Статистическое наблюдение
Статистическое наблюдение; классификация признаков явлений; сводка и группировка. Ряды распределения и их графическое изображение; уровневые и интегральные графики. Динамические ряды, статистические таблицы, абсолютные, относительные и средние величины.
Рубрика | Экономика и экономическая теория |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 23.12.2009 |
Размер файла | 217,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
89
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный горный институт им. Г.В.Плеханова
(технический университет)
В.П. СКОБЕЛИНА, Ю.В. ЛЮБЕК, Е.Г. КАТЫШЕВА
СТАТИСТИКА
Учебное пособие
для самостоятельной работы студентов
САНКТ-ПЕТЕРБУРГ
2005
УДК 311(075.80)
ББК 60.6я73
С44
Представлен теоретический материал, дополняющий лекционный курс по общей статистике и ориентированный на изучение статистических методов и способов сводки и группировки, построения и анализа статистических таблиц и графиков, расчета и оценки средних величин, показателей вариации, системы индексов и проведение индексного анализа.
Учебное пособие предназначено для самостоятельного изучения студентами специальностей 060800 «Экономика и управление на предприятии (в горной промышленности и геологоразведке)» и 060500 «Бухгалтерский учет, анализ и аудит».
Научный редактор проф. В.П.Скобелина
Рецензенты: кафедра экономики предприятия и менеджмента Северо-Западного государственного заочного технического университета, проф. Г.А. Маховикова (Санкт- Петербургский государственный университет экономики и финансов).
Скобелина В.П.
С44. Статистика: Учеб. пособие для самостоятельной работы студентов / В.П.Скобелина, Ю.В.Любек, Е.Г.Катышева. Санкт-Петербургский государственный горный институт (технический университет). СПб, 2005. 73 с.
ISBN 5-94211-154-5 Санкт-Петербургский горный
институт им. Г.В.Плеханова, 2005 г.
Введение
Статистика - общественная наука, но от других общественных наук ее отличает то, что любое общественно значимое явление оценивается количественно.
В связи с этим статистика как наука должна отвечать следующим требованиям:
1. Изучение общественных явлений в статистике должно быть нацелено не только на познание качественной сущности, но и на исследование количественной стороны, т.е. изучение количественной стороны явлений должно выполняться в неразрывной связи с его качественной характеристикой. В начале выявляется общая сущность явлений, а затем дается количественная оценка этой сущности. Такое изучение общественных явлений многостадийно и циклично, при этом важно выделить стадию и конец цикла, когда изменения количественной стороны явления приводят к измененению его качественных сторон. В процессе статистического исследования новое качество регистрируется как в пределах изучаемого объекта (статистической совокупности), так и в среде, формирующей условия функционирования (существования) объекта как элемента общественного производства.
2. Статистика должна изучать общественное явление в их взаимосвязи и с учетом воздействия природной среды.
3. Количественную сторону общественных явлений статистика должна изучать в конкретных пространственных и временных границах. Показатель привязан либо к периоду, либо к территории и т.д.
Таким образом, результатом статистического изучения явлений должны быть обобщающие статистические показатели (ОБС) - количественные характеристики одного из свойств или сторон общественных явлений, взятых в определенных границах пространства и времени. Формирование этих показателей возможно при соблюдении следующих принципов:
1) изучаемое явление должно иметь массовый характер;
2) для расчета ОБС должны быть выбраны существенные признаки, а их число должно быть ограничено по соображениям целесообразности;
3) показатели должны отражать тенденции изменения изучаемого явления;
4) показатели должны быть универсальны (применимы в разных спектрах, областях и т.д.).
Итак, статистика изучает массовое общественное явление в определенных временных и пространственных границах на основе формирования и использования статистических обобщающих показателей.
1. Статистическое наблюдение
Классификация признаков явлений
Статистическое наблюдение - это первая и важнейшая стадия статистического исследования, во время которой производится научно организованный и систематический отбор массового материала, характеризующего явления и процессы общественной жизни, с целью получения необходимых данных для расчета статистических обобщающих показателей. С учетом изложенного статистическое наблюдение должно удовлетворять ряду условий:
1. Собранные сведения должны быть полными, а не случайными и отрывочными. Полноту данных можно обеспечить полнотой пространственного охвата (полный охват единиц изучаемой совокупности), полнотой охвата сторон явления (полный охват всех существенных признаков изучаемых явлений) и полным охватом во времени. Однако на практике реализация подобных требований или затруднительна, или невозможна. Поэтому проведение статистического наблюдения допускает ряд ограничений, которые, однако, не снижают качества статистических наблюдений:
для полноты охвата в пространстве достаточно учесть генеральную часть совокупности, которая характеризуется либо представительностью числа единиц в совокупности, либо их долей в объеме качества по изучаемому признаку;
для полноты охвата сторон явления можно ограничиться небольшим числом (от шести до восьми) наиболее существенных признаков;
для полноты охвата во времени период наблюдения должен быть кратным числу циклов изменений исследуемого явления, при этом он должен учитывать экстремальные (минимальные и максимальные) значения изучаемого признака.
2. Собранная в процессе статистического наблюдения информация должна быть достоверной и точной. Точность зависит от масштаба учета явлений и от размерности цифровых показателей.
3. Статистический материал, собранный в разное время, должен быть приведен к единообразной и сопоставимой форме, т.е. содержать одни и те же элементы.
4. Статистическая информация должна поступать к пользователю своевременно.
С точки зрения характеристики состояния исследуемых явлений признаки подразделяются на атрибутивные, различие которых у отдельных единиц совокупности нельзя выразить численно, и количественные, которые у отдельных единиц объекта различаются по величине.
Количественные признаки могут быть прерывными (дискретными) и непрерывными. Прерывные признаки принимают определенные целочисленные значения, а непрерывные могут быть охарактеризованы любым числом. Кроме того, различают прямые и косвенные количественные признаки. Прямые признаки оценивают состояние и изменение явлений непосредственно. Признаки, которые сказываются на состоянии (или изменении) явления посредством других признаков, опосредовано, называют косвенными. Их воздействие может быть немедленным или отдаленным во времени, ослабленным.
Признаки делятся на функциональные и факториальные. Функциональные - это признаки, изменение которых зависит от других признаков, действие которых может быть зафиксировано аналитической формулой. Каждый из признаков, влияющих на функциональный, является факториальным.
В зависимости от целей анализа одни и те же признаки могут выступать в качестве и функциональных, и факториальных.
Кроме того, среди признаков выделяют существенные и наиболее существенные, а также несущественные. Следует помнить, что атрибутивные признаки всегда существенные; из количественных признаков к существенным относятся признаки производственно-логических связей и в меньшей степени производственно-технологических связей.
2. Сводка и группировка
Сводка. В результате статистического наблюдения получают сведения о единице наблюдения. Чтобы перейти от частных значений признаков к значениям по их совокупности, необходимо обобщить единичные данные, превратив их в статистические данные, т.е. выполнить сводку. Техническая сторона процесса сводки - подведение итогов по частям совокупности и в целом по ней. Вместе с тем грамотно выполненная сводка представляет собой теоретическое обобщение статистических данных, начальный этап образования статистических показателей.
В основе процесса сводки лежит анализ и синтез.
Статистический анализ - это изучение явления посредством выделения его сторон, существенных или зависимых. Анализ нацелен на изучение основных признаков, но при этом сфера исследования обобщающих признаков выходит за рамки изменения совокупности. Чтобы перейти от колебаний отдельных признаков к характеристике изменчивости всей совокупности, нужен синтез, т.е. рассмотрение общего качества. При этом анализ будет качественным, если сводка будет выполнена так, чтобы итоги были подведены по нужным для анализа уровням.
Перед проведением сводки оценивается полнота, достоверность и сопоставимость подлежащего обработке исходного материала.
С организационной точки зрения сводка может быть централизованной и децентрализованной. Первая необходима для подведения итогов крупных специальных обследований. В этом случае весь материал концентрируется в организации, проводящей обследование. Децентрализованная сводка выполняется в два этапа: на первом материалы обобщаются в пределах компании (объединения), на втором этапе агрегированные характеристики обрабатываются и конкретизируются заказавшей обследование организацией.
Группировка. Сведение статистического материала в группы, качественно однородные по одному или нескольким признакам, называется группировкой. Содержательная сторона группировки зависит от задачи, которая решается с ее помощью. Соответственно в основе классификации группировки лежат три задачи.
Расчленение множества однородных явлений на социально-экономические типы, классы, однокачественные группы или статистические совокупности. Решение этой задачи сопряжено с разделением более крупных категорий на их составные элементы. Обратное решение этой задачи позволяет переходить от отдельных элементов к категориям.
Выявление внутреннего строения или структуры типа, класса, однокачественной группы.
Установление связей и зависимостей между явлениями и их признаками внутри изучаемой совокупности, а также выявление факторов развития явлений. Решение данной задачи возможно как при заранее известном характере связи между наблюдаемыми признаками, так и при неопределенности связи.
Группировка выполняется в несколько стадий. На первой важно отобрать группировочный признак. Им должен быть существенный признак из числа заданных. Если в числе заданных есть атрибутивный признак, то именно он становится группировочным признаком. Если группировочных признаков несколько (если признаки атрибутивные, их должно быть не меньше двух), группировка выполняется в несколько стадий.
Группировку по первому признаку называют первичной, а группировку по всем другим признакам - вторичной.
Группировка проводится или по одному или по нескольким взаимосвязанным признакам. Во втором случае выполняется процедура расчета функционального признака по заданным факториальным. Этот функциональный признак будет играть роль группировочного. Группировка должна осуществляться после выполнения сводки, которая, и это следует помнить, возможна только по количественным объемным признакам. Качественные признаки не подлежат сводке (качественный признак всегда есть результат деления объемного или количественного признака на другой объемный признак или на собственную базу).
Результат сводки - вертикальный столбец цифр, записанных беспорядочно. Он замкнут границами уровня выполнения сводки. Для выполнения группировки этот материал должен быть упорядочен (записан в нарастающем или убывающем порядке). Нарастание или убывание определяется тенденцией изменения данного признака (например, себестоимость снижается, производительность труда увеличивается). Такой ряд чисел называется вариационным. Его элементы - числа (уровни ряда). Ряды бывают дискретными (уровень задан одним числом) и интервальными. Дискретные ряды являются исходным материалом выполнения группировки, а интервальные - ее результатом.
3. Ряды распределения
Группировка, содержащая всего два элемента: перечень групп и число единиц, входящих в каждую группу, - называется рядом распределения. Соответственно ряды распределения чаще всего являются результатом группировки.
Ряды распределения бывают первичными и вторичными. К первичным относятся упорядоченные (или вариационные) ряды по данным статистического наблюдения. Эти ряды характеризуются дискретной записью уровней и небольшими частотами (часто они равны единице). Вторичные ряды обязательно являются результатом группировки по количественному признаку. Эти ряды могут быть интервальными и смешанными. У интервальных рядов уровень ряда - интервал, у смешанных - интервалы чередуются с дискретным значением уровня. Частоты таких рядов распределяются по уровням неравномерно. Характер распределения частот определяет качество группировки, ее надежность.
Для вторичных рядов кроме частот определяются частости, т.е. частоты, выраженные в долях или процентах к объему ряда (сумме единиц ряда). Интервальные вторичные ряды могут иметь равные или неравные интервалы.
Интервальные ряды распределения - это непосредственный результат группировки, так как каждый интервал цифр в нем - это объем признака, характеризующий определенный объем качества.
Интервальный ряд распределения характеризуют следующие элементы:
уровни ряда (варианты) - интервальные значения признака;
частота - число единиц совокупности, соответствующее данному уровню;
частость - частота в относительном измерении, т.е. частота, отнесенная к объему ряда, где объем ряда - число единиц изучаемой совокупности. Сумма всех частостей равна соответственно единице или 100 %. Равномерность распределения признака в исследуемой совокупности определяется значениями частот или частостей;
плотность распределения признака - удельная частота в пределах интервала; отношение частоты (частости) к величине интервала. Необходимость в расчете этого показателя возникает в рядах с неравными интервалами, так как колебания объемов признака по уровням качества как правило не характеризуется пропорциональной зависимостью.
Формирование равных интервалов предполагает достаточно однородную совокупность по изучаемому признаку с медленным нарастанием или убыванием последнего. Во всех остальных случаях формируются неравные интервалы.
Независимо от величины интервала группировку начинают с выделения равных интервалов, а затем переходят к неравным.
Построение ряда с равными интервалами предполагает наличие вариационного ряда по группировочному признаку. Построение искомого ряда включает следующие операции:
определение размаха ряда - разности между крайними значениями ряда Хmax - Xmin;
обоснование числа групп вторичного ряда распределения n, которое зависит от объема выборки. Эта зависимость имеет опытно-статистический характер, применяется в зависимости от сферы изучаемого явления и декларируется специальными статистическими таблицами;
определение величины интервала
;
построение интервалов прибавлением к минимальному значению признака : Xmin + i = X1. Таким образом, последовательно получаем интервалы [Xmin - X1], [X1 - X2] = [X1 - (X1 + i)] и т.д., пока не придем к максимальному значению признака.
Параметры ряда i и n взаимосвязаны: чем больше длина интервала, тем меньше интервалов. Число интервалов зависит от объема выборки, размаха и некоторых других характеристик ряда. В зависимости от объема выборки N можно принимать следующее число интервалов n:
N |
До 10 |
До 10-30 |
30-100 |
100-500 |
500-3000 |
Более 3000 |
|
n |
3 |
3-4 |
4-8 |
8-9 |
9-13 |
13-18 |
Построение интервального ряда завершается распределением единиц совокупности по выделенным интервалам.
После того, как найдены частоты интервального ряда, строится их график, причем по оси абсцисс откладывают интервальные значения признака, а по оси ординат - частоты. Если полученный график близок к прямой или параболе, группировку можно заканчивать, она качественна. Для рядов с неравными интервалами данный график будет точнее, если вместо частот использовать плотность распределения.
Построению рядов с неравными интервалами предшествует анализ динамики признака по совокупности и регистрация моментов накопления объема признака. Совмещение этих двух направлений анализа сопровождается обычно вторичной группировкой. При первичной группировке этот процесс возможен только путем построения интервального ряда с равными интервалами.
Таким образом, процедура первичной группировки выглядит следующим образом:
1. Формируется ряд (с равными интервалами) на базе ряда распределения.
2. Выполняется графическая проверка полученного результата. График строится следующим образом: по оси абсцисс откладывают интервалы ряда с регистрацией их средних, по оси ординат - частоты (частости). Точки графика получают на пересечении срединных значений уровней ряда и соответствующих ординат.
3. Проводится анализ полученного графика посредством построения линии тренда. Если линия тренда представляет собой прямую линию или параболическую кривую (второго порядка), то полученные результаты являются достаточно надежными (качественными) и группировку можно закончить. Если линия тренда представлена гиперболической или синусоидальной кривой, то результаты группировки нельзя признать надежными и процедуру следует продолжить. Как правило, последующие стадии группировки заканчиваются построением рядов с неравными интервалами.
4. Осуществляется процедура проверки рядов с неравными интервалами:
1) по исходным данным определяется плотность распределения признака в пределах интервала по единицам совокупности;
2) строится график, в котором по оси абсцисс откладывают интервалы ряда с регистрацией середины; по оси ординат - плотность распределения;
3) проводится анализ полученного результата.
Кроме того, результатами группировки могут быть смешанные ряды, когда одни уровни представлены интервальными значениями, а другие - дискретными (геостатистика, гидрометеорологические исследования).
4. Графическое изображение рядов распределения
Любой ряд распределения может быть представлен в виде статистического графика. При этом по оси ординат показываются частоты (частости, плотности распределения), по оси абсцисс - значения признаков.
Построение статистических графиков отличается от построения математических рядом особенностей:
1. Для большей наглядности допускаются разные масштабы по осям координат.
2. Статистические графики могут быть уровневыми и интегральными. Уровневые замыкаются числом или пределами частот, что позволяет комплектовать уровневые статистические графики взаимосвязанных показателей на одном листе.
3. Статистические графики могут строиться как в абсолютном, так и в относительном измерении (по признаку). Последние предпочтительнее для функциональных признаков.
4. Интегральные статистические графики предполагают суммирование не только значений признака, но и частот. При этом возможно полное суммирование последних или их суммирование в ограниченных пределах (интервалах).
5. Статистические графики в зависимости от цели исследований читаются слева направо (прямой порядок) и справа налево (обратный порядок).
6. Статистический график всегда ломаная линия или диаграмма.
4.1 Уровневые графики (гистограмма, полигон распределения)
Для таких графиков важно соблюдать два правила их построения:
1. Количественное значение группы должно следовать за изменением количественной характеристики признака (распространение признака по оси абсцисс первично).
2. При равных интервалах признака по оси ординат откладываются частоты, при неравных - плотность распределения.
Характерными представителями уровневых графиков являются гистограмма (рис.1) и полигон распределения.
Для общего вида гистограммы характерно следующее:
предельная высота ограничена максимальной частотой, максимальной частостью или плотностью распределения;
гистограмма характеризует не только интервалы распределения признака (основания прямоугольников), но и распределение объема признака для тех или иных интервалов (площадь прямоугольника);
вид линии, ограничивающей гистограмму сверху, определяет ресурсы по объему признака;
вся площадь прямоугольника S по максимальной высоте гистограммы для всего распределения признака характеризует матрицу объема признака.
Гистограмма наглядно иллюстрирует распределение признака, причем двояко:
долей площади каждого прямоугольника
;
матрицей , где S - площадь матрицы.
Гистограмма показывает как изменяется объем признака. Для оценки изменений площади соседних прямоугольников суммируются (возможно нарастающим итогом) и эта сумма относится к общему объему признака (сумме площадей всех прямоугольников).
Правильно построенная гистограмма (в пределах установленных масштабов) позволяет выделить генеральную совокупность по объему признака прямым или обратным порядком. Прямой порядок выделения генеральной совокупности сопряжен с нарастающей динамикой объема признака (S1 + S2 + S3 + S4), обратный (S4 + S3 + + S2 + S1) - с убывающей.
Построить гистограмму можно только для интервального ряда распределения, и в этом состоит специфичность гистограммы.
Более универсальным является второй вид уровневого графика - полигон распределения. В дискретных рядах каждому определенному значению признака соответствует своя частота (частость), что отражается на оси абсцисс точками, а не интервалами, а по оси ординат - целыми значениями частоты или дробными частости. В этом случае полигон распределения будет представлен ломаной линией.
Для интервального ряда получение полигона распределения предполагает соединение середин верхней линии гистограммы.
Для смешанного ряда построение полигона распределения предполагает соединение середин верхних линий гистограмм с высотой дискретного значения признака.
Если есть возможность закодировать цифрами стандартную номенклатуру по атрибутивному признаку, то эти цифры могут быть зарегистрированы на оси абсцисс, и это позволит построить полигон распределения (так называемый кодовый полигон распределения).
Универсальность этих графиков снижает их потенциальные возможности по сравнению с гистограммами. Полигон также характеризует распределение признака, но не так конкретно, как гистограмма (затруднен процесс расчета всех площадей). Изменение объема признака регистрируется в целом и нарастающим итогом, поэтому полигон распределения не позволяет выделить генеральную совокупность.
Тем не менее, полигон распределения регистрирует точку или момент перехода количества в качество в процессе нарастания объема признака.
4.2 Интегральные графики
Интегральные графики в экономике представлены главным образом кумулятами. Общей особенностью построения кумулят является накопление не только признака, но и частот по абсциссе и ординате. Различают следующие виды кумулят: полная и неполная; восходящая (прямая) и убывающая (обратная).
Кумуляты аналогичны по виду полигона распределения, а поэтому применимы для всех вариантов рядов распределения.
Полные кумуляты строятся для всех рядов с полным нарастанием частот (без ограничений). Неполные кумуляты строятся и для интервальных рядов, и для смешанных. Первые формируются либо в пределах всего ряда, либо учитываются только характерные группы интервалов (выделенные по минимальному, серединному или максимальному значению интервала), вторые - в пределах всего ряда, но учитываются не все частоты, а только те, которые выше установленного регламента.
Пример. По геологически однородному участку золотой россыпи получены следующие результаты опробования (447 проб):
Содержание, г/т |
0 |
0-0,1 |
0,1-1 |
1-2 |
2-3 |
3-5 |
5-10 |
10-20 |
||
Число проб |
13 |
32 |
51 |
84 |
116 |
96 |
32 |
13 |
||
Содержание, г/т |
18,7 |
18,8 |
19,4 |
19,9 |
20 |
29,5 |
47,1 |
92 |
193,4 |
|
Число проб |
1 |
1 |
2 |
1 |
1 |
1 |
1 |
1 |
1 |
Определить критическое содержание В качестве оценочного критерия для россыпей принято критическое содержание, превышающее среднее в 8-13 раз. золота в пробе, полностью учитываемое при подсчете запасов по этому участку (избыточное содержание будет отнесено к запасам всего месторождения). Установить кондиции для балансовых и забалансовых запасов. Оценить достоверность графиков для подсчета категории запасов.
Решение. Все эти задачи можно решить графически путем построения двух полных кумулят: прямой и обратной. Построение кумулят требует проведения предварительной очистки данных от ложных («грязных») проб, а также обоснования критического содержания по отношению к среднему. Примем, что критическое содержание выше среднего в 10 раз. Кроме того, необходимо выделить ураганные пробы, в которых содержание выше критического.
Необходимую информацию и результаты расчетов сведем в таблицу, где столбцы 1 и 3 содержат исходную информацию, а остальные - расчетную (полужирным шрифтом выделены искомые значения).
Статистический анализ результатов опробования однородного участка золотой россыпи
Содержание золота, г/т |
Среднее по классу, г/т |
Число проб в классе |
Сумма со-держаний в классе, г/т |
Нарастающая сумма |
Убывающая сумма |
|||
г/т |
% |
г/т |
% |
|||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
0 |
0 |
13 |
0 |
0 |
0 |
1742,9 |
100 |
|
0-0,1 |
0,05 |
32 |
1,6 |
1,6 |
0,1 |
1742,9 |
100 |
|
0,1-1 |
0,55 |
51 |
28,1 |
29,7 |
1,7 |
1741,3 |
99,9 |
|
1-2 |
1,5 |
84 |
126 |
155,7 |
8,8 |
1713,2 |
98,3 |
|
2-3 |
2,5 |
116 |
290 |
445,7 |
25,6 |
1587,2 |
91,3 |
|
3-5 |
4 |
96 |
384 |
829,7 |
47,6 |
1297,2 |
74,4 |
|
5-10 |
7,5 |
32 |
240 |
1069,7 |
61,5 |
913,2 |
52,4 |
|
10-20 |
15 |
13 |
195 |
1264,7 |
72,5 |
673,2 |
38,5 |
|
18,7 |
18,7 |
1 |
18,7 |
1283,7 |
73,7 |
478,2 |
27,5 |
|
18,8 |
18,8 |
1 |
18,8 |
1302,2 |
74,6 |
459,5 |
26,3 |
|
19,4 |
19,4 |
2 |
38,8 |
1341 |
77,0 |
440,7 |
25,4 |
|
г/т |
% |
г/т |
% |
|||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
19,9 |
19,9 |
1 |
19,9 |
1360,9 |
78,1 |
401,9 |
23,0 |
|
20 |
20 |
1 |
20 |
1380,9 |
79,3 |
382 |
21,9 |
|
29,5 |
29,5 |
1 |
29,5 |
1410,4 |
81,0 |
362 |
20,7 |
|
47,1 |
47,1 |
1 |
47,1 |
1457,6 |
84,6 |
332,5 |
19,0 |
|
92 |
92 |
1 |
92 |
1549,5 |
88,9 |
285,4 |
15,4 |
|
193,4 |
193,4 |
1 |
193,4 |
1742,9 |
100 |
193,4 |
11,1 |
|
_________________________________ Примечание. Такая запись указывает на то, что исходная информация не содержит грязных проб, а распределение содержания по уровням ряда соответствует геологической классификации проб. Тем самым пробы, представленные в столбце 3, являются чистыми. |
Заполнение столбцов в расчетной части таблицы выполняется следующим образом:
Столбец 2. Уровни этого ряда представляют собой середины интервальных значений столбца 1.
Столбец 4. Произведение соответствующих строк столбцов 2 и 3. Каждый уровень ряда этого столбца имеет частное наименование (граммов на тонну) или характеризует удельный объем изучаемого признака (наличие золота в руде). Это возможно, так как данный признак является произведением двух стандартных (цензовых) признаков.
Столбец 5. Уровни этого ряда получаются путем последовательного суммирования уровней предыдущего ряда. Сумма регистрируется нарастающим итогом.
Столбец 6. Значения могут быть получены прямым и обратным способом. Прямой способ предполагает выражение в относительном измерении уровней столбца 4 и последующего их наращивания. Обратный способ применим только в пределах всей совокупности. Тогда предельное значение столбца 5 принимается за 100 % и каждый из уровней этого ряда затем соотносится с предельным значением.
Столбец 7. Уровни этого ряда набираются как разности; последние получаются последовательным вычитанием из конечного значения столбца 5 значений столбца 4, начиная с первого уровня.
Столбец 8. Процентное выражение убывающей суммы определяется обратным порядком по аналогии со столбцом 6.
Таким образом, среднее содержание по всем 447 пробам составляет 3,9 г/т. Тогда критическое содержание 39 г/т. Тем самым, к ураганным относятся пробы с содержанием 47,1, 192 и 193,4 г/т.
Долю запасов с ураганными пробами можно выделить двумя способами:
прямым, по убывающей кумуляте (в столбце 8 последние три строки регистрируют данные по ураганным пробам, верхнее соответственно искомое значение 19 %);
обратным, по нарастающей кумуляте (в столбце 6 выделяют уровень ураганных проб, соседний с ними регистрирует объем запасов без ураганных проб; искомое 100 - 81 = 19 %).
Избыточное содержание
Суммарное избыточное содержание
8,1 + 53 + 154,4 = 215,5 г/т.
Определим долю запасов избыточного содержания по пропорции** Для составления пропорции используем любой уровень ряда столбцов 5 и 6. Здесь использован 4-й уровень.:
155,7 г/т - 8,8 %
215,5 г/т - х
%.
Однако построение кумулят позволяет дать более полную оценку запасов полезного ископаемого (рис.2).
Правильность построения кумулят проверяется соблюдением неравенства
Абсцисса точки пересечения прямой и обратной кумулят соответствует бортовому содержанию полезного ископаемого.
5. Динамические ряды
Динамические ряды относятся к особым вариантам рядов распределения, направленность распределения признаков которых диктуется фактором времени. При этом время меняется наступательно, в возрастающем порядке. Моменты времени одновременно являются уровнями ряда. При этом уровень регистрирует или момент, или период.
Как ряд распределения динамический ряд имеет характеристики обычного ряда распределения, т.е. значения признака и частоты. Частоты обычно равны единице. Только в тех случаях, когда процесс циклично повторяется, частоты уровней изменяются и оказываются выше единицы.
Динамические ряды имеют и особенности, которые в той или иной степени отражают динамику явления (развитие во времени). Специфическими показателями динамического ряда являются абсолютный прирост (разность между последующим уровнем и предыдущим), темпы роста (цепные и базисные, так как являются относительными величинами динамики), среднегодовой темп роста, базисные и цепные темпы прироста.
Обозначив отдельные уровни динамического ряда последовательно q0, q1, q2, …, qn, получим темпы роста, базисные
…;
и цепные
…; .
Аналогично темпы прироста, базисные и цепные соответственно
и
Цепные и базисные темпы роста взаимосвязаны, причем эта связь имеет двойное содержание: произведение цепных индексов динамического ряда равно отношению крайних уровней данного ряда (t1t2t3 … tn = qn /q0); при делении последующего базисного темпа на предыдущий получается цепной темп последующего периода:
Динамические ряды, составленные из темпов роста (прироста), могут быть цепными, базисными или смешанными.
Абсолютный прирост позволяет выявить прерывность динамического ряда. Если колебания соседних абсолютных разностей превышают регламент, установленный содержанием признака, то ряд в этом месте разрывается. Последующие характеристики ряда рассчитываются только для непрерывной его части. Поэтому непрерывным рядом может считаться только ряд с моментными уровнями, так как содержание экономического явления (уровень показателей) регистрируется, как правило, на год. Ряд с периодическими уровнями может быть непрерывным при равных периодах в том случае, если этот период является лагом для данного явления (признака).
Любые варианты смешанных рядов всегда прерывны.
Абсолютные разности позволяют фиксировать точки перегиба ряда, когда знак абсолютной разности меняется на противоположный. Если абсолютная величина разностей соседних уровней не превышает для количественных признаков 30 %, а для качественных 15 %, то ряд считается непрерывным. Доля точек перегиба в объеме ряда может характеризовать вид динамики. Если эта доля не более 5 %, ряд характеризуется направленной динамикой. Если эта доля не более 30 %, имеет место неустойчивая динамика ряда, а если доля превышает 30 %, то динамику называют вибрирующей.
Общую направленность динамики можно определить по базисным темпам роста: если они больше единицы, динамика растущая, если меньше единицы, падающая. Но точное представление о направленности ряда дает среднегодовой темп роста, который позволяет также достаточно надежно оценить интенсивность динамики ряда в среднем за весь период:
где t1, t2, , tn - цепные (или базисные) темпы роста.
Однако одной направленности динамики для характеристики ряда мало. Важно выяснить характер динамики: спокойная, интенсивная, пульсивная. При этом спокойная динамика графически выражается прямой с небольшим угловым коэффициентом, интенсивная - прямой с высоким угловым коэффициентом или сложными линиями тренда (сочетание прямой, параболы и т.д.).
Характеристика динамики устанавливается в процессе анализа цепных темпов роста. При этом выделяются зоны стабильной, интенсивной, растущей и падающей динамики. Для такой оценки через цепные темпы роста (разность между цепным темпом роста и единицей) рассчитываются темпы прироста, которые сопоставляются со среднегодовым темпом роста. Чем ближе темп прироста к среднегодовому темпу роста, тем плавнее динамика, чем дальше - тем она интенсивнее.
Особую функцию в характеристике динамических рядов выполняют темпы прироста, рассчитанные через базисные темпы роста. В пределах ряда особый интерес представляет удельная (средняя) характеристика этого показателя, т.е. среднегодовое значение такого прироста. Для его получения нужно прирост за последний год разделить на число моментов изучаемого ряда.
6. Статистические таблицы
Статистические таблицы являются рациональной формой изложения и анализа численных характеристик общественных процессов. Они позволяют не только сжато и компактно изложить результаты комплексной обработки статистических материалов, но и подготовить этот материал к анализу, а в отдельных случаях указать схему анализа. Достигается это тем, что объекты и характеризующие их показатели располагаются в определенной системе, позволяющей словесные пояснения представить в виде заголовков (общих и частных) для признаков и групп.
Порядок разработки таблиц регламентирован следующим образом:
1. Составление заголовка к таблице, который должен отражать основное содержание таблицы.
2. Обоснование перечня признаков (подлежащего и сказуемого), используемых для качественного построения таблицы.
3. Составление макета статистической таблицы.
Макет - это форма таблицы, имеющая общий заголовок и заголовки к горизонтальным строкам и вертикальным графам. Макет составляется до сбора первичного материала, поэтому цифр в нем нет. Для разработки макета важно содержание подлежащего и сказуемого таблицы и их компоновка. При этом подлежащее индексируется буквами, а графы сказуемого нумеруются.
Подлежащим таблицы называется тот объект, который подвергается в ней изучению. Как правило, подлежащее состоит из набора признаков, распределения признака и единиц изучаемой совокупности. При этом могут быть использованы различные виды группировок по цели их использования (типологическая, аналитическая). В зависимости от схемы группировки подлежащего при помощи таблиц могут решаться различные задачи анализа.
Сказуемым называется комплекс показателей, которыми характеризуется подлежащее таблицы.
Поскольку таблица регистрирует результаты группировки и эта группировка отражается в подлежащем, то в подлежащее попадают атрибутивные признаки (если они есть), а в сказуемое - только количественные. Из количественных признаков в подлежащее попадают функциональные и прямые; факториальные признаки содержатся в сказуемом.
Для построения таблиц важно знать не только как компонуются подлежащее и сказуемое, но и их расположение. Подлежащее обычно располагается в левой части таблицы в виде наименования строк, сказуемое - в правой части в виде граф (колонок, столбцов). Графы, как правило, объединяются промежуточной сводкой (Итого), колонки - не всегда, а столбцы - только итоговой сводкой (Всего).
Сводка в таблице имеет место и в подлежащем, и если в сказуемом она может быть частичной или полной, то в подлежащем сводка обязательно полная.
Наименования строк называют боковыми заголовками, наименования граф - верхними.
Правильная разработка макета таблицы невозможна без учета задач анализа, которые должны решаться по материалам данной таблицы.
Переход от макета к готовой таблице сопряжен с построением рабочих и вспомогательных таблиц, компоновка которых и позволяет получить искомую таблицу.
Виды таблиц. Несомненным достоинством таблиц по отношению к графикам является возможность с их помощью оценить изучаемое явление многосторонне (по нескольким признакам, определенным образом связанным). Характер связи между признаками подлежащего и сказуемого в определенной мере раскрывается видом таблиц. Классификация таблиц выполняется отдельно по подлежащему и сказуемому, но определяющей является первая.
По содержанию подлежащего таблицы подразделяются следующим образом:
Простые таблицы, в подлежащем которых содержится перечень объектов согласно принятой систематизации.
Групповые таблицы, в подлежащем которых содержатся группы, образованные не только по атрибутивному признаку, но и хотя бы по одному количественному.
Комбинационные таблицы, в подлежащем которых содержатся группы, образованные по одному или двум взаимосвязанным признакам (чаще атрибутивным). Разновидностью комбинационных таблиц по двум признакам являются балансовые таблицы. Цель балансовых таблиц - установление связей между приходом и расходом ресурсов (учет их движения).
По содержанию сказуемого различают следующие виды таблиц:
Информационные, которые содержат информацию для анализа. Информация представлена признаками, функционально не связанными друг с другом, но расположенными так, чтобы было удобно проводить анализ (более значимые признаки по цели анализа располагаются левее).
Аналитические, в которых признаки сказуемого объединены одним или несколькими изолированными функциональными признаками. Особенностью сказуемого аналитической таблицы является то, что на его основе может формироваться иное расположение столбцов за счет перемены мест функциональных признаков. Кроме того, находящийся справа функциональный признак (признаки) может быть отсечен и использован для построения самостоятельной таблицы (таблиц). Такие процедуры часто применимы и к информационным таблицам: возможна перестановка признаков (столбцов), а в отдельных случаях отсечение части столбцов объединяемых производственных и логических признаков.
Системные, представляющие собой сочетание аналитической таблицы с информационной при одном и том же подлежащем. К системным относятся также аналитические таблицы, в которых функциональные признаки сказуемого взаимосвязаны. Системная таблица, как и аналитическая, допускает сокращение сказуемого за счет отсечения самостоятельных признаков правой части таблицы.
Рассмотренные виды таблиц являются основными. Кроме них в современной статистике используется большое число таблиц-модификаций: корреляционные, наиболее распространенные в практике статистики, матрицы и вариационно-динамические.
Особенностью корреляционных таблиц является то, что в подлежащем и сказуемом расположены количественные и качественные признаки, связанные между собой. При этом признаки подлежащего и сказуемого могут меняться местами в зависимости от цели исследования. Анализ таких таблиц нацелен на количественное измерение связей между подлежащим и сказуемым.
Если в подлежащем таблицы регистрируется количественный признак, то в сказуемом - обязательно качественный. Если в подлежащем качественный признак, в сказуемом также регистрируется качественный. В первом случае связь между признаками прямая, во втором - обратная. Коэффициент корреляции в первом случае положительный, во втором - отрицательный.
Более сложный вариант корреляционной таблицы называется матрицей. Особенность ее в том, что у нее подлежащее располагается в нескольких местах - либо слева и справа (перед сказуемым и за ним, причем за сказуемым - ограничение), в этом случае матрица является открытой; либо слева, справа и под сказуемым (закрытая матрица).
Особенностью вариационно-динамической таблицы является регистрируемый в сказуемом временный вектор. Подлежащее такой таблицы обычно содержит типичную (стандартную) группировку по цензовому признаку и представлено рядом распределения качественной группировки. Таким образом, содержание вариационно-динамической таблицы формируют два ряда: вариационный в подлежащем и динамический в сказуемом.
Жесткие требования к построению вариационно-динамических таблиц обоснованы целями анализа по этим таблицам, а именно:
1) выявление тенденций в изменении явления (подлежащего);
2) выделение зон интенсивного развития явления и зон слабой динамики;
3) построение полной (неполной) структурной группировки, на основе анализа которой в изучаемом периоде времени (в пределах вектора) исследуются структурные сдвиги явления.
Правила построения статистических таблиц следующие:
1. Построение макета таблицы следует начинать с формирования подлежащего, затем сказуемого. Подлежащее должно соответствовать цели исследования или анализа, которая заявлена в названии таблицы.
2. Подлежащее таблицы должно содержать качественную группировку. При его построении разумно использовать небольшое число наиболее существенных (т.е. атрибутивных) признаков.
3. Признаки сказуемого должны располагаться так, чтобы это было удобно для анализа и чтобы были видны функциональные связи признаков.
4. Столбцы (графы) сказуемого нумеруются слева направо, столбцы (графы) подлежащего обозначаются прописными буквами.
5. Заголовки к строкам и столбцам таблицы должны быть краткими, но четкими и ясными.
6. Число признаков сказуемого должно быть достаточным для характеристики подлежащего, но без изменений детализации.
7. Клетки таблиц, в которых отсутствует информация, заполняются прочерком; если клетка лишена смысла, в ней ставится крест; если информации для заполнения этой клетки вообще не существует, в ней ставится многоточие.
8. Таблица должна содержать примечания построчные и общие (выносятся за рамки таблицы). Примечания могут, например, подробно описывать расчет того или иного показателя.
Дополнительные правила, уточняющие процесс построения макета таблицы:
1. Для построения макета имеющиеся признаки ранжируются по их существенности. Из них выделяются признаки с аналитической связью, изолированные прямые, косвенные и т.д. В построении таблицы должны использоваться наиболее существенные функциональные и прямые признаки. При наличии типологических признаков из них выделяются два, наиболее жестко связанные с целью анализа. Сначала формируется подлежащее. В него должен быть включен основной группировочный признак, т.е. атрибутивный, или наиболее существенный из количественных. В подлежащее включаются и единицы наблюдения или совокупности. Все оставшиеся признаки включаются в сказуемое.
2. Признаки сказуемого должны располагаться в определенной последовательности, исходя из вида таблицы.
3. Построение комбинационных таблиц по подлежащему не должно учитывать больше двух атрибутивных признаков.
4. Таблица должна содержать все необходимые итоги по строкам и столбцам и по возможности полную и частичную сводку.
7. Абсолютные и относительные величины
Абсолютные статистические величины. Эти показатели, выражающие размер (объем, уровень) конкретных общественных явлений в единицах меры массы, объема, силы, стоимости и т.д., представляют собой всегда числа именованные. К наиболее значимым и распространенным из них - натуральным - относятся единицы величин, характеризующие единицы совокупности в физических мерах.
Разновидностью натуральных единиц являются условно-натуральные единицы. При их расчете сначала выделяются наиболее существенные из качественных признаков (показателей), которые принимают за единицу. Все остальные корректируются относительно выделенного признака (показателя).
Денежные единицы измерения используются для характеристики в стоимостном (денежном) выражении абсолютных показателей.
Трудовые единицы измерения (человеко-часы, человеко-дни, человеко-годы) применяются для характеристики затрат труда, использования трудовых ресурсов.
Денежные и трудовые единицы измерения в статистике используются не только самостоятельно, но и как соизмерители. При этом появляется возможность выразить объемы продукции и другие количественные характеристики в условно-трудовом и условно-денежном (стоимостном, цензовом) измерении. В качестве цензовых, стандартных цен сейчас используются цены Международного Европейского рынка, цены основных свободных зон и цены ведущих бирж.
Абсолютные величины подразделяются на индивидуальные и общие (итоговые). К индивидуальным относятся показатели, характеризующие количественное значение признака отдельных единиц совокупности. В результате суммирования индивидуальных величин получают итоговые показатели. Следовательно, общие абсолютные величины характеризуют величину того или иного признака у всех единиц совокупности или у отдельных их групп.
Относительные статистические величины. Относительной величиной в статистике называется мера отношения объема признака или совокупности к принятой базе. Из этого определения следует, что формирование относительных статистических величин возможно несколькими способами. Действительно, объемы признака или совокупности могут сравниваться с другими их состояниями (во времени, в пространстве или плановыми) или со значениями других взаимосвязанных признаков (сравнение значений разноименных признаков); могут также сравниваться части признака или объема совокупности с их общими объемами (сравнение части и целого, конечно, по одному признаку).
Независимо от способа получения относительные величины отражают качество изучаемых процессов, выступают средством обобщения конкретных социальных явлений. Поскольку относительные величины характеризуют качество, их измерение более универсально. Они могут являться коэффициентами (тогда это доли единицы или проценты).
Математически относительные величины получаются в результате сравнения (отношения). Та величина, с которой производится сравнение, называется базой (основанием) сравнения, базовой величиной.
По содержанию относительные величины подразделяются на несколько видов: относительные величины динамики, выполнения плана и планового задания, пространственного сравнения, координации, интенсивности, структуры и др.
Относительные величины динамики используются наиболее широко. Динамикой в статистике называется изменение явления во времени. Относительные величины динамики измеряют скорость изменения явления (темп развития). Относительная величина динамики - это отношение уровня (объема признака или совокупности) отчетного периода к уровню за предшествующий период. Предшествующие периоды (база) бывают смежными и отдаленными. В рыночной экономике существует разница между базой сравнения для хозяйствующего субъекта (ХС) и макроуровня. Для ХС это обязательно смежная база; для макроуровня при анализе показателей финансового характера выбирается база смежная, при оценке состояния экономики - отдаленная.
Различают два вида относительных величин динамики: с переменной (цепные) и с постоянной (базисные) базой сравнения. Цепные формируются от смежной базы, а базисные - от отдаленной базы. В связи с этим возникает необходимость обоснования выбора отдаленной базы. В основе такого обоснования лежит принцип, согласно которому за базу принимаются количественные характеристики признака (явления) за годы, стоящие на границе отдельных существенно различающихся периодов времени (например, для России 1913, 1940, 1991 гг.). Реализация этого принципа требует соблюдения нескольких условий:
1. База должна быть типичной, а не исключительной, т.е. она должна соответствовать анализируемому периоду по структуре совокупности (явления), по форме развития (интенсивное или экстенсивное). Типичная база предполагает наличие четкой характеристики внешнего фона (внешних признаков).
2. База должна быть напряженной (жесткой). Это значит, что база должна максимально использовать условия коммерческой деятельности и требования расширенного воспроизводства.
3. Из второго условия вытекает, что база должна выбираться изолированно для явлений макроуровня и для уровня ХС.
Относительные величины динамики - это темпы роста. Если анализ предполагает расчет последних за три или более моментов времени, то темпы роста можно рассчитать двумя способами: базисным и цепным. Базисный темп роста имеет постоянную базу, в качестве которой может приниматься внутренняя и внешняя (изолированная) база. В свою очередь, внутренней базой может быть момент, смежный с изучаемым периодом, начальный момент изучаемого периода и специально выделенный внутренний момент времени в пределах изучаемого периода. Цепные темпы роста предполагают одну базу - смежную.
Относительные величины выполнения плана и планового задания представляют собой отношение фактического значения признака к его плановому заданию. Иначе говоря, они отражают степень выполнения плана по известному показателю за изучаемый период времени. Такими показателями являются количественные признаки в объемном измерении (объем производства, объем реализации, балансовая стоимость основных средств, фонд оплаты труда и т.д.). План для качественных показателей (роста производительности труда, роста рентабельности, снижения себестоимости) может быть задан и в относительных величинах. Такая формулировка плана называется плановым заданием.
Относительные величины выполнения плана находятся простым сопоставлением отчетных данных с плановыми.
Расчет относительных величин выполнения планового задания предполагает выполнение дополнительного расчета для определения базового показателя, который находится сопоставлением плана будущего периода с фактическим уровнем отчетного периода. Пусть, например, фактическая стоимость геолого-разведочных работ (ГРР) по партии составляет 4 млрд руб. В планируемом году предполагается снизить этот показатель до 3,9 млрд руб. Относительная величина выполнения планового задания 3,9: 4 100 = 97,5 %. Допустим, что фактическая стоимость работ в плановом году составила 3,87 млрд руб. Чтобы рассчитать относительную величину выполнения планового задания, необходимо прежде найти относительную величину изменения стоимости ГРР в плановом году по отношению к ее плановому уровню: 3,87: 3,9 100 = 99,5 %, а затем вычислить искомый показатель: 99,5: 97,5 100 = 102 %.
Во избежание повторного счета и сопровождающих его ошибок следует помнить следующее: относительная величина выполнения плана равна отношению относительной величины динамики к относительной величине выполнения планового задания.
Относительные величины пространственного сравнения получаются в результате сопоставления одноименных уровней показателей, относящихся к различным объектам, взятых за один и тот же период времени.
Подобные документы
Статистическое наблюдение. Понятие и содержание статистической сводки. Группировка – основа статистической сводки. Статистические ряды распределения. Осуществление конкретной аналитической группировки. Табличное представление статистических данных.
курсовая работа [172,8 K], добавлен 22.12.2010Предмет и метод статистики. Группировка и ряд распределения. Абсолютные, относительные, средние величины, показатели вариации. Выборочное наблюдение, ряды динамики. Основы корреляционного и регрессионного анализа. Статистика населения и рынка труда.
методичка [2,2 M], добавлен 16.02.2011Систематизация материалов статистического наблюдения. Понятие статистической сводки как сводной характеристики объекта исследования. Статистические группировки, их виды. Принципы выбора группированного признака. Статистические таблицы и ряд распределения.
реферат [196,8 K], добавлен 04.10.2016Рассмотрение процесса ревизии в бухгалтерии предприятия налоговыми органами с точки зрения статистического наблюдения. Выбор из исходных данных абсолютной статистической величины. Представление статистических данных. Средние величины. Показатели вариации.
контрольная работа [139,5 K], добавлен 28.05.2015Предмет и метод статистики. Сущность и основные аспекты статистического наблюдения. Ряды распределения. Статистические таблицы. Абсолютные величины. Показатели вариации. Понятие о статистических рядах динамики. Сопоставимость в рядах динамики.
шпаргалка [31,9 K], добавлен 26.01.2009Сводка и группировка материалов статистического наблюдения. Абсолютные, относительные и средние величины, показатели вариации. Ряды динамики, индексный анализ. Проведение корреляционно-регрессионного анализа таблиц о сборе урожая и внесении удобрений.
курсовая работа [667,1 K], добавлен 14.05.2013Основные понятия статистики. Организация статистического наблюдения. Ряды распределения, табличный метод представления данных. Статистическая сводка и группировка. Объекты уголовно-правовой, гражданско-правовой и административно-правовой статистики.
реферат [24,7 K], добавлен 29.03.2013Предмет и метод статистической науки. Методология наблюдения, статистическая сводка, группировка, таблицы и графики, показатели и средние величины. Показатели вариации, выборочное наблюдение. Корреляционно-регрессионный анализ. Экономические индексы.
лекция [1,2 M], добавлен 02.01.2014Ряды распределения, их построение по количественному или по атрибутивному признаку. Выборочное метод наблюдения при сборе информации в условиях развитой рыночной экономики. Статистические методы изучения взаимосвязей социально-экономических явлений.
реферат [66,2 K], добавлен 03.02.2010Общая характеристика органов пенсионного обеспечения, организация работы органов Пенсионного фонда Российской Федерации. Статистические показатели и их расчет: средние величины, показатели вариации, ряды динамики, индексы, трендовый анализ, группировка.
курсовая работа [256,8 K], добавлен 15.06.2010