Средние величины

Средние величины в экономическом анализе. Общее понятие о степенных и структурных средних. Свойства средней арифметической величины. Расчеты, необходимые для нахождения параметров регрессии. Линейный коэффициент корреляции. Определение медианы и моды.

Рубрика Экономика и экономическая теория
Вид курсовая работа
Язык русский
Дата добавления 12.03.2013
Размер файла 165,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

В данной курсовой работе рассмотрена тема изучения метода средних величин. В них отображаются основные показатели, которые характеризуют общественные явления, к примеру, товарооборот, заработанная плата, товарные запасы, цены, рождаемость. Характеризуются средними величинами и качественные показатели коммерческой деятельности: прибыль, издержки обращения, рентабельность и т.п. Верное понимания сути средней посредством единичного и случайного позволяет выявить необходимое и общее, а также извлечь тенденцию закономерностей социального и экономического развития. Метод средних величин свое применение находит при статистических исследованиях в любой сфере.

В теоретическом разделе изучим виды средних величин, а именно: средняя арифметическая, гармоническая, геометрическая, квадратическая, кубическая, а также структурные средние величины - в экономическом анализе и условия их использования.

В практической части представлены задания на нахождение средних величин, на примере данных задач будут показаны разные способы расчета средних величин, а также их использование в экономическом анализе.

1. Средние величины в экономическом анализе

Как известно статистика исследует массовые социально-экономические явления. Любое из данных явлений может иметь разное количественное выражение одного какого-либо признака. К примеру, зарплата одной какой-либо профессии сотрудников или цены на рынке на какую-либо продукцию и т.д. Средние величины отражают качественные показатели коммерческой деятельности: прибыль, издержки обращения, рентабельность и т.п.

С целью изучения определенной совокупности по варьирующим (изменяющимся количественно) признакам использует статистика средние величины.

Средней величиной называют обобщающий показатель, который характеризует типичный уровень явления в определенных условиях места и времени, который отражает величину варьирующего признака в ходе расчета на 1 ед. качественно однородной совокупности. Число показателей, вычисленных в виде средних величин, и используемых на практике достаточно велико.

Основное свойство средней величины состоит в том, что средняя величина представляет значение конкретного признака во всей совокупности 1-им числом, независимо от количественных различий его у отдельных единиц совокупности, а также выражает то общее, что всем единицам анализируемой совокупности присуще. Итак, через характеристику единицы совокупности средняя величина характеризует всю совокупность в общем.

Они связаны с законом больших чисел. Сущность данной связи заключается в том, что случайные отклонения индивидуальных величин при осреднении по закону больших чисел взаимопогашаются и в средней выявляется главная тенденция развития.

Средние величины могут сравнивать показатели, которые относятся к совокупностям с разной численностью единиц. Основным условием научного использования средних величин в оценке общественных явлений является однородная совокупность, для которой рассчитывается средняя величина. Одинаковая по технике вычисления и форме средняя величина при условии неоднородной совокупности является фиктивной, а для однородной совокупности она соответствует действительности.

Определяется качественная однородность совокупности за счет всестороннего теоретического анализа сущности какого-либо явления. К примеру, в расчете средней урожайности необходимо, чтобы исходные данные относились к однородной культуре (то есть средняя урожайность пшеницы) или группе культур (к примеру, средняя урожайность зерновых). Невозможно рассчитывать среднюю величину для разнородных культур.

Итак, главными свойствами средней являются:

- Наличие устойчивости - это позволяет извлекать закономерности развития явлений.

- Помогает охарактеризовать развитие уровня явления относительно времени.

- Помогает извлекать и охарактеризовать связь между двумя и несколькими явлениями.

Фактор, по которому проводится осреднение, называют усредняемым признаком. А его величина у каждой единицы совокупности называют ее индивидуальным значением.

То значение признака, которое встречается у отдельных единиц или групп единиц и не повторяется, называется его вариантом.

Средняя может принимать значения такие, которые не присущи ни одному из составляющей совокупности. Также на практике очень часто средняя величина выражается для дискретного признака как для непрерывного. К примеру, среднее число родившихся на каждую 1000 населения в регионе: имеются в регионе населенные пункты, где в каждом складывается свой уровень рождаемости. Для расчета средней рождаемости по региону надо численность родившихся всех младенцев соотнести с численностью населения, а полученный результат умножить на 1000.

Итог расчета средней величины по этому показателю может выражаться и в дробях, даже несмотря на то, что число родившихся - это целое число.

Средняя является равнодействующей всех факторов, которые оказывают влияние на исследуемое явление. Другими словами, при их расчете взаимопогашаются влияние случайных факторов, а далее возможно определение закономерности, которая присуще изучаемому явлению.

Значение метода средних величин состоит в возможности перехода от единичного к общему, от случайного к закономерному, существование средних величин является категорией объективной действительности.

Таким образом, к расчету средней предъявляются следующие основные требования:

- Их нужно рассчитывать таким образом, чтобы средняя величина погашала то, что мешает извлечению характерных черт и закономерностей в развитии явления, а не затушевывала развитие.

- Она может быть рассчитана только для однородной совокупности. Средняя величина, которая была рассчитана для неоднородной совокупности, называется огульной.

Одинаковые по технике вычисления и форме средние величины в одних случаях могут быть огульными, а в иных - общими в зависимости от того, с какой целью их интерпретируют.

Не стоит забывать, что средняя величина дает всегда обобщенную характеристику только по одному признаку. Каждая же единица совокупности имеет много признаков. Поэтому необходимо рассчитывать систему средних, чтобы охарактеризовать явление со всех сторон.

Расчет средних величин производится по правилам, разработанные математической статистикой.

Приемы в математике, которые используются в разных разделах статистики, связаны непосредственно с расчетом средних величин.

В общественных явлениях средние величины относительно постоянны, другими словами, в течение обозначенного промежутка времени однотипные явления отражаются примерно одинаковыми средними.

Важным условием расчета средних величин для изучаемой совокупности является качественная ее однородность. Допустим, отдельные составляющие совокупности, в ходе подверженности влиянию какого-либо случайного фактора, имеют очень большие (малые) размеры изучаемого признака, которые существенно отличаются от остальных. Данные элементы повлияют на размер средней величины для этой совокупности, так что средняя величина не будет выражать наиболее характерную величину признака для совокупности.

Средняя величина является обобщающей статистической характеристикой, в которой получает количественное выражение типичный уровень признака, обладающей членами исследуемой совокупности. Однако одной средней нельзя охарактеризовать все черты распределения статистики. Существуют совпадения средних арифметических величин при разном распределении.

Показатели вариации используются с целью характеристики и упорядочения совокупностей статистики. Вариацией называют различие в величинах определенного признака у разных единиц совокупности в один и тот же период времени. Вариация помогает понять сущность рассматриваемого явления. Относятся к показателям вариации размах вариации, дисперсия, среднее линейное отклонение, среднее квадратическое отклонение, а также коэффициент вариации.

Если изучаемое явление не является однородным, тогда его разбивают на группы, которые содержат однородные элементы. Для данного явления рассчитываются в первую очередь средние по группам, они выражают более типичную величину явления в каждой группе. Далее для всех элементов рассчитывается общая средняя величина, которая характеризует явление в целом. Рассчитывается она как средняя из групповых средних, взвешенных по числу элементов совокупности, которые включены в каждую группу.

Однако на практике безусловное исполнение этого условия повлекло за собой бы ограничение возможностей статистического анализа. Так что средние величины часто рассчитываются по неоднородным явлениям.

Еще одним основным условием использования средних величин в статистическом анализе является достаточное число единиц в совокупности, по которой производят расчет средних значений признака. Достаточность изучаемых единиц обеспечивается корректным определением границ исследуемой совокупности. Такое условие становится решающим в случае использования выборочного наблюдения, когда важно обеспечить репрезентативность выборки.

Определение минимального и максимального значения признака в рассматриваемой совокупности является также условием использования средней величины в статистическом анализе. Если существуют большие отклонения между крайними значениями и средней, то важно проверить принадлежность экстремумов к изучаемой совокупности. Если сильная изменчивость признака вызвана кратковременными и случайными факторами, тогда возможно, что крайние значения не характерны для совокупности. А значит, их необходимо исключить из анализа, поскольку они оказывают влияние на среднюю.

2. Виды средних величин

Средние величины делятся на два больших класса: степенные средние и структурные средние

Степенные средние:

Арифметическая

Гармоническая

Геометрическая

Квадратическая

Структурные средние:

Мода

Медиана

Выбор формы средней величины зависит от исходной базы расчета средней и от имеющейся экономической информации для ее расчета.

Исходной базой расчета и ориентиром правильности выбора формы средней величины являются экономические соотношения, выражающие смысл средних величин и взаимосвязь между показателями.

Расчет некоторых средних величин:

Средняя заработная плата 1 работника = Фонд заработной платы / Число работников

Средняя цена 1 продукции = Стоимость производства / Количество единиц продукции

Средняя себестоимость 1 изделия = Стоимость производства / Количество единиц продукции

Средняя урожайность = Валовый сбор / посевная площадь

Средняя производительность труда = объем продукции, работ, услуг / Отработанное время

Средняя трудоемкость = отработанное время / объем продукции, работ, услуг

Средняя фондоемкость = Средняя стоимость основных фондов / объем продукции, работ и услуг

Средняя фондоотдача = объем продукции, работ и услуг / средняя стоимость основных фондов

Средняя фондовооруженность = средняя величина основных производственных фондов / среднесписочная численность производственного персонала

Средний процент брака = (стоимость бракованной продукции / Стоимость всей произведенной продукции) * 100%

Перечисленные виды средних величин можно объединить общей формулой (среднее значение исследуемого явления):

m - показатель степени средней величины;

х - текущее значение осредняемого признака;

n - число признаков.

В зависимости от значения показателя степени m различают следующие виды степенных средних величин, если:

m = -1 - средняя гармоническая;

m = 0 - средняя геометрическая;

m = 1 - средняя арифметическая;

m = 2 - средняя квадратичная.

В экономике используется большое количество показателей, вычисляемых в виде средних величин. К примеру, интегральным показателем доходов работающих акционерного общества (АО) служит средний доход одного рабочего, который определяется отношением суммарного фонда заработной платы и выплат социального характера за определенный период (год, квартал, месяц) к итоговой численности рабочих АО.

Для рабочих с одинаковым уровнем доходов, например, сотрудников бюджетной сферы и пенсионеров по старости можно определить доли расходов на покупку продуктов питания. Так можно расчитать среднюю продолжительность рабочего дня, средний тарифный разряд рабочих, средний уровень производительности труда и т.д.

Правило мажорантности средних: чем выше показатель степени m, тем больше величина средней.

Средняя арифметическая величина обладает следующими свойствами:

Сумма отклонений индивидуальных значений признака от его среднего значения равна нулю.

Если все значения признака (х) увеличить (уменьшить) в одно и то же число К раз, то средняя увеличится (уменьшится) в К раз.

Если все значения признака (x) увеличить (уменьшить) на одно и то же число A, то средняя увеличится (уменьшится) на это же число А.

Если все значения весов (f) увеличить или уменьшить в одно и то же число раз, то средняя не изменится. 

Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа. Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменную сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной. 

Одновременное использование некоторых свойств позволяют упростить расчет средней арифметической: можно из всех значений признака вычесть постоянную величину А, разности сократить на общий множитель K, а все веса f разделить на одно и то же число и, по измененным данным, рассчитать среднюю. Затем, если полученное значение средней умножить на K, а к произведению прибавить А, то получим искомое значение средней арифметической по формуле:

Полученная, таким образом, преобразованная средняя, называется моментом первого порядка, а вышеизложенный способ расчета средней - способом моментов, или отсчетом от условного нуля.

Если при группировке значения осредняемого признака заданы интервалами, то при расчете средней арифметической величины, в качестве значения признака в группах, принимают середины этих интервалов, то есть исходят из предположения о равномерном распределении единиц совокупности по интервалу значений признака. Для открытых интервалов в первой и последней группе, если таковые есть, значения признака необходимо определять экспертным путем, исходя из сущности свойств признака и совокупности.

При отсутствии возможности экспертной оценки, значения признака в открытых интервалах для нахождения недостающей границы открытого интервала, применяют размах (разность между значениями конца и начала интервала) соседнего интервала (принцип «соседа»). Иными словами - ширину (шаг) открытого интервала определяют по величине рядом стоящего интервала.

3. Практическое применение средних величин

Средние величины используются для нахождения уравнения регрессии.

Исходные данные показателей x и y, а также промежуточные расчеты для нахождения коэффициентов уравнения линейной регрессии представлены в таблице 1.

Таблица 1 - Расчеты, необходимые для нахождения параметров регрессии

Надой молока на 1 корову (Y)

Продолжительность вегетативного периода(Х)

X*Y

X*X

Y*Y

1

3627

7

25389

49

13155129

2

3866

7

27062

49

14945956

3

3371

7

23597

49

11363641

4

4212

7

29484

49

17740944

5

4173

5

20865

25

17413929

6

3597

7

25179

49

12938409

7

3856

5

19280

25

14868736

8

4240

5

21200

25

17977600

9

3766

7

26362

49

14182756

10

2522

7

17654

49

6360484

11

3233

7

22631

49

10452289

12

3401

7

23807

49

11566801

13

3293

7

23051

49

10843849

14

3104

7

21728

49

9634816

15

3478

7

24346

49

12096484

16

4208

5,7

23985,6

32,49

17707264

17

4306

5

21530

25

18541636

18

3414

4,7

16045,8

22,09

11655396

19

2835

3,3

9355,5

10,89

8037225

20

3520

6

21120

36

12390400

21

2344

5

11720

25

5494336

22

2118

5

10590

25

4485924

23

1315

5

6575

25

1729225

24

2696

5

13480

25

7268416

25

3173

5

15865

25

10067929

26

1510

5

7550

25

2280100

27

3716

4,5

16722

20,25

13808656

28

3264

5

16320

25

10653696

29

3722

5

18610

25

13853284

30

3022

5

15110

25

9132484

31

3388

5

16940

25

11478544

32

4735

5

23675

25

22420225

33

1468

3,9

5725,2

15,21

2155024

34

2810

6

16860

36

7896100

35

2752

7

19264

49

7573504

36

2743

5,3

14537,9

28,09

7524049

37

3506

5

17530

25

12292036

38

1788

3,7

6615,6

13,69

3196944

39

4032

6,3

25401,6

39,69

16257024

40

2465

7

17255

49

6076225

41

2544

1,7

4324,8

2,89

6471936

Сумма

131133

229,1

744343

1343,29

445989405

Формула уравнения регрессии:

Найдем коэффициент регрессии a1

Линейное уравнение регрессии: у = 183,7241х + 2171,751

2) Прежде, чем построить эмпирическую и теоретическую линии зависимости у от х, построим таблицу значений.

Таблица 2 - Значения теоретической и эмпирической функций

Продолжительность вегетативного периода(Х)

Надой молока на 1 корову (Y)

Yтеор

1

7

3627

3457,82

2

7

3866

3457,82

3

7

3371

3457,82

4

7

4212

3457,82

5

5

4173

3090,372

6

7

3597

3457,82

7

5

3856

3090,372

8

5

4240

3090,372

9

7

3766

3457,82

10

7

2522

3457,82

11

7

3233

3457,82

12

7

3401

3457,82

13

7

3293

3457,82

14

7

3104

3457,82

15

7

3478

3457,82

16

5,7

4208

3218,979

17

5

4306

3090,372

18

4,7

3414

3035,255

19

3,3

2835

2778,041

20

6

3520

3274,096

21

5

2344

3090,372

22

5

2118

3090,372

23

5

1315

3090,372

24

5

2696

3090,372

25

5

3173

3090,372

26

5

1510

3090,372

27

4,5

3716

2998,51

28

5

3264

3090,372

29

5

3722

3090,372

30

5

3022

3090,372

31

5

3388

3090,372

32

5

4735

3090,372

33

3,9

1468

2888,275

34

6

2810

3274,096

35

7

2752

3457,82

36

5,3

2743

3145,489

37

5

3506

3090,372

38

3,7

1788

2851,531

39

6,3

4032

3329,213

40

7

2465

3457,82

41

1,7

2544

2484,082

Точки линейной регрессии и эмпирические значения представлены на графике ниже (рис. 1).

Рисунок 1 - Эмпирические и теоретические значения

3) Линейный коэффициент корреляции:

Связь между признаками прямая, несущественная.

4) Коэффициент детерминации:

R2 = (0,28*0,28)*100% = 7,84%

Коэффициент алиенации: А= 0,96

5) Рассчитаем ошибку коэффициента корреляции и достоверность коэффициента.

Проверим значимость r с помощью критерия Стьюдента при уровне значимости а=0,05

6) Коэффициент Спирмэна будет невозможно правильно сравнить с табличным значением, поскольку объем выборки больше 40.

7) Коэффициент корреляции знаков Ферхена

Таблица 3 - Число С, Н

Надой молока на 1 корову (Y)

Продолжительность вегетативного периода(Х)

Откл.Y

Откл.Х

 С/Н

1

3627

7

+

+

1

2

3866

7

+

+

1

3

3371

7

+

+

1

4

4212

7

+

+

1

5

4173

5

+

-

0

6

3597

7

+

+

1

7

3856

5

+

-

0

8

4240

5

+

-

0

9

3766

7

+

+

1

10

2522

7

-

+

0

11

3233

7

+

+

1

12

3401

7

+

+

1

13

3293

7

+

+

1

14

3104

7

-

+

0

15

3478

7

+

+

1

16

4208

5,7

+

+

1

17

4306

5

+

-

0

18

3414

4,7

+

-

0

19

2835

3,3

-

-

1

20

3520

6

+

+

1

21

2344

5

-

-

1

22

2118

5

-

-

1

23

1315

5

-

-

1

24

2696

5

-

-

1

25

3173

5

-

-

1

26

1510

5

-

-

1

27

3716

4,5

+

-

0

28

3264

5

+

-

0

29

3722

5

+

-

0

30

3022

5

-

-

1

31

3388

5

+

-

0

32

4735

5

+

-

0

33

1468

3,9

-

-

1

34

2810

6

-

+

0

35

2752

7

-

+

0

36

2743

5,3

-

-

1

37

3506

5

+

-

0

38

1788

3,7

-

-

1

39

4032

6,3

+

+

1

40

2465

7

-

+

0

41

2544

1,7

+

-

0

Сред.

3198,366

5,587805

Сумма С

24

С=24; Н=41-24 = 17

Кф = (24-17)/41 = 0,17<0,3 => связь несущественная

8) Коэффициент корреляции показывает, что связь между продолжительностью вегетативного периода и надоем молока на 1 корову прямая, но несущественная. Коэффициент детерминации намного меньше 50%, следовательно, зависимость между двумя признаками слабая. По всем способам проверки значимости коэффициента детерминации было выяснено, что коэффициент линейной корреляции незначим.

Модой называется значение признака (варианта), чаще всего встречающееся в изучаемой совокупности. В дискретном ряду распределения модой будет варианта с наибольшей частотой.

Например: Распределение проданной женской обуви по размерам характеризуется следующим образом:

Таблица 4 - Проданная женская обувь по размерам

Размер обуви

34

35

36

37

38

39

40

41

Количество проданных пар

8

19

34

108

72

51

6

2

В этом ряду распределения модой является 37 размер, т.е. Мо = 37.

Для интервального ряда распределения мода определяется по формуле:

где ХMo - нижняя граница модального интервала;

hMo - величина модального интервала;

fMo - частота модального интервала;

fMo-1 и fMo+1 - частота интервала соответственно

предшествующего модальному и следующего за ним.

Например: Распределение рабочих по стажу работы характеризуется следующими данными.

Таблица 5

Стаж работы, лет

до 2

2-4

4-6

6-8

8-10

10 и более

Число рабочих, чел.

4

23

20

35

11

7

Определить моду интервального ряда распределения.

Мода интервального ряда составляет:

Мо = 6+2х(35-20)/(35-20+35-11) = 6,77 года.

Мода всегда бывает несколько неопределённой, т.к. она зависит от величины групп и точного положения границ групп. Мода широко применяется в коммерческой практике при изучении покупательского спроса, при регистрации цен и т.п.

Медианой в статистике называется варианта, расположенная в середине упорядоченного ряда данных, и которая делит статистическую совокупность на две равные части так, что у одной половины значения меньше медианы, а у другой половины - больше её. Для определения медианы необходимо построить ранжированный ряд, т.е. ряд в порядке возрастания или убывания индивидуальных значений признака.

В дискретном упорядоченном ряду с нечётным числом членов медианой будет варианта, расположенная в центре ряда.

Например: Стаж пяти рабочих составил 2, 4, 7, 9 и 10 лет. В таком ряду медиана-7 лет, т.е. Ме=7 лет

Если дискретный упорядоченный ряд состоит из чётного числа членов, то медианой будет средняя арифметическая из двух смежных вариант, стоящих в центре ряда.

Например: Стаж работы шести рабочих составил 1, 3, 4, 5, 10 и 11лет. В этом ряду имеются две варианты, стоящие в центре ряда. Это варианты 4 и 5. Средняя арифметическая из этих значений и будет медианой ряда:

Ме = (4+5)/2 = 4,5 года

Чтобы определить медиану для сгруппированных данных, необходимо считать накопленные частоты.

Например: По имеющимся данным определим медиану размера обуви

Таблица 6

Размер обуви

Количество проданных пар

Сумма накопленных частот

34

8

8

35

19

8+19=27

36

34

27+34=61

37

108

61+108=169

38

72

-

39

51

-

40

6

-

41

2

-

Итого

300

 

средний величина медиана мода

Для определения медианы надо подсчитать сумму накопленных частот ряда. Наращивание итога продолжается до получения накопленной суммы частот, превышающей половину суммы частот ряда. В нашем примере сумма частот составила 300, её половина - 150. Накопленная сумма частот получилась равной 169. Варианта, соответствующая этой сумме, т.е. 37 и есть медиана ряда.

Если же сумма накопленных частот против одной из вариант равна точно половине суммы частот ряда, то медиана определяется как средняя арифметическая этой варианты и последующей.

Например: По имеющимся данным определим медиану заработной платы рабочих

Таблица 7

Месячная заработная плата, тыс.руб.

Число рабочих, чел.

Сумма накопленных частот

14,0

2

2

14,2

6

2+6=8

16,0

12

8+12=20

16,8

16

-

18,0

4

-

Итого:

40

-

Медиана будет равна:

Ме = (16,0+16,8)/2 = 16,4 тыс. руб.

Медиана интервального вариационного ряда распределения определяется по формуле:

Где ХМе - нижняя граница медианного интервала;

hMe - величина медианного интервала;

?f - сумма частот ряда;

fМе - частота медианного интервала;

Например: По имеющимся данным о распределении предприятий по численности промышленно - производственного персонала рассчитать медиану в интервальном вариационном ряду

Таблица 8

Группы предприятий по численности ППП, чел.

Число предприятий

Сумма накопленных частот

100-200

1

1

200-300

3

1+3=4

300-400

7

4+7=11

400-500

30

11+30=41

500-600

19

-

600-700

15

-

700-800

5

 

Итого:

80

 

Определим, прежде всего, медианный интервал. В данном примере сумма накопленных частот, превышающих половину суммы всех значений ряда, соответствует интервалу 400-500.Это и есть медианный интервал, т.е. интервал, в котором находится медиана ряда. Определим её значение:

Ме = 400+100х(80/2 -11)/30 = 400+96,66 = 496,66 чел.

Если же сумма накопленных частот против одного из интервалов равна точно половине суммы частот ряда, то медиана определяется по формуле:

где n - число единиц в совокупности.

Например: По имеющимся данным о распределении предприятий по численности промышленно - производственного персонала рассчитать медиану в интервальном вариационном ряду

Таблица 9

Группы предприятий по численности ППП, чел.

Число предприятий

Сумма накопленных частот

100-200

1

1

200-300

3

1+3=4

300-400

6

4+6=10

400-500

30

10+30=40

500-600

20

40+20=60

600-700

15

-

700-800

5

 

Итого:

80

 

Медиана рассчитывается следующим образом:

Ме = 500+100((80+1)/2 - 40)/20 = 502,5 чел.

Моду и медиану в интервальном ряду можно определить графически:

- моду в дискретных рядах - по полигону распределения;

- моду в интервальных рядах - по гистограмме распределения;

- медиану - по кумуляте.

Мода интервального ряда распределения определяется по гистограмме распределения определяют следующим образом.

Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника - с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения.

Рисунок 2 - Графическое определение моды по гистограмме

Медиана рассчитывается по кумуляте. Для её определения из точки на шкале накопленных частот (частостей), соответствующей 50%, проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Затем из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Рисунок 3 - Графическое определение медианы по кумуляте

Кроме моды и медианы в вариантных рядах могут быть определены и другие структурные характеристики - квантили.

Квантили предназначены для более глубокого изучения структуры ряда распределения.

Квантиль - это значение признака, занимающее определенное место в упорядоченной по данному признаку совокупности.

Предоставляют важную информацию о структуре вариационного ряда какого-либо признака. Вместе с медианой они делят вариационный ряд на 4 равные части. Квартилей две, их обозначают символами Q, верхняя и нижняя квартиль. 25% значений меньше, чем нижняя квартиль, 75% значений меньше, чем верхняя квартиль.

Для расчёта квартили надо поделить вариационный ряд медианой на две равные части, а затем в каждой из них найти медиану. К примеру, если выборка состоит из 6 элементов, тогда за начальную квартиль выборки принимается второй элемент, а за нижнюю квартиль пятый элемент.

Различают следующие виды квантилей:

- квартили - значения признака, делящие упорядоченную совокупность на четыре равные части;

- децили - значения признака, делящие упорядоченную совокупность на десять равных частей;

- перцентели - значения признака, делящие упорядоченную совокупность на сто равных частей.

Таким образом, для характеристики положения центра ряда распределения можно использовать 3 показателя: среднее значение признака, мода, медиана.

При выборе вида и формы конкретного показателя центра распределения необходимо исходить из следующих рекомендаций:

- для устойчивых социально-экономических процессов в качестве показателя центра используют среднюю арифметическую.

Такие процессы характеризуются симметричными распределениями, в которых

;

- для неустойчивых процессов положение центра распределения характеризуется с помощью Mo или Me.

Для асимметричных процессов предпочтительной характеристикой центра распределения является медиана, поскольку занимает положение между средней арифметической и модой.

Заключение

Подводя итог можно сказать, что область применения и использования средних величин в статистике довольно широка.

Средние величины - это обобщающие показатели, в которых находят выражения действие общих условий, закономерность изучаемого явления. Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного или выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Применение средних должно исходить из диалектического понимания категорий общего и индивидуального, массового и единичного.

Средняя отражает то общее, что складывается в каждом отдельном, единичном объекте, именно по - этому средняя имеет большое значение для выявления закономерностей присущих массовым общественным явлениям и незаметных в единичных явлениях.

Отклонение индивидуального от общего - проявление процесса развития. В отдельных единичных случаях могут быть заложены элементы нового, передового. В этом случае именно конкретных фактор, взятые на фоне средних величин, характеризует процесс развития. Поэтому в средней и отражается характерный, типичный, реальный уровень изучаемых явлений. Характеристики этих уровней и их изменений во времени и в пространстве являются одной из главных задач средних величин. Так, через средние проявляется, например, изменение благосостояния населения находит свое отражение в средних показателях заработной платы, доходов семьи в целом и по отдельным социальным группам, уровня потребления продуктов, товаров и услуг.

Средний показатель - это значение типичное (обычное, нормальное, сложившееся в целом), но таковым оно является потому, что формируется в нормальных, естественных условиях существования конкретного массового явления, рассматриваемого в целом. Средняя отображает объективное свойство явления. В действительности часто существует только отклоняющиеся явления, и средняя как явления может и не существовать, хотя понятие типичности явления и заимствуется из действительности.

Средняя величина является отражением значения изучаемого признака и, следовательно, измеряется в той же размеренности что и этот признак. Однако существуют различные способы приближенного определения уровня распределения численности для сравнения сводных признаков, непосредственно не сравнимых между собой, например средняя численность населения по отношению к территории (средняя плотность населения). В зависимости от того, какой именно фактор нужно элиминировать, будет находиться и содержание средней.

Сочетание общих средних с групповыми средними дает возможность ограничить качественно однородные совокупности. Расчленяя массу объектов, составляющих то или иное сложное явления, на внутренне однородные, но качественно различные группы, характеризуя каждую из групп своей средней, можно вскрыть резервы процесс нарождающегося нового качества. Например, распределения населения по доходу позволяет выявить формирование новых социальных групп.

Литература

1. Батурина И., Непринцева Е. Производство и предложение. Издержки и прибыль. \\ Жур. «Российский экономический журнал». № 3., 2009, с. 119.

2. Беложецкий И.А. Прибыль предприятия. // Жур. «Финансы», № 3, 2009, с. 40.

3. Булатова А.С. Экономика: Учебник. - М.: Изд-во БЕК. - 2008. - с. 632.

4. Вероятность. Примеры и задачи: А. Шень - Москва, МЦНМО, 2009 г.- 64 с.

5. Долан Э. Дж., Линдсей Д. Микроэкономика. - 2009. - с. 448.

6. Елисеева И.И. Общая теория статистики: учебник для вузов / И.И. Елисеева, М.М. Юзбашев; под ред. И.И. Елисеевой. - М.: Финансы и статистика, 2009. - 656 с.

7. Ефимова М.Р. Практикум по общей теории статистики: учебное пособие для вузов / М.Р. Ефимова и др. - М.: Финансы и статистика, 2007. - 368 с.

8. Зубко Н.М. Экономическая теория - Мн.: НТЦ АПИ. - 2008. - с. 311.

9. Емцов Р.Г., Лукин М.Ю. Микроэкономика: Учебник. - М.: МГУ им. М.В. Ломоносова, Изд-во ДИС. - 2009. - с. 320.

10. Эдвин Дж. Долан, Дейвид Е. Линдсей. Рынок: микроэкономическая модель. Пер. с англ. СПб.: 2010. - с. 224.

11. Хайман Д.Н. Современная микроэкономика: анализ и применение. Пер. с англ. М.: Финансы и статистика, 2008 г., т. 1 с. 116.

12. Кодацкий В.П. Проблемы формирования прибыли. // Жур. «Экономист», № 3, 2010, с. 49-60.

13. Общая теория статистики: Статистическая методология в изучении коммерческой деятельности: учебник для вузов / О.Э. Башина и др.; под ред. О.Э. Башиной, А.А. Спирина. - М.: Финансы и статистика, 2008. - 440 с.

14. Салин В.Н. Курс теории статистики для подготовки специалистов финансово-экономического профиля: учебник / В.Н. Салин, Э.Ю. Чурилова. - М.: Финансы и статистика, 2008. - 480 с.

15. Социально-экономическая статистика: практикум: учебное пособие / В.Н. Салин и др.; под ред. В.Н. Салина, Е.П. Шпаковской. - М.: Финансы и статистика, 2009. - 192 с.

16. Статистика: учебное пособие / А.В. Багат и др.; под ред. В.М. Симчеры. - М.: Финансы и статистика, 2010. - 368 с.

17. Статистика: учебник / И.И. Елисеева и др.; под ред. И.И. Елисеевой. - М.: Высшее образование, 2008. - 566 с.

18. Теория статистики: учебник для вузов / Р.А. Шмойлова и др.; под ред. Р.А. Шмойловой. - М.: Финансы и статистика, 2008. - 656 с.

19. Шмойлова Р.А. Практикум по теории статистики: учебное пособие для вузов / Р.А. Шмойлова и др.; под ред. Р.А. Шмойловой. - М.: Финансы и статистика, 2009. - 416 с.

Размещено на Allbest.ru


Подобные документы

  • Виды и применение абсолютных и относительных статистических величин. Сущность средней в статистике, виды и формы средних величин. Формулы и техника расчетов средней арифметической, средней гармонической, структурной средней. Расчет показателей вариации.

    лекция [985,6 K], добавлен 13.02.2011

  • Группы средних величин: степенные, структурные. Особенности применения средних величин, виды. Рассмотрение основных свойств средней арифметической. Характеристика структурных средних величин. Анализ примеров на основе реальных статистических данных.

    курсовая работа [230,6 K], добавлен 24.09.2012

  • Понятие абсолютной и относительной величины в статистике. Виды и взаимосвязи относительных величин. Средние величины и общие принципы их применения. Расчет средней через показатели структуры, по результатам группировки. Определение показателей вариации.

    лекция [29,1 K], добавлен 25.09.2011

  • Применение приема балансовых сопоставлений для определения соотношения между источниками ресурсов. Сопоставление статей баланса на отчетный период. Средние величины в экономическом анализе: среднеарифметические, геометрические, простые, средневзвешенные.

    контрольная работа [217,2 K], добавлен 06.08.2015

  • Расчет средних уровней производительности труда и показателей вариации. Понятие моды и медианы признака, построение полигона и оценка характера асимметрии. Методика выравнивания ряда динамики по прямой линии. Индивидуальные и агрегатные индексы объема.

    контрольная работа [682,4 K], добавлен 24.09.2012

  • Изучение сущности, видов, сферы применения средних величин. Характеристика степенных средних величин: средняя арифметическая; средняя гармоническая; средняя геометрическая; средняя квадратическая. Анализ структурных величин: медиана, мода, их расчет.

    курсовая работа [157,3 K], добавлен 16.01.2010

  • Технико-экономические показатели групп заводов; ряды распределения. Относительные величины интенсивности, цепные и базисные индексы товарооборота. Расчет средней величины, моды и медианы. Среднее квадратическое отклонение; дисперсия, коэффициент вариации.

    контрольная работа [88,8 K], добавлен 06.10.2013

  • Средние статистические величины и аналитическая группировка данных предприятия. Результаты расчета коэффициента Фехнера по цехам. Измерение степени тесноты связи в статистике с помощью показателя корреляции. Поля корреляции и уравнения регрессии для цеха.

    практическая работа [495,9 K], добавлен 26.11.2012

  • Определение фактического уровня безработицы. Макроэкономические показатели экономики России. Расчеты величины спроса после изменения цены. Определение величины бухгалтерской и экономической прибыли за год. Расчеты величины реального ВВП государства.

    контрольная работа [1,4 M], добавлен 15.01.2011

  • Условия применения средних величин в анализе. Виды средних величин. Средняя арифметическая. Средняя гармоническая. Средняя геометрическая. Средняя квадратическая и средняя кубическая. Структурные средние.

    курсовая работа [98,3 K], добавлен 25.03.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.