет к увеличению выпадения осадков на 11 процентов.

Последствия потепления климата будут ощущаться на Северном и Южном полюсах, где увеличившаяся температура приведет к подтаиванию ледников. По расчетам ученых увеличение температуры на 10 градусов по Цельсию, вызовет повышение уровня мирового океана на 5-6 метров, что приведет к затоплению многих прибрежных территорий во всем мире.

Встреча в Киото и торговля квотами на выбросы тепличных газов

Так как предполагаемое потепление климата, вызванное человеческой деятельностью, на 50% происходит в результате потребления энергии, напрашивается вывод о том, что для того, чтобы предотвратить кризис, надо изменить практику этого потребления. По мнению Агентства по охране окружающей среды США, мировое сообщество должно предпринять серьезные меры. Если опасения, связанные с потеплением климата, оправдаются, то плата за бездействие будет намного выше, чем затраты на предотвращение кризиса.

По мнению экологов, наиболее действенными будут такие меры, как повышение эффективности энергопользования и переход к альтернативным видам топлива (отказ от ископаемых видов топлива, таких как нефть и уголь) Хотя мировое сообщество сделало большой шаг вперед в повышении эффективности использования энергии после нефтяного эмбарго 1973 года, ему еще предстоит огромная работа в этой области.

В 1980 году более 100 миллионов тонн СО2 было выброшено в атмосферу в восточной части Северной Америки, Европе, западной части СССР и крупных городах Японии. Выбросы СО2 развитых стран в 1985 году составили 74% от общего объема, а доля развивающихся стран составила 24%. Ученые предполагают, что к 2025-му году доля развивающихся стран в производстве углекислого газа возрастет до 44%. В последние годы Россия и страны бывшего СССР значительно сократили выбросы в атмосферу СО2 и других тепличных газов. Это прежде всего связано с переменами, происходящими в этих странах, и падением уровня производства. Тем не менее, ученые ожидают, что в начале двадцать первого века Россия достигнет прежних объемов выброса в атмосферу тепличных газов.

В декабре 1997 года на встрече в Киото (Япония), посвященной глобальному изменению климата, делегатами из более чем ста шестидесяти стран была принята конвенция, обязывающая развитые страны сократить выбросы СО2. Киотский протокол обязывает тридцать восемь индустриально развитых стран сократить к 2008-2012 годам выбросы СО2 на 5% от уровня 1990 года:

· Европейский союз должен сократить выбросы СО2 и других тепличных газов на 8%.

· США - на 7%.

· Япония - на 6%.

Протокол предусматривает систему квот на выбросы тепличных газов. Суть его заключается в том, что каждая из стран (пока это относится только к тридцати восьми странам, которые взяли на себя обязательства сократить выбросы), получает разрешение на выброс определенного количества тепличных газов. При этом предполагается, что какие-то страны или компании превысят квоту выбросов. В таких случаях эти страны или компании смогут купить право на дополнительные выбросы у тех стран или компаний, выбросы которых меньше выделенной квоты. Таким образом предполагается, что главная цель - сокращение выбросов тепличных газов в следующие 15 лет на 5% - будет выполнена.

Тем не менее, переговоры по вопросу сокращения выбросов тепличных газов идут очень сложно. Прежде всего конфликт существует на уровне официальных лиц и бизнеса с одной стороны и неправительственного сектора - с другой. Неправительственные экологические организации считают, что достигнутое соглашение не решает проблемы, так как пятипроцентное сокращение выбросов тепличных газов недостаточно для того, чтобы остановить потепление, и призывают сократить выбросы как минимум на 60%.

Кроме того, конфликт существует и на уровне государств. Такие развивающиеся страны, как Индия и Китай, вносящие значительный вклад в загрязнение атмосферы тепличными газами, присутствовали на встрече в Киото, но не подписали соглашение. Развивающиеся страны вообще с настороженностью воспринимают экологические инициативы индустриальных государств. Аргументы просты:

· основное загрязнение тепличными газами осуществляют развитые страны

· ужесточение контроля на руку индустриальным странам, так как это будет сдерживать экономическое развитие развивающихся стран.

В любом случае проблема глобального потепления климата - яркий пример того, какие механизмы, подчас, включены в решение экологической проблемы. Такие компоненты, как научная неопределенность, экономика и политика нередко играют в этом процессе ключевую роль.

биогеоценоз экосистема продуцент консумент

Список литературы

1. Бродский А.К. Краткий курс общей экологии: учебное пособие. - СПб.: Издательство ДЕАН, 2201. - 224 с.

2. Николаев А.С. Экология: учебное пособие. - СПб.: СПБГИЭУ, 2001. - 132 с.

3. Вронский В.А. Экология: Словарь-справочник. - Ростов-на-Дону: Феникс, 1999. - 576 с.

Размещено на Allbest.ru


Подобные документы

  • Определение экологической системы. Схема структуры биогеоценоза. Воздействие экологического фактора на организм. Модель биотического круговорота веществ-биогенов с участием продуцентов, консументов, редуцентов. Основные источники загрязнения атмосферы.

    контрольная работа [1,0 M], добавлен 21.01.2013

  • Экологическая система как совокупность популяций разных видов, проживающих на общей территории вместе с окружающей их неживой средой. Биоценоз как совокупность живых компонентов. Структура экологической системы. Экологическая структура биогеоценоза.

    контрольная работа [142,8 K], добавлен 17.11.2012

  • Определение понятий биогеоценоза и экосистемы. Основные свойства биогеоценоза, механизмы его устойчивости. Приспособление организмов к совместной жизни. Виды биогеоценотических связей: симбиоз, мутуализм, нахлебничество, квартиранство и сотрапезничество.

    презентация [2,4 M], добавлен 06.03.2014

  • Реки, озера, водохранилища Башкортостана. Антропогенное воздействие на водные экосистемы. Трофические группы организмов водных экосистем - продуценты, консументы и редуценты. Характеристика экологических групп макрофитов и микрофитов, планктона и бентоса.

    контрольная работа [14,2 K], добавлен 07.10.2009

  • Понятие об экологической безопасности. Схема, отображающая уровень экологической безопасности в зависимости от интенсивности воздействия того или иного экологического фактора. Понятие экологического риска, его виды. Содержание экологического аудита.

    реферат [150,3 K], добавлен 06.10.2014

  • Экосистема как основная функциональная единица экологии, включающая живые организмы и абиотическую среду, схема строения биогеоценоза. Влияние природных и антропогенных факторов на экосистемы. Пути разрешения кризисного состояния экологических систем.

    реферат [72,3 K], добавлен 27.11.2009

  • История, концепция и понятие "экосистемы" (биогеоценоза). Ее основные компоненты, строение и механизмы функционирования. Пространственные, временные границы и ранжирование экосистемы (хорологический аспект). Искусственные экосистемы, созданные человеком.

    презентация [1,6 M], добавлен 01.02.2012

  • Определение предельно допустимой концентрации вредных веществ. Основные методы мониторинга и очистки атмосферного воздуха, почв, гидросферы. Влияние экологических факторов на здоровье населения. Воздействие промышленного загрязнения на экологию города.

    курсовая работа [955,7 K], добавлен 18.02.2012

  • Состав и структура экологической системы. Биотический круговорот веществ и энергия в экологической системе. Перенос веществ и энергии в природных экосистемах. Пример наземной экосистемы дубравы. Экологическая система в виде диаграммы потока энергии.

    презентация [6,8 M], добавлен 11.06.2010

  • Структура окружающей среды. Комплексное воздействие факторов среды на организм. Влияние природно-экологических и социально-экологических факторов на организм и жизнедеятельность человека. Процесс акселерации. Нарушение биоритмов. Аллергизация населения.

    реферат [20,2 K], добавлен 19.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.