Очистка условно-чистых стоков на моделях по разработанной технологии

Состав и свойства, методы очистки, механическая, химическая, физико-химическая, биологическая очистка производственных сточных вод. Методы исследований стоков. Защита населения и территорий в чрезвычайных ситуациях. Контроль очистки на каждом этапе.

Рубрика Экология и охрана природы
Вид дипломная работа
Язык русский
Дата добавления 29.09.2008
Размер файла 83,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4

РЕФЕРАТ

Дипломная работа _____ с., ______ рис., _______ табл., ______

используемых источников

В дипломной работе были проведены эксперименты по очистке условно-чистых стоков на моделях по разработанной технологии. При проведении эксперимента проводился аналитический контроль исходных стоков и контроль за степенью очистки по каждому этапу.

СОДЕРЖАНИЕ

РЕФЕРАТ 3

ВВЕДЕНИЕ 6

I. ЛИТЕРАТУРНЫЙ ОБЗОР 8

Состав и свойства сточных вод 8

Методы очистки сточных вод 9

Механическая очистка производственных сточных вод 10

Химическая очистка производственных сточных вод 15

Физико-химическая очистка производственных сточных вод 18

Биологическая очистка производственных сточных вод 32

II. ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ 35

2.1. Объекты исследования 35

2.2. Методы исследований 35

2.2.1. Определение взвешенных веществ в сточных водах 35

2.2.2. Определение общей жесткости в сточных водах 37

2.2.3. Определение ХПК в сточных водах 38

2.2.4. Определение нефтепродуктов в сточных водах 39

2.2.5. Определение хлоридов в сточных водах 41

2.3. Требования предъявляемые к качеству сточных вод 42

2.4. Данные о результатах анализов условно-чистых стоков 43

2.5. Данные о результатах анализов щелочных стоков 44

2.6. Данные о результатах анализов речной воды 44

III. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 46

3.1. Процесс перевода бикарбоната кальция и магния 46

в малорастворимые карбонаты

3.2. Процесс отстаивания 48

3.3. Процесс фильтрации 54

3.4. Процесс сгущения и центрифугирования 61

3.5. Обобщение результатов исследований 63

IV. ЭКОЛОГО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ 65

V. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ 68

5.1. Производственная безопасность 68

Защита населения и территорий в чрезвычайных ситуациях 73

ВЫВОДЫ 78

СПИСОК ЛИТЕРАТУРЫ 79

ВВЕДЕНИЕ

Республика Башкортостан относится к одним из самых промышленно развитых регионов Российской Федерации. Концентрация промышленного производства в Башкирии существенно превышает общероссийские показатели, особенно в части размещения предприятий нефтепереработки и химии. Мощный комплекс химических и нефтехимических заводов, растянувшийся на 270 км вдоль реки Белой от Мелеуза до Благовещенска, загрязняет не только близлежащие территории, но и за счет воздушных и водных переносов отрицательно влияет на отдаленные районы.

Основная доля загрязняющих веществ, сбрасываемых со сточными водами в поверхностные водные объекты, приходится на хлориды (более 60%) и сульфаты (более 18%). Источниками их поступления в окружающую среду являются АО «Сода», «Каустик», «Минудобрения» и УГПП» Химпром», которые являются основными загрязнителями реки Белой. Более 50% всех стоков по республике сбрасывается в водные объекты предприятиями г. Уфы.

В поверхностные водные объекты сбрасываются десятки тонн высокотоксичных хлорорганических веществ и сотни тонн тяжелых металлов, среди которых свинец, никель, хром, ртуть и др. Многие из них относятся к супертоксикантам и вообще не должны присутствовать в окружающей среде.

В Башкортостане лишь 26% очистных сооружений работают в проектном режиме и удовлетворяют нормативным требованиям. В числе не обеспечивающих нормативную очистку продолжают оставаться очистные сооружения практически всех крупных предприятий республики.

Основными причинами неэффективной работы очистных сооружений являются: отсталая технология и изношенность оборудования; сброс в водные объекты неочищенных стоков; отсутствие локальных очистных сооружений и, как следствие, их перегрузка по концентрации поступающих загрязняющих веществ; перегрузка по гидравлике, не позволяющая своевременно ремонтировать очистные сооружения; эксплуатация с отступлением от проектных схем.

Вода превращается в самое драгоценное сырье, заменить которое невозможно. Запасы и доступность водных ресурсов определяют размещение производств, а проблема водоснабжения становится одной из важных в жизни и развитии человеческого общества.

Переход на бессточные системы канализации или системы с минимальным сбросом сточных вод может быть осуществлен путем многократного использования отработанных вод и замены водяного охлаждения на воздушное. При переводе ряда отраслей промышленности на безводные технологические процессы исключается образование сточных вод.

В настоящее время имеется несколько путей уменьшения количества загрязненных сточных вод: усовершенствование существующих процессов; разработка и внедрение безводных технологических процессов; разработка и внедрение совершенного оборудования; повторное использование очищенных сточных вод в оборотных и замкнутых системах.

Исходя из вышеизложенного, целью дипломной работы является исследование возможности использования очищенных стоков для повторного использования.

II. ЛИТЕРАТУРНЫЙ ОБЗОР

1.1. Состав и свойства сточных вод

В связи с широкой индустриализацией, развитием сельского хозяйства, хозяйства городов и поселков образуются большие массы стоков, загрязненных различными примесями. В первую очередь это отходы предприятий нефтеперерабатывающей, металлургической, нефтехимической и химической, целлюлозно-бумажной и пищевой промышленности. За последние годы увеличился объем загрязнений, поступающих в воды из сельского хозяйства- отходы животноводства, птицеводства, предприятий перерабатывающих сельскохозяйственное сырье, удобрения /1/.

Потребляемая промышленностью вода в значительной степени используется в качестве хладагента, сбрасываемого после использования в водоемы. По химическому составу она немногим отличается от исходной воды и сброс ее в водоемы не приносит особых неприятностей. Другое дело- вода, участвующая в технологических процессах. Она насыщается множеством различных соединений и сброс ее в природные водоемы приводит к серьезным последствиям- загрязнению рек и озер, морей и океана ядовитыми веществами /1,2/.

Состав сточных вод зависит от характера использования воды в промышленности. К наиболее вредным следует отнести стоки, возникающие при проведении химических процессов (реакционные и маточные растворы), промывные воды, образующиеся при промывке продуктов и изделий, очистке газовых систем и т.п., стоки, поступающие с горнодобывающих предприятий, образующиеся при удалении золы, собираемые с нефтеналивных судов и цистерн, ливневые потоки и др.

Загрязненные производственные сточные воды содержат различные примеси и подразделяются на три группы:

1. загрязненные сточные воды преимуществом минеральными примесями;

2. загрязненные сточные воды преимущественно органическими примесями;

3. загрязненные сточные воды минеральными и органическими примесями /1,3/.

Многие сточные воды (особенно тепловых электростанций) сбрасываются в природные при повышенной температуре. В результате этого происходит так называемое тепловое загрязнение водоемов. В местах выхода тепловых потоков в водоемы создаются зоны, в которых температура выше, чем во всем водоеме: на 8-12 оС зимой и до 30 оС летом. Это приводит к повышенному накоплению органических веществ в воде, что оказывает отрицательное влияние на биологическую жизнь водоемов /4/.

В связи с тем, что в ряде случаев в природные водоемы сбрасываются неочищенные или плохо очищенные стоки, в них скапливается большое число и большая масса различных химических веществ. Так как при взаимодействии сбрасываемых соединений могут возникать новые соединения, число соединений в водоемах может непрерывно увеличиваться, в том числе соединений с ядовитыми свойствами, бурным запахом, окраской и т.д. /2/.

Практически во всех водоемах (не исключая и океан) находятся нефтепродукты, что может привести к пагубному последствиям для рыбного хозяйства, поскольку 1 кг нефти может загрязнить 1 га поверхности воды и погубить 100 млн. личинок рыб.

1.2. Методы очистки сточных вод

Многообразие веществ, попадающих в водоемы, объясняется тем, что в них смешиваются сточные воды трех классов предприятий неорганического, органического и микробиологического профиля. Поэтому применение того или иного метода в каждом конкретном случае определяется характером загрязнения, вредностью примесей и необходимостью степенью очистки /5/.

Методы очистки сточных вод можно разделить на механические, химические, физико-химические и биологические. В современной практике наибольшее распространение получили два метода: механический и биологический.

1.2.1. Механическая очистка производственных сточных вод.

Механическая очистка сточных вод применяется для выделения из сточных воды нерастворенных минеральных и органических примесей.

Назначение механической очистки заключается в подготовке производственных сточных вод при необходимости к биологическому, физико-химическому или другому методу более глубокой очистки. Механическая очистка на современных очистных сооружениях состоит из процеживания через решетки, пескоулавливания, отстаивания и фильтрования. Типы и размеры этих сооружений зависят в основном от состава, свойств и расхода производственных сточных вод, а также от методов их дальнейшей обработки /4/.

Как правило, механическая очистка является предварительным, реже - окончательным этапом для очистки производственных сточных вод. Она обеспечивает выделение веществ из этих вод до 90-95% и снижение органических загрязнений (по показателю БПКполн.) до 20-25%.

Высокий эффект очистки сточных вод достигается различными способами интенсификации гравитационного отсеивания - преаэрацией, биокоагуляцией, осветлением во взвешенном слое (отстойники- осветлители), а также с помощью гидроциклонов /4,9/.

Процесс более полного осветления сточных вод осуществляется фильтрованием - пропуском воды через слой различного зернистого материала (кварцевого песка, гранитного щебня, дробленого антрацита и керамзита, горелых пород, чугунолитейного шлака и других материалов) или через сетчатые барабанные фильтры и микрофильтры, через высокопроизводительные напорные фильтры и фильтры с плавающей загрузкой пенополиуритановой или пенополистирольной. Преимущество указанных процессов заключается в возможности применения их без добавления химических реагентов /3,5/.

Выбор метода очистки сточных вод от взвешенных частиц осуществляется с учетом кинетики процесса. Размеры взвешенных частиц, содержащихся в производственных сточных водах могут колебаться в очень широких пределах, (возможные диаметры частиц составляют от 5·10-9 до 5·10-4 м), для частиц размером до 10 мкм конечная скорость осаждения составляет менее 10-2 см/с. Если частицы достаточно велики (диаметром более 30-50 мкм), то в соответствии с законом Стокса они легко могут выделяться отстаиванием (при большой концентрации) или процеживанием, например, через микрофильтры (при малой концентрации) /6/. Коллоидальные частицы (диаметром 0,1-1 мкм) могут быть удалены фильтрованием, однако из-за ограниченной емкости фильтрующего слоя более подходящим методом при концентрациях взвешенных частиц более 50мг/л является ортокинетическая коагуляция с последующим осаждением или осветлением во взвешенном слое.

Повышение технологической эффективности сооружений механической очистки очень важно при создании замкнутых систем водного хозяйства промышленных предприятий. Этому требованию удовлетворяют различные конструкции много полочных отстойников, сетчатых фильтров, фильтров с новыми видами зернистых и синтетических загрузок, гидроциклонов (напорных, безнапорных, многоярусных). Применение этих сооружений позволит сократить в 3-5 раз капитальные затраты и на 20-40% эксплуатационные расходы, уменьшить в 3-7-раз необходимые площади для строительства по сравнению с применением обычных отстойников /7,8/.

С целью обеспечения надежной работы сооружений механической очистки производственных сточных вод, как правило, рекомендуется применить не менее двух рабочих единиц основного технологического назначения - решеток, песколовок, усреднителей, отстойников или фильтров. При выборе максимального числа сооружений, предусматривается их секционирование по унифицированным группам, состоящим из единиц с наиболее крупными габаритами /10/.

Повышение эффекта механической очистки сточных вод, в особенности работы сооружений по первичному отстаиванию, позволяет сократить объемы сооружений для последующих процессов очистки и тем самым снизить расходы на строительство и затраты на эксплуатацию более дорогих и сложных сооружений физико-химической очистки, а также обработки осадка. /4,10/.

Песколовки

Сточные воды, освобожденные от крупных плавающих загрязнений на решетках, поступают на песколовки, назначение которых -освободить сточные воды от тяжелых примесей минерального происхождения с размером частиц 0,25-1 мм. Если объем очищаемой сточной воды более 100 м3/сут, то песколовки устанавливаются обязательно /5,6/.

Принцип действия песколовки гравитационный, т.е. минеральные частицы, удельный вес которых больше удельного веса воды (1,6 г/см3), главным образом песок, выпадают на дно. Удаление песка из сточных вод, является обязательным, т.к абразивные свойства песка приводят к разрушению механизмов и бетонных сооружений. Кроме того, песок может накапливаться в каналах, аэротенках, метатенках и снижать рабочий объем сооружений.

По направлению движения воды песколовки подразделяются на горизонтальные, вертикальные и с винтовым движением воды. Последние бывают: тангенциальные и аэрируемые. Установлено, что при горизонтальном движении воды в песколовке, скорость должна быть от 0,3-0,15 м/с для обычных песколовок, и от 0,08-0,12- для аэрируемых песколовок. При скорости более максимально допустимой песок не успевает осесть в песколовке, при скорости менее минимальной- в песколовке будут осаждаться органические примеси, что приведет к излишнему изъятию питательных веществ из сточной воды и к ухудшению качества удаляемого песка, что имеет значение для его дальнейшего использования или захоронения.

Центрифуги.

Одним из интенсивных методов безреагентного выделения нерастворенных примесей из производственных сточных вод является центрабежное осаждение, осуществляемое в центрифугах. Эти аппараты широко применяются в различных отраслях промышленности для разделения неоднородных систем, состоящих из двух или более фаз /11/.

К основным преимуществам осадительных центрифуг перед отстойниками следует отнести: компактность установок, более высокий эффект осветления сточных вод: возможность получения осадка более низкой влажности.

Центрифуги могут быть периодического или непрерывного действия; горизонтальными, вертикальными или наклонными; различаются по расположению вала в пространстве; по способу выгрузки из ротора; в герметизированном или негерметизированном исполнении. В зависимости от исполнения в центрифугах задерживается 50-90% твердой фазы.

Отстойники

Отстаивание является наиболее простым способом удаления из сточных вод грубодисперсных нерастворенных примесей, которые под действием гравитационной силы оседают на дно отстойника или всплывают на поверхность. В зависимости от назначения отстойников в технологической схеме очистной станции они подразделяются на первичные и вторичные. Первичными называют отстойники, входящие в состав сооружений механической очистки, они задерживают гораздо более мелкие взвеси, чем песколовки» вторичными - отстойники, устраиваемые в составе сооружений биологической очистки для отделения активного ила от биологически очищенной сточной воды /11,12/.

По направлению движения основного потока воды в отстойниках они делятся на два основных типа: горизонтальные и вертикальные.

Горизонтальный отстойник представляет собой прямоугольный железобетонный резервуар, состоящий из нескольких отделений. Их применяют при производительности комплекса свыше 15 тыс.м3/сут. При хорошей работе они задерживают до 60% взвешенных веществ.

Вертикальный отстойник представляет собой цилиндрический железобетонный резервуар с конусным или пирамидальным днищем. Они проще по конструкции и в эксплуатации, чем горизонтальные, и находят широкое применение в качестве первичных и вторичных отстойников. Однако эффект осветления в них на 25-30% ниже, чем в горизонтальных и на 10-15% ниже, чем радиальных. При удовлетворительной работе вертикальных отстойников удаляется не более 40% взвешенных веществ.

Радиальный отстойник представляет собой цилиндрический железобетонный резервуар большого диаметра (от 16 до 60 м) глубиной 0,1-0,15 диаметра. Их применяют при производительности очистных сооружений более 20 тыс.м3/сут. Они обеспечивают 50% удаления взвешенных веществ и не имеют недостатков горизонтальных и вертикальных отстойников.

Фильтрование.

Фильтрование применяют для выделения из сточных вод тонкодиспергированных твердых или жидких веществ, удаление которых отстаиванием затруднено. Разделение фаз ведут при помощи пористых перегородок, пропускающих жидкость и задерживающих диспергированную фазу, под действием гидростатического давления столба жидксти, повышенного давления до перегородки и вакуума после перегородки. Выбор перегородок зависит от свойств сточной воды, температуры, давления фильтрования и конструкции фильтра /12/.

В последние время в технологии очистки воды все большее место занимают мембранные процессы низкого давления: микрофильтрация, ультрафильтрация, нанофильтрация.

Процесс микрофильтрации заключается в процеживании сточной воды через слой сеток с отверстиями размером от 40 до 70 мкм. Барабанные сетки имеют размер ячеек от 0,3х0,3 до ).5х).5 мм Микрофильтры применяют для очистки сточных вод от твердых и волокнистых материалов.

Среди мембранных методов наиболее стремительно развивается и внедряется ультрафильтрация-74% всех мембранных методов. Ультрафильтрационная технология используется в мировой практике для очистки воды из различных поверхностных водоисточников /13/. В зависимости от состава воды ультрафильтрационная технология применяется в чистом виде или в комбинации с другими методами.

1.2.2. Химическая очистка производственных сточных вод

Основными методами химической очистки производственных сточных вод являются нейтрализация и окисление. К окислительным методам относятся также электрохимическая обработка.

Химическая очистка может применяться как самостоятельный метод перед подачей производственных сточных вод в систему оборотного водоснабжения, а также перед спуском их в водоем или в городскую канализационную сеть. Применение химической очистки в ряде случаев целесообразно (в качестве предварительной) перед биологической или физико-химической очисткой. Химическая обработка находит применение также и как метод глубокой очистки производственных сточных вод с целью их дезинфекции, обесцвечивания или извлечения из них различных компонентов. При локальной очистке производственных сточных вод в большинстве случае предпочтение отдается химическим методам. /5.

Нейтрализация сточных вод

Производственные сточные воды от технологических процессов многих отраслей промышленности содержат щелочи и кислоты. В большинстве кислых сточных вод содержаться соли тяжелых металлов, которые необходимо выделять из этих вод.

С целью предупреждению коррозии материалов канализационных очистных сооружений, нарушение биохимических процессов в биологических окислителях и в водоемах, а также осаждения из сточных вод солей тяжелых металлов кислые и щелочные стоки подвергаются нейтрализации.

Реакция нейтрализация - это химическая реакция между веществами, имеющими свойства кислоты и основания, которая приводит к потере характерных свойств обоих соединений. Наиболее типичная реакция нейтрализации в водных растворах происходит между гидротированными ионами водорода и ионами гидроксида, содержащихся соответственно в сильных кислотах и основаниях: Н+ + ОН- = Н2О. В результате концентрация каждого из этих ионов становится равной той, которая свойственна самой воде (около 10-7), т.е. активная реакция водной среды приближается к рН = 7.

При спуске производственных сточных вод в водоем или в городскую канализационную сеть практически нейтральными следует считать смеси с рН = 6,5ч8,5. Следовательно, подвергать нейтрализации следует сточные воды с рН менее 6,5 и более 8,5, при этом необходимо учитывать нейтрализующую способность водоема, а также щелочной резерв городских сточных вод. Из условий сброса производственных сточных вод в водоем или городскую канализацию следует, что большую опасность представляют кислые стоки, которые встречаются к тому же значительно чаще, чем щелочные (количество производственных сточных вод с рН >8,5 невелико).

Если отработанные производственные сточные воды подаются в систему оборотного водоснабжения, то требования к величине активной реакции зависят от специфики технологических процессов /6/.

Наиболее часто сточные воды загрязнены минеральными кислотами: Н2SО4, азотной НNО3, соляной НСl, а также их смесями. Значительно реже в сточных водах встречаются азотистая НNО2, фосфорная Н3РО4, сернистая Н2SО3, сероводородная Н2S, плавиковая НF, хромовая Н2СrО4 кислоты, а также органические кислоты: уксусная СН3СООН, пириновая НОС6Н2(NО2)3, угольная Н2СО3, салициловая С6Н4(ОН)2 и др.

Концентрация кислот в сточных водах обычно не превышает 3%, но иногда достигает большей величины.

Выбор способа нейтрализации зависит от многих факторов: вида и концентрации кислой, загрязняющих производственные сточные воды; расхода и режима поступления отработанных вод на нейтрализацию; наличия реагентов; местных условий и т.п. /8,12/.

Окисление сточных вод

Окислительный метод очистки применяют для обезвреживания производственных сточных вод, содержащих токсичные примеси (цианиды, комплексные цианиды меди и цинка) или соединения, которые нецелесообразно извлекать из сточных вод, а также очищать другими методами (сероводород, сульфиды). Такие виды сточных вод встречаются в машиностроительной (цехи гальванических покрытий), горно-добывающей (обогатительные фабрики свинцово-цинковых и медных руд), нефтехимической (нефтеперерабатывающие и нефтехимические заводы), целлюлозно-бумажной (цехи варки целлюлозы) и в других отраслях промышленности.

В узком смысле окисление - реакция соединения какого-либо вещества с кислородом, а в более широком - всякая химическая реакция, сущность которой состоит в отнятии электронов от атомов или ионов. В практике обезвреживания производственных сточных вод в качестве окислителей используют хлор, гипохлорит кальция и натрия, хлорную известь, диоксид хлора, азот, технический кислород и кислород воздуха.

Среди других окислителей, которые применяются при очистке производственных сточных вод, можно назвать пероксид водорода, оксиды марганца, перманганат и бихромат калия. Эти окислители, хотя и не находят широкого применения, но и в ряде случаев могут быть использованы для окисления фенолов, крезолов, цианидсодержащих примесей и др. /9,13/.

1.2.3. Физико-химическая очистка производственных сточных вод

Физико-химические методы играют значительную роль при очистке производственных сточных вод. Они применяются как самостоятельно, так и в сочетании с механическими, химическими и биологическими методами. В последние годы область применения физико-химических методов очистки расширяется, а доля их среди других методов очистки возрастает.

К физико-химическим методам очистки относятся коагуляция, флокуляция, сорбция, флотация, экстракция, ионный обмен, гиперфильтрация, диолиз, эвапорация, выпаривание, испарение, кристаллизация, магнитная обработка, а также методы, связанные с положением электрического поля - электрокоагуляция, электрофлотация. /10,14/.

Коагуляция

Коагуляция - это сминание частиц коллоидной системы при их столкновениях в процессе теплового движения, перемешивания или направленного перемещения во внешнем силовом поле. В результате коагуляции образуются агрегаты - более крупные (вторичные) частицы, состоящие из скопления мелких (первичных). Первичные частицы в таких агрегатах соединены силами межмолекулярного взаимодействия непосредственно или через прослойку окружающей (дисперсионной) среды. Коагуляция сопровождается прогрессирующим укрупнением частиц и уменьшением их общего числа в объеме дисперсионной среды (в нашем случае - жидкости). Слипание однородных частиц называется гомокоагуляцией, а разнородных - гетерокоагуляцией.

Производственные сточные воды в большинстве случаев представляют собой слабоконцентрированные эмульсии или суспензии, содержащие коллоидные частицы размером 0,001-0,1 мкм, мелкодисперсные частицы размером 0,1-10 мкм, а также частицы размером 10 мкм и более.

В процессе механической очистки сточных вод достаточно легко удаляются частицы размером 10 мкм и более, мелкодисперсные и коллоидные частицы практически не удаляются. Таким образом, сточные воды многих производств после сооружений механической очистки представляют собой агрегативно устойчивую систему. Для их очистки применяют методы коагуляции; агрегативная устойчивость при этом нарушается, образуется более крупные агрегаты частиц, которые удаляются из сточных вод механическими методами /11,13/.

Одним из видов коагуляции является флокуляция, при которой мелкие частицы, находящиеся во взвешенном состоянии, под влиянием специально добавляемых веществ (флокулянтов) образуют интенсивно оседающие рыхлые хлоповидные скопления.

Методы коагуляции и флокуляции широко распространены для очистки сточных вод предприятий химической, нефтехимической, нефтеперерабатывающей, целлюлозно-бумажной, легкой, текстильной и других отраслей промышленности. Эффективность коагуляционной очистки зависит от многих факторов: вида коллоидных частиц, их концентрации и степени дисперсности, наличия в сточных водах электролитов и других примесей, величины электрокинетического потенциала. В сточных водах могут содержаться твердые (каолин, глина, волокна, цемент, кристаллы солей и др.) и жидкие (нефть, нефтепродукты, смолы и др.) частицы.

Коллоидные частицы, представляющие собой совокупность большого числа молекул вещества, содержащегося в сточной воде в диспергированном состоянии, при перемещении прочно удерживают покрывающий их слой воды. Обладая большой удельной площадью поверхности, коллоидные частицы адсорбируют находящиеся в воде ионы преимущественно одного знака, значительно понижающие свободную поверхностную энергию коллоидных частиц. Ионы, непосредственно прилегающие к ядру, образуют слой поверхностно-ядерных ионов, или так называемый адсорбционный слой. В том слое может находится также небольшое число противоположно заряженных ионов, суммарный заряд которых, однако, не компенсирует заряда поверхностно-ядерных ионов. В связи с тем, что на границе адсорбционного слоя создается электрический заряд, вокруг границы (ядра с адсорбционным слоем) образуется диффузионный слой, в котором находятся остальные противоположно заряженные ионы, компенсирующие заряд гранул. Гранула вместе с диффузионным слоем называется мицеллой. Потенциал на границе ядра - термодинамический потенциал - равен сумме зарядов всех поверхностно-ядерных ионов. На границе адсорбционного слоя потенциал уменьшается на величину, равную сумме зарядов, находящихся в адсорбционном слое противоположно заряженных ионов. Потенциал на границе адсорбционного слоя называется электрокинетическим потенциалом./12,14/

Основным процессом коагуляционной очистки производственных сточных вод является гетерокоагуляция - взаимодействие коллоидных и мелкодисперсных частиц сточных вод с агрегатами, образующимися при введении в сточную воду коагулянтов.

Для очистки производственных сточных вод применяют различные минеральные коагулянты:

1.Соли алюминия. Сульфат алюминия (глинозем) Аl2(SО4)3·18Н2О (плотность 1,62 т/м3, насыпная масса 1,05 - 1,1 т/м3, растворимость в воде при температуре 20оС - 362 г/л). Процесс коагуляции солями алюминия рекомендуется проводить при значениях рН = 4,5ч8. В результате применения сульфата алюминия степень минерализации воды увеличивается. Алюминат натрия NаАlО2, оксихлорид алюминия Аl2(ОН)5Сl, полихлорид алюминия [Аl2(ОН)-nСl6-n]m(SО4)х (где 1 ? n ? 5m ?10), алюмокалиевые [АlК(SО4)2·18 Н2О] и алюмоаммонийные [Аl(NН4)(SО4)2·12Н2О] квасцы имеют меньшую стоимость и дефицитность, чем сульфат алюминия.

2. Соли железа. Сульфат двухвалентного железа или железный купорос FеSО4·7Н2О (плотность 3 т/м3, насыпная масса 1,9 т/м3, растворимость в воде при температуре 20оС - 265 г/л). Применение процесса коагуляции оптимально при рН >9. Гидроксид железа - плотные тяжелые, быстро осаждающие хлопья, что является несомненным преимуществом его применения. Хлорид железа FеСl3·6Н2О; сульфат железа (Fе2(SО4)3·9 Н2О.

3. Соли магния. Хлорид магния МgСl2·6Н2О; сульфат магния МgSО4·7Н2О.

4. Известь

5. Шламовые отходы и отработанные растворы отдельных производств. Хлорид алюминия (производство этилбензола), сульфат двухвалентного железа (травление металлов), известковый шлам и др.

Количество коагулянта, необходимое для осуществления процесса коагуляции, зависит от вида коагулянта, расхода, состава, требуемой степени очистки сточных вод и определяется экспериментально.

Образующиеся в результате коагуляции осадки представляют собой хлопья размером от нескольких микрометров до нескольких миллиметров. Рыхлая пространственная структура хлопьев осадка обусловливает их высокую влажность до 96 - 99,9%. Плотность хлопьев осадка составляет обычно 1,01 - 1,03 т/м3. Для обесувечивания высоконцентрированных и интенсивно окрашенных вод расходы коагулянтов достигают 1-4 кг/м3; объем осадка, получающегося в результате коагуляции, достигает 10-20% объема обрабатываемой сточной воды.

Значительный расход коагулянтов, большой объем получающегося осадка, сложность его обработки и последующего складирования, увеличение степени минерализации обрабатываемых сточных вод не позволяют в большинстве случае рекомендовать коагуляцию как метод самостоятельной очистки. Коагуляционный метод очистки применяется в основном при небольших расходах сточных вод и при наличии дешевых коагулянтов. /13/

Сорбция

Сорбция - это процесс поглощения вещества из окружающей среды твердым телом или жидкостью. Поглощающее тело называется сорбентом, а поглощаемое - сорбатом. Различают поглощение вещества всей массой жидкого сорбента (абсорбция) и поверхностным слоем твердого или жидкого сорбента (адсорбция). Сорбция, сопровождающаяся химическим взаимодействием сорбента с поглощаемым веществом, зазывается хемосорбцией.

Сорбция представляет собой один из наиболее эффективных методов глубокой очистки от растворенных органических веществ сточных вод предприятий целлюлозно-бумажной, химической, нефтехимической, текстильной и других отраслей промышленности. Сорбционная очистка может применяться самостоятельно и совместно с биологической очисткой как метод предварительной и глубокой очистки. Преимуществами этого метода являются возможность адсорбции веществ многокомпонентных смесей и, кроме того, высокая эффективность очистки особенно слабоконцентрированных сточных вод.

Сорбционные методы весьма эффективны для извлечения из сточных вод ценных растворенных веществ с их последующей утилизацией и использования очищенных сточных вод в системе оборотного водоснабжения промышленных предприятий. Адсорбция растворенных веществ - результат перехода молекулы растворенного вещества из раствора на поверхность твердого сорбента под действием силового поля поверхности. При этом наблюдается два вида межмолекулярного взаимодействия: молекул растворенного вещества с молекулами (или атомами) поверхности сорбента и молекул растворенного вещества с молекулами воды в растворе (гидратация). Разность этих двух сил межмолекулярного взаимодействия и есть та сила, с которой удерживается извлеченное из раствора вещество на поверхности сорбента. Чем больше энергия гидратации молекул растворенного вещества, тем больше противодействие испытывают эти молекулы при переходе на поверхность сорбента и тем слабее адсорбируется вещество из раствора.

Сорбционная очистка сточных вод наиболее рациональна, если в них содержатся преимущественно ароматические соединения, не электролиты или слабые электролиты, красители, непредельные соединения или гидрофобные (например, содержащие хлор или нитрогруппы) алифатические соединения. При содержание в сточных водах только неорганических соединений, а также низших одноатомных спиртов этот метод не применим.

В качестве сорбентов применяют различные искусственные и природные пористые материалы: золу, косовую мелочь, торф, силикагели, алюмогели, активные глины и др. Эффективными сорбентами являются активированные угли различных марок.

Пористость этих углей составляет 60-75%, а удельная площадь поверхности 400-900 м2/г. Адсорбционные свойства активированных углей в значительной мере зависит от структуры пор, их величины, распределения по размерам. В зависимости от преобладающего размера пор активированные угли делятся на крупно- и мелкопористые и смешанного типа. Поры по своему размеру подразделяют на три вида: макропоры размером 0,1-2 мкм, переходные размером 0,004-0,1 мкм, микропоры размером менее 0,004 мкм. Макропоры и переходные поры играют, как правило, роль транспортирующих каналов, а сорбционная способность активированных углей определяется в основном микропористой структурой. Растворенные органические вещества, имеющие размеры частиц менее 0,001 мкм, заполняют объем микропор сорбента, полная емкость которых соответствует поглощающей способности сорбента /14 /.

Активность сорбента характеризуется количеством поглощаемого вещества на единицу объема или массы сорбента (кг/м3, кг/кг).

Процесс сорбции может осуществляться в статических условиях, при которых частица жидкости не перемещаются относительно частицы сорбента, т.е. движется вместе с последней (аппараты с перемешивающими устройствами), а также в динамических условиях, при которых частица жидкости перемещается относительно сорбента (фильтры, аппараты с псевдосжиженным слоем). В соответствии с этим различают статическую и динамическую активность сорбента. Статическая активность сорбента характеризуется максимальным количеством вещества, поглощенного единицей объема или массы сорбента к моменту достижения равновесия при постоянной температуре жидкости и начальной концентрации вещества, динамическая активность сорбента - максимальным количеством вещества, поглощенного единицей объема или массы сорбента до момента появления сорбируемого вещества в фильтрате при пропуске сточной воды через слой сорбента. Динамическая активность в промышленных адсорберах составляет 45-90% статической.

Между количествами вещества, адсорбированного сорбентом и оставшегося в растворе, в разбавленных растворах наступает равновесие, подчиняющиеся закону распределения.

Сорбция - процесс обратимый, т.е. адсорбированное вещество (сорбант) может переходить с сорбента обратно в раствор. При прочих равных условиях скорости протекания прямого (сорбция) и обратного (десорбция) процессов пропорциональны концентрации вещества в растворе и на поверхности сорбента. Поэтому в первые моменты сорбции, т.е. при максимальной концентрации вещества в растворе, скорость сорбции также максимальна. По мере повышения концентрации растворенного вещества на поверхности сорбента увеличивается число сорбированных молекул, переходящих обратно в раствор. С момента, когда количество сорбируемых из раствора (в единицу времени) молекул становится равным количеству молекул, переходящих с поверхности сорбента в раствор, концентрация раствора становится постоянной; эта концентрация называется равновесной. Если после достижения адсорбционного равновесия несколько повысить концентрацию обрабатываемого раствора, то сорбент может извлечь из него еще некоторое количество растворенного вещества. Однако нарушаемое таким образом равновесие будет восстанавливаться лишь до полного использования сорбционной емкости (способности) данного сорбента, после чего повышение концентрации вещества в растворе не изменяет величины адсорбции. /15/

Флотация

Флотация - процесс молекулярного прилипания частиц флотируемого материала к поверхности раздела двух фаз, обычно газа (чаще воздуха) и жидкости, обусловленный избытком свободной энергии поверхностных пограничных слоев, а также поверхностными явлениями смачивания.

Процесс очистки производственных сточных вод, содержащих ПАВ, нефть, нефтепродукты, масла, волокнистые материалы, методом флотации заключается в образовании комплексов «частицы-пузырьки», всплывании этих комплексов и удалении образовавшегося пенного слоя с поверхности обрабатываемой жидкости. Приминание частицы, находящейся в ней, к поверхности газового пузырька возможно только тогда, когда наблюдается несмачивание или плохое смачивание частицы жидкостью. 16

Смачивающая способность жидкости зависит от ее номерности, с возрастанием которой способность жидкости смачивать твердые тела уменьшается. Внешним проявлением способности жидкости к смачиванию является величина поверхностного натяжения ее на границе с газовой фазой, а также разность полярностей на границе жидкой и твердой фаз. Процесс флотации идет эффективно при поверхностном натяжении воды не более 60-65 мН/м. Степень смачиваемости водой твердых или газовых частиц, взвешенных в воде, характеризуется величиной краевого угла смачивания. Чем больше этот угол, тем более гидрофобна поверхность частицы, т.е. увеличивается вероятность применания к ней и прочность удержания на ее поверхности воздушных пузырьков. Такие частицы обладают малой смачиваемостью и легко флотируются. Большое значение при флотации имеет размер, количество и равномерность распределения воздушных пузырьков в сточной воде. Оптимальные размеры воздушных пузырьков 15-30 мкм, а максимальные 100-200 мкм. ./ 17/

В практике очистки производственных сточных вод выработаны различные конструктивные схемы, приемы и методы флотации. Метод пенной флотации применяют для извлечения нерастворенных и частичного снижения концентрации некоторых растворенных веществ, метод пенной сепарации - для удаления растворенных веществ.

Наиболее существенные принципиальные отличия способов флотации связаны с насыщением жидкости пузырьками воздуха определенной крупности. По этому принципу можно выделить следующие способы флотационной обработки производственных сточных вод:

1) флотация с выделением воздуха из раствора (вакуумные, напорные и эрлифтные флотационные установки);

2) флотация с механическим диспергированием воздуха (импеллерные, безнапорные и пневматические флотационные установки);

3) флотация с подачей воздуха через пористые материалы;

4) электрофлотация;

5) биологическая и химическая флотация /18/

Флотационные установки могут состоять из одного или двух отделений (камер). В однокамерных установках в одном и том же отделении происходит одновременно насыщение жидкости пузырьками воздуха и всплывание флотирующихся загрязнений. В двухкамерных установках, состоящих из приемного и отстойного отделений, в первом отделении происходит образование пузырьков воздуха и агрегатов «пузырек-частица», а во втором - всплывание шлама (пены) и осветление жидкости. /19/

Экстракция

При относительно высоком содержание в производственных сточных водах растворенных органических веществ, представляющих техническую ценность (например, фенолы и жирные кислоты), эффективным методом очистки является экстрация органическими растворителями - экстрагентами. Экстракционный метод очистки производственных сточных вод основан на распределении загрязняющего вещества в смеси двух взаимонерастворимых жидкостей соответственно его растворимости в них. Отношение взаимно уравновешивающихся концентраций в двух несмешивающихся (или слабосмешивающихся) растворителях при достижении равновесия является постоянным и называется коэффициентом распределения.

Коэффициент распределения зависит от температуры, при которой производится экстракция, а также от наличия различных примесей в сточных водах и экстрагенте. /20/.

После достижения равновесия концентрация экстрагируемого вещества в экстрагенте значительно выше, чем в сточной воде. Сконцентрированное в экстрагенте вещество отделяется от растворителя и может быть утилизировано. Экстрагент после этого вновь используется в технологическом процессе очистки.

Метод экстракционной очистки экономически целесообразен при значительной концентрации органических примесей или при высокой стоимости извлекаемого вещества. Для большинства продуктов применение экстрации рационально при концентрации 2 г/л и более. /21/

Для успешного протекания процесса экстрации экстрагент должен иметь следующие свойства: хорошую экстрагирующую способность по отношению к экстрагируемому веществу, т.е. высокий коэффициент распределения; селективность, т.е. способность экстрагировать из воды одно вещество или определенную их группу; малую растворимость в воде; плотность, отличающуюся от плотности воды; температуру кипения, значительно отличающуюся от температуры кипения экстрагируемого вещества; небольшую удельную теплоту испарения и малую теплоемкость, что позволяет снизить расходы пара и охлаждающей воды; возможно меньше огне- и взрывоопасность, токсичность; низкую стоимость.

Экстрагент не должен подвергаться заметному гидролизу и взаимодействовать с экстрагируемым веществом, материалом трубопроводов и запорно-регулирующей арматуры экстракционной установки.

Методы экстрагирования органических веществ по схемам контакта экстрагента и сточной воды можно разделить на перекрестноточные, ступенчато-противоточные и непрерывно-противоточные. Прямоток в процессах экстракции не применяется. /22/

Ионный обмен

Гетерогенный ионный обмен, или ионообменная сорбция - процесс обмена между ионами, находящимися в растворе, и ионами, присутствующими на поверхности твердой фазы - ионита.

Очистка производственных сточных вод методом ионного обмена позволяет извлекать и утилизировать ценные примеси (соединения, мышьяка, фосфора, а также хром, цинк, свинец, медь, ртуть и другие металлы), ПАВ и радиоактивные вещества, очищать сточную воду до предельно допустимых концентраций с последующим ее использованием в технологических процессах или в системах оборотного водоснабжения.

По знаку заряда обменивающихся ионов иониты делят на катиониты и аниониты, проявляющиеся соответственно кислотные и основные свойства. Иониты подразделяются на природные и искусственные, или синтетические. Практическое значение имеют неорганические природные и искусственные алюмосиликаты, гидроокиси и соли многовалентных металлов; применяются также иониты, полученные химической обработкой угля, целлюлозы и лигнина /23/.

Однако ведущая роль принадлежит синтетическим органическим ионитам - ионообменным смолам.

Различают следующие виды ионитов:

сильнокислотные катиониты, содержащие сульфогруппы SО3Н и сильноосновные анионы, содержащие четвертичные аммониевые основания;

слабокислотные катиониты, содержащие карбоксильные СООН и фенольные группы, диссоциирующие при рН>7, а также слабоосновные аниониты, содержащие первичные NН2 и вторичные NН аминогруппы, диссоциирующие при рН < 7;

иониты смешанного типа, проявляющие свойства смеси сильных и слабых кислот или оснований /24,26/.

Важнейшим свойством ионитов является их поглотительная способность, так называемая обменная емкость. Полная емкость ионита - количество находящихся в сточной воде грамм-эквивалентов ионов, которое может поглотить 1 м3 ионита до полного насыщения. Рабочая емкость ионита - количество находящихся в воде грамм-эквивалентов ионов, которое может поглотить 1 м3 ионита до начала проскока в фильтрат поглощаемых ионов.

При соприкосновении ионитов с водой происходит их набухание вследствие осмотических явлений; объем ионитов обычно увеличивается в 1,2 - 2 раза. На кинетику ионного обмена влияют также величина температуры, концентрация ионов и др.

Характерной особенностью ионитов является их обратимость, т.е. возможность проведения реакции в обратном направлении, что и лежит в основе их регенерации.

Регенерация слабоосновных анионитов достигается фильтрованием через слой анионита 2-4%-ных водных растворов NаОН, Nа2СО3 и NН4ОН.

Регенерация катионитов осуществляется промывкой кислотой (при Н - катионите) или раствором хлористого натрия (при Nа - катионите).

Процесс ионообменной очистки сточных вод осуществляются в аппаратах периодического (фильтрах) или непрерывного действия. /25/.

Электродиализ

Электродиализ - процесс сепарации ионов солей, осуществляемый в мембранном аппарате под действием постоянного электрического тока, применяемый для опреснения высокоминерализированных сточных вод.

Электродиализатор разделен чередующимися катионитовыми и анионитовыми мембранами, образующими концентрирующие (рассольные) и обессоливающие (дилюатные) камеры. Под действием постоянного тока катионы, двигаясь к катоду («-»), проникают через катионитовые мембраны, но задерживаются анионитовыми, а анионы, двигаясь в направлении анода («+»), проходят через анионитовые мембраны, но задерживаются катионитовыми. В результате этого из одного ряда камер (например, четных) ионы обоих знаков выводятся в смежный ряд камер.

Мембраны для электродиализатора изготовляют в виде гибких листов прямоугольной формы или рулонов из термопластичного полимерного связующего и порошка ионообменных смол /26/.

Электродиализные аппараты применяются двух типов: прокладочные и лабиринтные. Электродиализаторы прокладочного типа имеют горизонтальную ось электрического поля; их пропускная способность 2-20 м3/ч. Электродиализаторы лабиринтного типа имеют вертикальную ось электрического поля, их пропускная способность 1-25 м3/ч. Оптимальная область применения электродиализаторов - при концентрации солей в сточной воде 3-8 г/л. Во всех конструкциях электродиализаторов в основном применяют электроды, изготовленные из платинированного титана. Для эффективной работы аппаратов большое значение имеет промывка приэлектродных камер, что предохраняет крайние мембраны от разрушения продуктами электролиза. /27/

Технологические схемы электродиализных установок (ЭДУ) состоят из следующих узлов:

1) аппаратов предварительной подготовки исходной воды;

2) собственно электродиализной установки;

3) кислотного хозяйства и системы сжатого воздуха;

4) фильтров, загруженных активированным углем и бактерицидных установок. /27/

Технологические схемы бывают следующих типов.

1. Прямоточные ЭДУ, в которых сточная вода последовательно или параллельно проходит через аппараты установки и солесодержащие воды снижается от исходного до заданного за один проход.

2. Циркуляционные (порционные) ЭДУ, в которых определенный объем частично обессоленной воды из бака дилюата перекачивается через мембранный электродиализный аппарат обратно и бак до тех пор, пока не будет достигнута необходимая степень обессоливания.

3. Циркуляционные ЭДУ непрерывного действия, в которых часть сточной воды непрерывно смешивается с частью не полностью обесссоленной воды (дилюата), проходит через электродиализатор и подается потребителю или в резервуар очищенной воды.

4. ЭДУ с аппаратами, имеющими последовательную гидравлическую систему движения потоков в рабочих камерах. /28/

Каждая из указанных выше технологических схем имеет определенные преимущества и недостатки, и их выбор производится на основании технико-экономических расчетов. Исходными параметрами для расчета являются: конкретные местные условия, пропускная способность ЭДУ, солесодержание и состав обрабатываемых сточных вод. Например. При суточном расходе более 300-500 м3 сточных вод считается рациональным применение технологических схем прямоточного типа. /29/

1.2.4. Биологическая очистка производственных сточных вод

Биологическое окисление - широко применяемый на практике метод очистки производственных сточных вод, позволяющий очистить их от многих органических примесей. Процесс этот, по своей сущности, природный, и его характер одинаков для процессов, протекающих в водоеме, очистном сооружении, склянки для определения БПК, респирометре и т.п. Биологическое окисление осуществляется сообществом микроорганизмов (биоценозом), включающим множество высокоорганизованных организмов - водорослей, грибов и т.д., связанных между собой в единый комплекс сложными взаимоотношениями (метабиоза, симбиоза и антагонизма). Главенствующую роль в этом сообществе принадлежит бактериям, число которых варьируется от 106 до 1014 клеток на 1 г сухой биологической массы (биомассы). Число родов бактерий может достигать 5-10, число видов - нескольких - нескольких десятков и даже сотен.

Такое разнообразие видов бактерий обусловлено наличием в очищаемой воде органических веществ различных классов. Если же в составе сточных вод присутствует лишь один или несколько близких по составу источников органического углерода, т.е. одни или несколько близких гомологов органического соединения, то возможно развитие монокультуры бактерий. /29,40/

Сообщество микроорганизмов представлено одними бактериями в том случае, если очистку проводят в анаэробных условиях (в отсутствии растворенного в воде кислорода) или при слишком неблагоприятном уровне питания, который представляет собой отношение количества органических веществ к числу микроорганизмов. Неблагоприятным уровнем питания может оказаться, например, слишком высокое соотношение количеств подаваемых на очистку загрязнений и биомассы микроорганизмов. Если очистку проводят в анаэробных условиях (в присутствии растворенного кислорода), то при благоприятной обстановке в сообществе микроорганизмов развиваются простейшие, представленные числом видов от 1 до 15-30. /40/. Среди бактерий в очистных сооружениях сосуществуют гетеротрофы и автотрофы, причем преимущественное развитие та или иная группа получает в зависимости от условий работы системы. Эти две группы бактерий различаются по своему отношению к источнику углеродного питания. Гетеротрофы используются в качестве источника углерода готовые органические вещества и перерабатывают их для получения энергии и биосинтеза клетки. Автотрофные организмы потребляют для синтеза клетки неорганический углерод, а энергию получают за счет фотосинтеза, используя энергию света, либо хемосинтеза путем окисления некоторых неорганических соединений (например, аммиака, нитритов, солей двухвалентного железа, сероводорода, элементарной серы и др.). /41/.


Подобные документы

  • Описание принципиальной гидравлической схемы очистки бытовых и производственных стоков. Расчет параметров аппаратов: решеток, песколовок. Вторичные отстойники для производственных сточных вод. Биологическая очистка стоков. Доочистка. Барабанные сетки.

    курсовая работа [463,6 K], добавлен 13.01.2016

  • Состав и загрязненность сточных вод. Способы и сооружения механической очистки. Подбор и расчет оборудования. Параметры городских стоков, расчет решеток, песколовки. Особенности хлорирования бытовых стоков. Принципиальная схема очистки бытовых стоков.

    курсовая работа [870,5 K], добавлен 06.10.2013

  • Понятие, принципы и возможные методы очистки сточных вод, особенности их бытовых, производственных и поверхностных видов. Общая характеристика используемых систем очистки, их эффективность. Проблемы и нарушения при очистке бытовых и промышленных стоков.

    реферат [33,5 K], добавлен 08.11.2011

  • Экологическое значение процесса очистки сточных вод. Характеристика технологии производства и технологического оборудования. Механическая, физико-химическая, электрохимическая и биохимическая очистка. Охрана водоемов от загрязнения сточными водами.

    курсовая работа [571,6 K], добавлен 19.06.2012

  • Определение оптимальной технологической схемы предприятия ОАО "Славнефть-Янос" с возможностью поэтапного увеличения выпуска высококачественной продукции и углубления переработки нефти. Виды промышленных стоков и физико-химические методы их очистки.

    курсовая работа [34,4 K], добавлен 16.03.2011

  • Правила приема производственных сточных вод в системы канализации населенных мест, санитарные требования к ним. Механические, физико-химические и биологические методы для очистки технической воды и промышленных стоков, необходимое оборудование для работ

    реферат [3,5 M], добавлен 07.08.2009

  • Внедрение технологии очистки сточных вод, образующихся при производстве стеновых и облицовочных материалов. Состав сточных вод предприятия. Локальная очистка и нейтрализация сточных вод. Механические, физико-химические и химические методы очистки.

    курсовая работа [3,0 M], добавлен 04.10.2009

  • Анализ полной биологической очистки хозяйственно–бытовых сточных вод поселка городского типа. Технологическая схема биологической очистки стоков и ее описание. Расчет аэротенка-вытеснителя с регенератором, технологической схемы очистки сточных вод.

    дипломная работа [1,1 M], добавлен 19.12.2010

  • Организация природоохранной деятельности на ОАО "Омский каучук". Проблема очистки стоков. Нормы образования отходов производства. Методы получения фенола. Устройство и принцип действия колонны экстракции. Модернизация системы очистки фенольных стоков.

    дипломная работа [921,9 K], добавлен 27.03.2014

  • Проблема охраны окружающей среды. Внедрение высокоэффективных систем защиты водоемов от загрязнений. Очистка промышленных стоков и подготовка воды для технических и хозяйственно-питьевых целей. Процесс биологической очистки, характеристика ее стадий.

    презентация [7,2 M], добавлен 25.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.