Статистическое наблюдение
Статистическое наблюдение; классификация признаков явлений; сводка и группировка. Ряды распределения и их графическое изображение; уровневые и интегральные графики. Динамические ряды, статистические таблицы, абсолютные, относительные и средние величины.
Рубрика | Экономика и экономическая теория |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 23.12.2009 |
Размер файла | 217,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Уровень показателя - это уровень управления производством в пределах сферы общественного производства. Для промышленной сферы существует два уровня: производственный и макроуровень; для непромышленной три: производственный, региональный и макроуровень.
Относительная величина пространственного сравнения рассчитывается по одноуровневым одноименным показателям по разным объектам, один из которых принимается за базу. База может быть стандартной или специально выбранной. Обоснованное формирование этих относительных величин сопряжено с выбором предприятий (объектов)-аналогов. Последний выбирается, исходя из цели анализа и динамики изучаемого явления. В общем случае аналог должен являться моделью изучаемого явления.
Относительные величины координации формируются путем сопоставления (соизмерения) двух различных признаков. Такие признаки могут быть одноименными или разноименными, но обязательно взаимосвязанными. Наиболее характерными примерами одноименных признаков являются фондоемкость, фондоотдача, рентабельность (фондорентабельность и рентабельность средств производства), разноименными - показатели душевого производства и потребления, урожайности, съема полезного ископаемого с 1 м2 площади забоя.
Название относительной величины для одноименных признаков содержит в себе суть этих признаков (фондоемкость, фондоотдача). Относительные величины от разноименных признаков сохраняют названия формирующих их признаков, причем сначала указывается признак числителя, затем - знаменателя.
Условиям формирования относительных величин координации соответствует их более высокий качественный уровень по сравнению с рассмотренными выше видами относительных величин. Высокий уровень качества этих величин сопряжен и с выполнением ряда условий их формирования:
1. Прежде всего, необходимо выявление связи между признаками. Один из них рассматривается как первичный, второй как результативный (производный). Первичный признак как исходная база ставится в знаменатель, а результативный - в числитель. Базовый признак может быть либо неизменным, либо скорректированным на темпы динамики признака. В первом случае формируются относительные величины в стандартном или цензовом варианте (например, урожайность, душевое потребление). Во втором случае относительные величины определяются для той или иной экономической ситуации. При неизменной базе рассматриваемые величины сопоставимы независимо от уровня их расчета.
2. Так как базовый признак, формируя качество результативного признака, имеет свою зону качества, построение относительных величин замкнуто зоной качества базисного признака.
3. Наиболее качественные виды относительных величин формируются при стандартной базе. Такая база характеризуется устойчивостью, универсальностью и, как правило, четко выделяется во внешних условиях. Такие относительные величины могут сопоставляться не только на микро- и макроуровнях, но и для разных стран и разных континентов, т.е. они международные.
4. Относительные величины координации, используемые как оценки эффективности затрат живого и овеществленного труда, получают сопоставлением двух относительных величин, и они, как правило, являются коэффициентами. В названии коэффициента содержится исходная формула расчета этой относительной величины (коэффициенты механо- и энерговооруженности труда, коэффициенты соизмерения затрат живого и овеществленного труда, коэффициенты прямых и полных затрат труда).
Относительные величины интенсивности представляют собой отношение величины явления (признака), обладающего какими-либо специфическими признаками (особенностями), к размеру среды, которая его породила. К таким величинам относятся все демографические коэффициенты (рождаемости, смертности и т.д.), коэффициенты преступности, коэффициенты простоев оборудования, текучести рабочей силы. Таким образом, база для расчета этих величин как бы предопределена. Вместе с тем и здесь выделяют относительные величины со стандартной или цензовой базой. Таким цензом является постоянная характеристика - площадь территории. Соответственно все относительные величины с такой базой являются цензовыми (плотность населения, застройка, плотность показателей инфраструктуры) и универсальными.
Относительные величины структуры, в отличие от двух предыдущих, формируются по одному признаку, но по уровню качества они самые высокие. Рассматриваемые относительные величины - это отношение части к целому, или удельный вес части в общем объеме признака. Поэтому различают относительные величины структуры совокупности и относительные величины объема признака в совокупности.
Независимо от содержания относительных величин при их вычислении за базу сравнения берется общий итог по совокупности в целом. В качестве сравниваемых величин выступают части (группы) совокупности или значения нескольких существенных признаков (объем признака по частям или группам совокупности). Перечень признаков и последовательность расчета по ним относительных величин диктуется условиями и задачами анализа, поэтому относительные величины структуры жестко связаны с группировкой и вычисляются на ее основе. Качественной группировке соответствует и набор качественных относительных величин.
Относительные величины структуры могут рассчитываться и за пределами совокупности (например, в пределах группы однокачественных совокупностей); в этих случаях расчет относительных величин должен выполняться с соблюдением требования одномасштабности числителя и знаменателя.
8. Средние величины
8.1 Понятие о средних в статистике
В статистике средние величины рассматриваются как наиболее распространенный вариант статистических обобщающих показателей (СОП). Это связано с тем, что размеры признака, характерные для всей массы единиц совокупности, статистика выражает при помощи средней величины.
Средней величиной в статистике называется обобщающая (типическая) характеристика общественного явления по одному количественному признаку.
При осреднении случайные колебания признака у единиц совокупности погашаются и отчетливо проступают общие черты совокупности. Сопоставление средних в динамике позволяет выявить закономерности в развитии совокупности (явления), а при комплексном анализе ряда однородных совокупностей - тенденции развития явления.
Средняя величина, выступая обобщающей характеристикой совокупностей явлений и процессов, отражает объективный уровень развития явления (процесса) к определенному периоду или моменту времени. Сопоставление таких средних уровней позволяет зарегистрировать структурный сдвиг в развитии явления (процесса).
Статистические средние могут быть более дифференцированными и более агрегированными. Первые формируются в пределах совокупности: отдельных представительных ее групп или частей, вторые рассчитываются в пределах нескольких совокупностей или нескольких уровней.
Из сказанного видно, что средние величины - качественные характеристики, но их особенность состоит в том, что они заданы не на всю совокупность явлений (не на общий объем совокупности), а на отдельные явления (на единицу изучаемой совокупности). Такое качество средних обеспечивает им известную универсальность и удобство их использования.
Преимущества средних заключаются в следующем:
1. Средние могут быть рассчитаны и использованы как в пределах совокупности, так и некоторого числа однородных совокупностей.
2. Более дифференцированные средние, равно как и более агрегированные, сопоставимы со средними данного уровня, т.е. средние по подразделениям хозяйствующего субъекта (ХС) сопоставимы со средними по группе ХС.
3. Расчет средних на единицу облегчает сопоставление показателей, рассчитанных для совокупностей с разной численностью.
Поскольку средняя по сути своей представляет научную абстракцию, ей, кроме положительных черт, присущи и недостатки:
1. В средней погашаются индивидуальные различия отдельных единиц изучаемой совокупности (явления).
2. Статистические способы расчета средней в той или иной мере искажают оценку совокупности, нивелируя процедуру распространения признака по единицам совокупности. В результате возникают ошибки. При отсутствии регламента ошибки ее величина может быть достаточно высокой, что приведет к нарастанию ошибки в последующих расчетах с использованием средних.
8.2 Научные основы исчисления средних величин
Для того, чтобы средняя была более реальной и обеспечивала достаточно надежный результат, она должна быть правильно исчислена или определена. К расчету средних предъявляются следующие требования:
1. Качественная средняя может быть получена только по однородным однокачественным явлениям по изучаемому признаку. Невыполнение этого требования приводит к получению огульных и общих средних. Огульной называется средняя, подсчитанная по разным социально-экономическим типам. В пределах сферы рассчитывать средние нельзя. Предельный масштаб расчета средней - тип. Общая средняя охватывает разнородные явления с одинаковым экономическим фоном или в одной экономической ситуации. Из двух средних (огульной и общей) ошибка второй меньше. Ошибка первой обязательно должна нивелироваться дополнительной корректировкой. От общих средних всегда можно перейти к менее общим, а от них - к дифференцированным.
2. Качественные средние получаются только на основе структурной группировки.
3. Качественная средняя имеет место при правильном выборе явления (единицы совокупности), на которое рассчитывается средняя. Поэтому реализация этого требования делит все статистические средние по их содержанию на следующие виды: модуль средней, устойчивая средняя, прогрессивная средняя и динамическая средняя. Именно эти четыре величины в их совокупности и позволяют объективно оценивать состояние явления, интенсивность (закономерность) его развития.
4. Получение качественных средних возможно в пределах всей совокупности (всего круга явлений) или в пределах типичной части их.
Классификация средних по способу их расчета. По этому принципу различают следующие величины:
средняя арифметическая простая
средняя квадратическая простая
средняя геометрическая
средняя гармоническая простая
где Х - осредняемый признак; хi - частные (индивидуальные) значения признака у единиц совокупности; n - число единиц изучаемой совокупности.
Анализ приведенных формул позволяет выделить математические операции, основные для расчета той или иной средней. Для средней арифметической - это сложение значений признака в пределах совокупности, для средней квадратической - суммирование квадратов значений, для средней геометрической - произведение значений признаков, для средней гармонической - суммирование обратных значений осредняемого признака.
Эти процедуры в значительной степени определяют значимость средних или распространенность их в экономической статистике. Естественно, наиболее распространенной является средняя арифметическая, т.е. ее основная расчетная процедура - суммирование материальных значений признаков. Применение средней квадратической ограничено расчетами параметров, определяющих величину площади, средней геометрической - специальными расчетами.
Использование средней гармонической предопределено наличием в экономике взаимосвязанных признаков с обратной связью (производительность труда и трудоемкость, фондоемкость и фондоотдача, коэффициент оборачиваемости и коэффициент закрепления).
Приведенные формулы можно записать в несколько ином виде для результата группировки - вариационных рядов. Известно, что вариационный ряд распределения характеризуется не только значениями признака (уровнями ряда), но и частотами (частостями). Обозначив f - частоты, fi - частоту каждой группы вариационного ряда и хi - уровень ряда, получим средние, называемые взвешенными:
средняя арифметическая взвешенная
средняя квадратическая взвешенная
средняя гармоническая взвешенная
где - признак (вес).
Таким образом, расчет средних для вариационных рядов предполагает процедуру взвешивания (определения объема качества в пределах уровня ряда), при которой частота является «весом». Для средней геометрической подобной записи не существует, так как процедура взвешивания при произведении невозможна.
Взвешивание, при котором «весом» является частота, называется формальным. Оно позволяет получить модуль средней и в этом случае наиболее распространенным видом средней является средняя арифметическая.
Математические свойства средней арифметической:
1. Сумма отклонений отдельных значений признака (вариантов) от средней арифметической равна нулю.
2. Если от каждого варианта отнять (прибавить) какое-либо произвольное постоянное число, то новая средняя уменьшится (увеличится) на это число.
3. Если каждый вариант умножить (разделить) на какое-либо число, то новая средняя увеличится (уменьшится) во столько же раз.
4. Если все частоты f разделить или умножить на одно и то же число, то средняя не изменится (это всегда дает возможность заменять частоты частостями).
Последнее свойство означает, что величина средней зависит не от абсолютных размеров «весов», а от соотношения между ними. Из этого частного вывода вытекает более общее правило: средняя зависит от размеров вариантов и соотношения «весов», т.е. от структуры совокупности. Именно этот вывод узаконивает наличие в статистике четырех видов средних по их качеству (первые три непосредственно связаны с этим выводом, четвертая косвенно предопределена им):
модуль средней жестко связан со структурой совокупности и при ее постоянстве не меняется;
устойчивая средняя, оставаясь жестко связанной со структурой совокупности, меняется с изменением генеральной совокупности, т.е. устойчивая средняя - это модуль генеральной совокупности;
прогрессивная средняя жестко связана с той частью совокупности, которая определяет ее развитие. Эта величина - самая мобильная из трех и оценивает предельный (экономически обоснованный) уровень средней при анализе развития явления на перспективу;
динамическая средняя может быть получена от модуля или устойчивой средней умножением их на темп роста (развития) изучаемой совокупности в пределах устойчивости ее структуры.
Обе классификации средних (по способу их расчета и по качеству) связывает модуль (средняя арифметическая).
При сложной информации с большим числом наблюдений прибегают к комбинированному (унифицированному) способу расчета средних - способу моментов. Формулы для расчета средней этим способом имеют вид
где хi - индивидуальное значение признака (вариант); n - число групп (единиц совокупности); m1 - первый статистический момент; с - произвольная постоянная величина, на которую уменьшаются все значения хi; d - общий множитель для всех значений разности (хi - с); fi - «вес» (частота, частость) i-го уровня.
8.3 Неформальное взвешивание при расчете статистических средних
При расчете статистических средних возможна процедура взвешивания неформального характера. В этом случае в качестве «веса» выбирается признак, функционально связанный с осредняемым. Кроме того, «веса» могут быть простыми (один признак) и сложными (произведение нескольких признаков, которое формирует общий признак, функционально связанный с осредняемым).
Процедура неформального взвешивания обязательна в следующих случаях:
1. Осредняемый признак качественный, т.е. расчет его предполагает использование плановых (стандартизованных) признаков. Например, осредняемые признаки включают содержание полезного компонента в руде, цену продаж, себестоимость, производительность труда. Простые «веса» используются при расчете средних содержаний полезного компонента, себестоимости, производительности труда. Сложные «веса» необходимо применять при расчете средних цен.
2. Осредняемые признаки качественные, комплексные по содержанию и интегральные по схеме образования. Например, для цены продаж «весом» должен быть количественный признак, причем комплексный, рассчитанный как произведение одного количественного признака, связанного с осредняемым прямой или технологической связью, и одного или двух качественных признаков, связанных с количественным признаком жесткой прямой связью. Если осредняемый признак интегрального содержания, то количественный признак должен быть жестко связан с модулем осредняемого признака, а один, два или три качественных признака находиться в функциональной связи с остальной частью осредняемого признака.
3. Количественные признаки с высокой долей качества (себестоимость ГРР, выручка, запасы полезного ископаемого). Для таких показателей «вес» может быть только сложным. В его состав входят два количественных признака и до трех качественных. Количественные показатели связаны функциональной (косвенной) связью с осредняемым признаком или формируют экономический фон существования осредняемого признака. Качественные показатели должны быть стандартными или цензовыми и связанными с количественными признаками.
Если результатом формального взвешивания является модуль средней, то в результате неформального взвешивания получают устойчивую (1-й случай) и прогрессивную (2-й и 3-й случаи) средние. От уровня средней зависят многие статистические расчеты и СОП. Поэтому в статистике существует набор приемов по оценке надежности (качества) средней.
Первая группа этих приемов предполагает сопоставление устойчивой и прогрессивной средней с модулем и детерминацию (ограничение) этого отклонения в зависимости от содержания признака. Для количественных признаков отклонение средней от модуля допустимо в диапазоне от 20 до 25 % в сторону увеличения и от 10 до 15 % в сторону снижения. Для качественных признаков устойчивая средняя может отклоняться от модуля от ±3 до ±7 %; прогрессивная в сторону увеличения в пределах 5-8 %, в сторону снижения 10-12 %.
Вторая группа приемов связана с расчетом специальных показателей (моды и медианы), которые позволяют быстро и надежно оценивать качество средних и уточнять их содержание.
Мода - это наиболее часто встречающееся значение признака в изучаемой совокупности (в ряду распределения). Таким образом, мода - это значение признака с максимальной частотой. В интервальном ряду выделяется модальный интервал (интервал с максимальной частотой). Мода в пределах этого интервала определяется или приближенно (середина интервала), или точно по формуле
где XМо - начальное значение интервала, содержащего моду; iМо и fМо - величина и частота модального интервала; fМо-1 и fМо+1 - частота интервала, предшествующего и следующего за модальным.
Медиана - это численное значение признака той единицы совокупности, которая стоит в середине ранжированного ряда (возрастающего). При нечетном числе единиц совокупности медиана - значение признака у четко регистрируемой середины совокупности. При четном числе единиц медианой является средняя арифметическая значений признаков у двух серединных единиц совокупности.
В интервальном ряду сначала аналогично описанной процедуре определяется медианный интервал. В пределах этого интервала медиана рассчитывается или упрощенно (середина интервала), или по формуле
где XМе - начальное значение интервала, содержащего медиану; iМе - величина медианного интервала; f - сумма частот ряда; SМе-1 - сумма накопленных частот в интервалах, предшествующих медианному; fМе - частота медианного интервала.
Применение моды и медианы для оценки надежности (качества) средней зависит от характера ряда. Если значения моды, медианы и средней дискретного ряда совпадают, то средняя надежна и это модуль. Если мода и медиана попадают в другие уровни ряда, то возможны два случая:
мода находится в предыдущем уровне, медиана - в нижнем уровне по отношению к средней. Это означает, что мы имеем надежную прогрессивную среднюю;
мода находится в нижнем уровне, а медиана - в предыдущем. Полученная средняя не надежна.
Кроме сказанного возможно, что либо мода, либо медиана попадают в один интервал со средней. Если в один интервал со средней попадает мода, а медиана находится в предыдущем интервале, то получена надежная прогрессивная средняя. Если в один интервал со средней попадает медиана, а мода находится в нижнем интервале, то средняя не надежна.
Если мода, медиана и средняя интервального ряда попадают в один интервал, то получен модуль средней. Если мода и медиана попадают в другие уровни ряда, то возможны два случая:
мода, медиана и средняя находятся в соседних уровнях. Имеет место надежная прогрессивная средняя;
мода оказывается выше соседнего интервала Попадание медианы в нижний интервал исключено.. Получена прогрессивная (стратегическая) средняя.
Если один из показателей (мода или медиана) попадает в один интервал со средней, а другой в соседний - результат аналогичен рассмотренному случаю для дискретного ряда.
9. Вариация признаков и статистические способы ее измерения
Вариацией называется наличие различий в численных значениях признака у единиц совокупности. Измерение вариации позволяет выделить стадии (уровни) изменения качества в пределах совокупности и, как следствие, вскрыть резервы для углубления качества в состоянии совокупности
Для измерения вариации важно установить базу (уровень) регистрации отклонения значений признака у единиц совокупности и содержание признака, вариация которого измеряется.
В экономической статистике для оценки процесса вариации экономических показателей можно принять две базы: модуль средней или устойчивую среднюю признака.
Содержание признака для оценки вариации (процесса) имеет большое значение, так как оно регламентирует показатели вариации для данного признака.
Показатели вариации. В экономической статистике для измерения вариации используются следующие показатели:
Размах вариации - это разность между наибольшим и наименьшим значениями признака в изучаемой совокупности. Этот показатель регистрирует доверительный интервал колебания признака в изучаемой совокупности, поэтому его применение для оценки вариации крайне ограничено.
Среднее линейное отклонение - это средняя арифметическая из абсолютных отклонений индивидуальных значений признака от его расчетной базы (модуля или устойчивой средней). Среднее линейное отклонение для первичного и вариационного рядов соответственно
Дисперсия для первичного и вариационного рядов рассчитывается по формулам
Среднее квадратическое отклонение для первичного и вариационного рядов вычисляется следующим образом:
Коэффициенты вариации от среднего линейного отклонения и среднего квадратического отклонения соответственно
Здесь - среднее линейное отклонение; xi - значение признака i-й группы; - среднее значение признака в исследуемой совокупности; n - число единиц совокупности; fi - число единиц i-й группы (частота или частость).
Выбор показателя вариации зависит от содержания признака. Наиболее распространенные способы оценки вариаций признаков следующие:
вариация количественных признаков - показатель среднего линейного отклонения (если размах вариации не превышает 5 % от стандартного уровня) и дисперсия;
вариация качественных признаков, стандартных по номенклатуре, - коэффициенты вариации, причем предпочтение отдается Vу;
вариация качественных стандартизованных признаков, если они планируются, - коэффициент Vi, прочие - дисперсия;
вариация количественных признаков с высокой долей качества - дисперсия и коэффициенты вариации. Чем более качественный признак, тем более надежный результат будет получен при использовании коэффициентов вариации.
В зависимости от показателя измерения вариации последние могут использоваться для индивидуальной или сравнительной оценки вариации.
Если оценка вариации ограничена дисперсией, то возможна только сравнительная оценка вариации одного признака в разных совокупностях. Однако такая оценка вариации через дисперсию важна, так как позволяет проводить дисперсионный анализ, в процессе которого выделяется вариация признака под влиянием внешних условий.
Если вариация признака оценивается через дисперсию, то кроме сравнительного анализа одного признака допустим такой же анализ разных признаков совокупности. Эти признаки, как правило, имеют одно наименование, но рассчитываются по-разному.
Если вариация признака измеряется коэффициентами вариации, то возможна нормативная оценка вариации признака. В этом случае, расчетный уровень вариации сопоставляется с нормативом.
Область применения показателей вариации. Если среднее линейное отклонение соответствует установленному регламенту (для количественных признаков), то является показателем устойчивости средней в обычных рядах (не вариационных).
Дисперсия используется двояко: для оценки вариации признака и как инструмент проведения дисперсионного анализа. Как показатель вариации дисперсия используется для измерения колеблемости признаков одного содержания (одной природы). Кроме того, для стандартизованных признаков дисперсия позволяет установить доверительный интервал допустимого (регламентированного) колебания признака.
Дисперсионный анализ позволяет разделять комплексную причину колебания признака на две основные: внутреннюю и внешнюю по отношению к изучаемой совокупности. Способов проведения дисперсионного анализа достаточно много. Наиболее простой одновременно является базисным и основан на использовании балансовой связи между несколькими показателями дисперсии. Последняя может быть представлена в дифференцированном или агрегированном варианте. В основе перехода от агрегированного к дифференцированному описанию связи, когда число слагаемых растет, лежит дробление слагаемых по арифметической схеме (каждое слагаемое является суммой).
Среднее квадратическое отклонение, как и дисперсия, имеет двойное применение:
как характеристика устойчивости комплексных признаков с высокой долей качества. При этом выполняется сравнительный анализ устойчивости комплексных признаков (однородных по содержанию) в пределах совокупности и однородных совокупностей;
как расчетная база для получения наиболее надежных коэффициентов вариации Vу.
Коэффициенты вариации в экономической статистике оценивают в относительном измерении устойчивость признаков и поэтому используются при сравнительном анализе различных признаков, в том числе функционально связанных.
10. Дисперсионный анализ
Виды показателей дисперсии. Процесс группировки позволяет в пределах изучаемой совокупности выделять отдельные ее части по изучаемому признаку или признаку, функционально связанному с ним. Такое разделение возможно при вторичной группировке. Если каждая из выделенных частей не меняет содержания совокупности по данному признаку, то в пределах каждой части могут быть получены частные (внутригрупповые) дисперсии. Тогда дисперсия, определяемая в пределах всей совокупности, будет общей.
Пусть - общая средняя; - частная (внутригрупповая) средняя; j - порядковый номер части совокупности (ее группы); 2 - общая дисперсия; 2j - внутригрупповая дисперсия; i - порядковый номер значения признака; nj - число единиц в группе. Тогда общая и внутригрупповая дисперсия соответственно
Найденные показатели дисперсии нельзя складывать, так как они разноуровневые (один по совокупности в целом, другой в пределах ее части). Поэтому частные показатели необходимо вывести на уровень совокупности, т.е. найти среднюю из частных дисперсий. Эта дисперсия получила название групповой:
Поскольку , то для нахождения общей дисперсии через групповую необходимо знать еще одно слагаемое. Им является межгрупповая дисперсия, которая регистрирует изменение признака вследствие колебания внутригрупповых средних по сравнению с общей средней. Межгрупповая дисперсия
Она оценивает колебание признака под воздействием матричных факторов, формирующих внешнюю среду совокупности.
Правило трех сигм. Если общая и внутригрупповые средние являются модулями, то правомерно равенство
Это равенство в статистике получило название «правило трех сигм». Если средние (общая и внутригрупповые) устойчивы, то указанное правило принимается с рядом ограничений. Основное ограничение имеет вид Кроме того, разность не должна выходить из интервала от 0,842 до 0,982. Нижний крайний уровень данного интервала соответствует комплексным признакам с высокой долей качества, верхний - стандартизованным качественным признакам.
Это правило является базисной процедурой для выполнения дисперсионного анализа. Оно может использоваться в явном или дифференцированном виде. Кроме того, существует прямой (от агрегированного варианта к дифференцированному) и обратный (от дифференцированного к более агрегированному) порядок формирования балансового уравнения связи. Минимальное число элементов этой связи - от двух до четырех, максимальное - 12.
В экономической статистике горной промышленности агрегированный вариант включает в себя не более трех слагаемых. Для анализа показателей биржевой деятельности и банковских показателей их число увеличивают до четырех. В дифференцированном варианте дисперсионного анализа число показателей еще больше: для горной промышленности 6; для бирж 10-12; для банков 12.
Число слагаемых не влияет на сложность проведения дисперсионного анализа, важно лишь соблюсти следующие необходимые условия:
однородность совокупности по изучаемому признаку;
соответствие числа групп, выделенных в анализируемой совокупности, процессу накопления качества по изучаемому признаку;
улучшение качественной основы изучаемого признака в пределах выделенных групп.
Схема дисперсионного анализа. Дисперсионный анализ проводится на основе «правила трех сигм» (общая дисперсия равна сумме групповой и межгрупповой). При этом в анализе выделяется два направления. Цель первого - характеристика устойчивости признака с учетом влияния на его колебания внешних признаков; цель второго - оценка надежности средней.
Первое направление дисперсионного анализа предполагает следующие процедуры:
1. Определение доли межгрупповой дисперсии в общей:
Это выражение, вытекающее из «правила трех сигм», без корректировки можно использовать только для количественных признаков. Для качественных признаков эта формула может использоваться, если значение функционального признака выше частного от деления факториальных признаков на 3-5 %. Если это условие не выполняется, то в формулу вводится корректирующий коэффициент Е:
.
2. Установление нормативных пределов степени влияния внешних факторов на колебания изучаемого признака. Нормативные пределы влияния внешних факторов зависят от того, в каких пределах этим влиянием можно пренебречь. Нормативы дифференцированы по содержанию признака и по степени стандартизации признака. Для количественных стандартных признаков нормативы ужесточаются. Для количественных признаков допустимое ограничение гу от 15 до 18 %; для качественных стандартных признаков: соответственно от 1 до 3 %; для количественных с высокой долей качества и одновременно стандартизованных признаков: 5-8 %.
3. Характер стандартности признака.
Второе направление дисперсионного анализа устанавливает связь между структурой общей дисперсии и соотношением моды и медианы. Принято считать, что средняя является модулем, если отношение моды к медиане больше единицы, но не более чем на 3-8 %. Это условие является вторичным и учитывается, если гу ? 23 %. Для устойчивой средней отношение моды к медиане больше единицы на 7-12 %, гу ? 78 %.
Дисперсионный анализ включает также измерение дисперсии так называемых альтернативных признаков, т.е. признаков, которыми обладает не каждая единица совокупности. Дисперсия альтернативного признака равна произведению доли единиц, обладающих этим признаком, на долю единиц, не обладающих им.
При выполнении расчетов дисперсионного анализа часто используется универсальный метод расчетов как общей дисперсии, так и ее слагаемых - способ моментов:
у2 = d2(m2 - m12);
где m1 - первый статистический момент; m2 - второй статистический момент; c и d - произвольно выбранные числа.
11. Индексы
Индекс - это комплексный показатель, регистрирующий изменение сложного явления (признака) за известный интервал времени.
Математическая суть индекса - отношение, что нуждается в обосновании знаменателя (базы) индекса. База должна отвечать следующим требованиям:
общее наименование с изучаемым показателем в исследуемом периоде;
жестко регламентированный временной уровень (план, конкретный момент времени, конкретный период времени);
База может быть простой, сложной и интегральной. Однако у сложных вариантов базы должен быть модуль (простая база). Комплексный анализ сложного явления сопряжен с получением сложных вариантов базы.
Разнообразие явлений, изучаемых статистикой, предполагает использование системы индексов, в которой выделяются индивидуальные, групповые и общие индексы. Каждый вид индексов, в свою очередь, делится на подвиды. Кроме того, в процессе анализа выделяют связки индексов, которые позволяют легко переходить от частных индексов к обобщающему в пределах вида, а также от одного вида индексов к другому.
Индивидуальные индексы характеризуют динамику простых процессов, выступающих элементами сложных явлений. Например, сложное явление «Реализация продукции» формируется такими элементами, как объем реализованной продукции в натуральном измерении, цена продажи, движение готовой продукции на складе. Из этих трех элементов цена продажи является простым, а два других - сложными. Соответственно с помощью индивидуальных индексов можно регистрировать только колебания цены продажи. Такой индекс строится по формуле
где Ц1 - изучаемый простой показатель в отчетном периоде; Ц0 - тот же показатель в базисном временном периоде.
Период колебания индивидуального индекса от 0 до 1. Эти индексы измеряются в долях единицы или в процентах.
Групповые индексы регистрируют колебания простых признаков по группе одноименных единиц совокупности или однородных явлений. Для явления «Реализация продукции» групповые индексы, как и индивидуальные, могут иметь место только для цены продаж. Это будут индексы изменения цены групп одноименных товаров, поставляемых в разные пункты, или одноименных видов продукции, реализуемых в разное время.
Групповые индексы могут быть получены из индивидуальных путем различных связок индексов. Для количественных признаков возможно суммирование (умножение) индивидуальных индексов для получения группового.
Среди групповых индексов выделяется категория субиндексов. Их расчет замыкается рамками части совокупности (генеральной совокупности).
Общие индексы дают сравнительную характеристику сложных явлений в целом, а также их частей. В рассмотренном выше явлении три сложных явления: общее - объем реализации и два формирующих его (объем реализованной продукции в натуральном измерении и движение готовой продукции).
Независимо от объема явления его сравнительная оценка (изменение в определенном интервале времени) выполняется на основе общих индексов.
Из трех рассмотренных видов индексов исходным и базисным является индивидуальный индекс, так как существуют способы и методы перехода от индивидуальных индексов к групповым и от них же к общим. Вместе с тем наиболее широкое применение в статистическом анализе имеют общие индексы.
Общие индексы делятся на две категории: индексы количества (индексы количественных явлений) и индексы качества (индексы качественных явлений). Каждая из подгрупп включает классические индексы, модификации классических индексов и неформальные индексы. Классические индексы регистрируют изменения таких сложных явлений, каждое из которых может быть получено как произведение простых элементов, его формирующих. Модификации допускают такой порядок расчета сложного признака лишь в известных границах или с известными колебаниями простых признаков. Неформальные индексы строятся для сложных явлений интегрального содержания.
12. Общие индексы количественных признаков
Классический индекс. Если признак П может быть записан как произведение простых явлений (П = mLK), то общий индекс изменения изучаемого признака П в интервале времени от 1 до 0 имеет вид
,
где m - качественный простой признак; L и K - количественные простые признаки.
Заметим, что в математической записи общего классического индекса качественные простые признаки обозначают строчными буквами, а количественные - прописными.
Сочетание количественных и качественных признаков зависит от числа признаков и в определенной мере обеспечивает тот или иной уровень глубины анализа, который возможен на базе общего индекса.
Экономическая статистика ограничивает число сомножителей при формировании общих индексов: от семи до двух. Классический вариант построения индекса позволяет перейти от агрегированной записи к дифференцированной. Дифференциации подлежат количественные признаки. При этом следует помнить, что каждому экономическому показателю (явлению) по природе его образования соответствует большее или равное число количественных признаков по отношению к качественным. Если выделено шесть или семь признаков сложного явления, то количественных признаков должно быть на два больше, чем качественных.
Правильно образованный общий индекс количества (общий индекс объема) позволяет сформировать на его основе систему агрегатных индексов.
Агрегатный индекс. Этот индекс оценивает изменение сложного явления вследствие колебания одного из простых признаков, его формирующих. Агрегатный индекс изменения явления П в результате колебания признака m записывается в виде IП(m). Запись индекса в результате колебания других признаков аналогична: IП(L) и IП(K).
Критерием корректности анализа с использованием агрегатных индексов является равенство общего индекса произведению агрегатных:
Жесткость этой связи зависит от числа признаков, от их расположения и от приема дифференцирования. Рассмотрим процедуру построения агрегатных индексов на примере наиболее агрегированного варианта записи общего индекса товарооборота:
где р - цены продаж (качественный признак); q - объем продаж (количественный признак).
Этот общий индекс может быть разложен на два агрегатных индекса: один (Ipq(p)) регистрирует изменение товарооборота pq вследствие колебаний цен; второй (Ipq(q)) - изменение общего признака товарооборота вследствие изменения объема продаж.
По содержанию общий признак товарооборота pq является количественным. Его величина в значительной мере определяется объемом продаж q. Поэтому общий индекс товарооборота является произведением двух агрегатных индексов: первый является индексом количества и регистрирует влияние количественного признака, второй - индексом качества и регистрирует влияние качественного признака. Следовательно, уравнение будет выглядеть следующим образом:
.
Процедура формирования агрегатного индекса основана на том, что простые признаки, кроме регистрируемого данным индексом, остаются неизменными, а этот признак изменяет свое значение и в числителе, и в знаменателе. Такой признак получил название индексного числа. Второй элемент агрегатного индекса - индексное отношение - представляет собой совокупность значений простых признаков одного временного периода.
Вернемся к процедуре разложения общего индекса на систему агрегатных. Формируем первый индекс (индекс количества):
Выбор временного периода для признака-«веса» р диктуется правилами статистики: агрегатный индекс от количественного признака использует «вес» (качественный признак) базового периода. В записанном индексе индексным числом является q, а индексное отношение имеет вид .
Второй индекс (индекс качества)
Индексным числом в данном случае является р. Время признака-«веса» вытекает из условия построения предыдущего индекса, в котором q учтено в его предельном значении q1. Поэтому естественен его учет на этом уровне и в данном индексе. Индексное отношение имеет вид
Математическая проверка правильности построения агрегатных индексов проводится по формуле
Статистическая проверка грамотности построения агрегатных индексов основана на правиле: индексное число агрегатного индекса количества должно быть правильной дробью, оно же в индексе качества - неправильной.
В теории статистики используются следующие правила формирования системы взаимосвязанных индексов в пределах общего индекса:
1. Первым индексом в цепи взаимосвязанных индексов является агрегатный индекс количества; замыкающим - индекс качества.
2. «Весом» для количественных признаков является качественный признак базисного уровня; для качественных - количественный признак отчетного периода.
3. Удовлетворяющие первым двум правилам построения индексы удовлетворяют и уравнению связи между общим индексом и системой агрегатных.
Строгое соблюдение этих правил реализуется для классических индексов количества и качества.
В статистике существует несколько способов построения системы взаимосвязанных индексов (разложения общего индекса). Наиболее распространенными являются метод цепной подстановки и метод индивидуального учета факторов.
Метод цепной подстановки. Развернем агрегированный классический индекс товарооборота в более дифференцированный вид: Z = pq = pMk, где - индекс изменения цен; М - количественный признак объема продаж; k - признак, функционально связанный с М. Такова экономически правильная запись дифференцированной формулы товарооборота.
Соответственно общий индекс товарооборота запишется следующим образом:
.
Чтобы выполнить первое условие формирования системы взаимосвязанных индексов, необходимо запись изучаемого количественного признака Z изменить так: Z = Mkp.
Агрегатные индексы количества примут вид
;
;
,
а агрегатный индекс качества
.
Однако выполнение этого правила еще не гарантирует достаточно надежную связь между общим индексом и системой агрегатных. Это, в свою очередь, требует соблюдения ряда условий для построения развернутой (неклассической) системы агрегатных индексов:
1. В общей записи изучаемого сложного явления Z число количественных факторов должно быть либо равно числу качественных, либо превышать его хотя бы на единицу. В нашем примере это условие не выполнено.
2. Из количественных признаков выбирается тот, от которого в наибольшей степени зависит величина изучаемого признака Z. Этому признаку присваивается первый номер. Остальные количественные признаки ранжируются по мере снижения их влияния на изучаемый признак.
3. Качественные признаки «привязываются» к количественным на основе функциональной связи между ними, и исходная формула записывается так, чтобы количественные и качественные признаки чередовались; при этом последним признаком должен быть качественный.
4. При таком расположении признаков первый индекс будет обязательно индексом количества, а последний - индексом качества.
5. Запись «весов» (сложных по составу) осуществляется следующим образом: без нарушения перечня признаков не использованный ранее (в других индексах) признак записывается по базисному периоду, а использованный - по отчетному.
Таким методом характеризуется изменение сложных явлений, включающих до восьми простых признаков, причем соблюдение перечисленных выше условий обеспечивает высокую точность расчетов. Предельный дисбаланс составляет 4 % в пользу произведения агрегатных индексов, т.е. общий индекс на 4 % меньше, чем произведение агрегатных. Достаточно надежные результаты требуют учета до пяти признаков.
Следует помнить, что для этого метода очень важно правильное ранжирование количественных факторов, что связано с анализом изучаемого явления.
Хотя в рассмотренном нами примере нарушено одно из условий, правильное ранжирование факторов позволяет получить результат в пределах регламента (4 %).
Метод индивидуального учета факторов. Этот метод менее надежен, но более прост, так как формирование агрегатных индексов (независимо от их содержания) предполагает использование «весов» в одном временном периоде (базисном). Однако необходимо соблюдать следующие требования:
Соотношение признаков в записи общего, или комплексного, признака должно соблюдаться жестко: 50 % количественных, 50 % качественных; при общем числе признаков более четырех количественных признаков должно быть на один больше.
Общее число признаков не должно превышать пяти.
Пусть изучаемый признак А записывается формулой: А = mFlC. Для процедуры ранжирования количественных признаков условимся, что признак С имеет больше влияния на А, чем F. Между качественными и количественными признаками существует взаимосвязь, которая позволяет выделить их пары: C - m; F - l. Таким образом, можно записать исходную формулу в виде, удобном для составления цепи взаимосвязанных индексов: А = СmFl.
Сформируем систему агрегатных индексов:
Построение начального индекса согласно и этому методу должно удовлетворять условиям построения агрегатных индексов в пределах общего индекса. Анализ индекса IA(С) позволяет сделать вывод, что он удовлетворяет основному правилу построения агрегатных индексов по данному способу. Построение индекса IA(m) не исходит из требований классики. Оно учитывает только требования данного метода. Построение индекса IA(l) допускает отход от классики, так как это не агрегатный индекс качества, а его некоторая модификация - признаки «веса» в нем имеют не отчетный, а базисный уровень согласно данному методу.
Поскольку в данной записи имеет место отход от основного требования классики в построении цепи взаимосвязанных индексов (начальный признак - индекс количества, замыкающий - качества), то анализ по таким индексам будет не совсем точным. Неточность будет выражаться дисбалансом:
Рассмотренный метод дает достаточно надежный результат (дисбаланс 1-2 %) при трех факторах и широко применяется при внутрипроизводственном анализе (на предприятиях). Увеличение числа факторов сопряжено со значительным ростом дисбаланса: при пяти факторах до 8-12 %, при шести до 18-23 %.
Несмотря на неточность, этот метод широко используется, когда нет возможности получить информацию отчетного уровня прямым путем (не расчетным). Во всех остальных случаях более надежным является метод цепных подстановок.
Модификации классических агрегатных индексов количества и качества. Построение таких индексов рассмотрим на примере агрегатных индексов объема продаж Ipq(q) и цены продаж Ipq(p). Необходимость построения модификаций связана с невозможностью прямо получить информацию: для признака q такие сложности возникают в отчетном периоде, а для признака р - в базисном. Проделаем выкладки для модификации индекса количества. Запишем формулу индекса:
Известно, что индивидуальный индекс признака q Следовательно, Заменим q1 в формуле индекса этим произведением. Тогда
Итак, агрегатный индекс количества может быть выражен через индивидуальные индексы количественного признака. При этом агрегатный индекс является средней арифметической из индивидуальных индексов, «весом» в которой является общий признак базисного периода. Такая модификация действительно не содержит ни одного сомножителя отчетного уровня.
Проделаем аналогичные выкладки для получения модификации индекса качества. Индекс качества
.
Так как то . После подстановки запишем
Агрегатный индекс качества также может быть выражен через индивидуальные индексы качественного признака. При этом такой модификацией агрегатного индекса качества является средняя гармоническая из индивидуальных индексов, взвешенных по общему признаку отчетного периода. Видно, что в такой записи не содержится ни одного показателя базисного периода.
Полученные модификации не являются самостоятельными индексами, но лишь приемами расчета агрегатного индекса в определенных условиях. Поэтому такие модификации не должны использоваться при построении цепи взаимосвязанных индексов.
13. Абсолютные разности
Индексный анализ независимо от метода построения цепи взаимосвязанных индексов дополняется анализом абсолютных разностей.
Абсолютная разность - это разность между числителем и знаменателем индекса (общего или агрегатного). Точно так же, как существует балансовая связь между общим и агрегатными индексами, существует такая же связь и между абсолютными разностями.
Абсолютная разность по общему индексу равна сумме абсолютных разностей по агрегатным индексам. В общем виде в обозначениях рассмотренного выше примера (А = CmFl) это записывается так:
.
Это уравнение указывает на основное назначение данного анализа; именно наличие баланса абсолютных разностей убеждает в правильности выполненных расчетов. Кроме того, абсолютные разности более точно учитывают дисбаланс. В связи с этим абсолютные разности по разным общим признакам имеют разные пределы дисбаланса.
Абсолютные разности очень существенно дополняют индексный анализ по другой причине. Дело в том, что если индексный анализ всегда замкнут совокупностью (генеральной ее частью), то абсолютная разность может применяться для любых частей совокупности, даже для отдельных единиц совокупности (характерных представителей). Докажем это утверждение. Пусть формула общего индекса имеет вид
Подобные документы
Статистическое наблюдение. Понятие и содержание статистической сводки. Группировка – основа статистической сводки. Статистические ряды распределения. Осуществление конкретной аналитической группировки. Табличное представление статистических данных.
курсовая работа [172,8 K], добавлен 22.12.2010Предмет и метод статистики. Группировка и ряд распределения. Абсолютные, относительные, средние величины, показатели вариации. Выборочное наблюдение, ряды динамики. Основы корреляционного и регрессионного анализа. Статистика населения и рынка труда.
методичка [2,2 M], добавлен 16.02.2011Систематизация материалов статистического наблюдения. Понятие статистической сводки как сводной характеристики объекта исследования. Статистические группировки, их виды. Принципы выбора группированного признака. Статистические таблицы и ряд распределения.
реферат [196,8 K], добавлен 04.10.2016Рассмотрение процесса ревизии в бухгалтерии предприятия налоговыми органами с точки зрения статистического наблюдения. Выбор из исходных данных абсолютной статистической величины. Представление статистических данных. Средние величины. Показатели вариации.
контрольная работа [139,5 K], добавлен 28.05.2015Предмет и метод статистики. Сущность и основные аспекты статистического наблюдения. Ряды распределения. Статистические таблицы. Абсолютные величины. Показатели вариации. Понятие о статистических рядах динамики. Сопоставимость в рядах динамики.
шпаргалка [31,9 K], добавлен 26.01.2009Сводка и группировка материалов статистического наблюдения. Абсолютные, относительные и средние величины, показатели вариации. Ряды динамики, индексный анализ. Проведение корреляционно-регрессионного анализа таблиц о сборе урожая и внесении удобрений.
курсовая работа [667,1 K], добавлен 14.05.2013Основные понятия статистики. Организация статистического наблюдения. Ряды распределения, табличный метод представления данных. Статистическая сводка и группировка. Объекты уголовно-правовой, гражданско-правовой и административно-правовой статистики.
реферат [24,7 K], добавлен 29.03.2013Предмет и метод статистической науки. Методология наблюдения, статистическая сводка, группировка, таблицы и графики, показатели и средние величины. Показатели вариации, выборочное наблюдение. Корреляционно-регрессионный анализ. Экономические индексы.
лекция [1,2 M], добавлен 02.01.2014Ряды распределения, их построение по количественному или по атрибутивному признаку. Выборочное метод наблюдения при сборе информации в условиях развитой рыночной экономики. Статистические методы изучения взаимосвязей социально-экономических явлений.
реферат [66,2 K], добавлен 03.02.2010Общая характеристика органов пенсионного обеспечения, организация работы органов Пенсионного фонда Российской Федерации. Статистические показатели и их расчет: средние величины, показатели вариации, ряды динамики, индексы, трендовый анализ, группировка.
курсовая работа [256,8 K], добавлен 15.06.2010