Система статистических показателей

Система статистических показателей: абсолютные, относительные, средние величины, порядок и область их применения. Особенности индексов количественных и качественных показателей. Приведение рядов динамики к одному основанию, расчет коэффициент опережения.

Рубрика Экономика и экономическая теория
Вид контрольная работа
Язык русский
Дата добавления 12.01.2012
Размер файла 220,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Теоретический вопрос №2

Система статистических показателей (абсолютные, относительные, средние величины, порядок и область их применения)

Статистическое исследование независимо от его масштабов и целей всегда завершается расчетом и анализом различных по виду и форме выражения статистических показателей.

Статистический показатель представляет собой количественную характеристику социально - экономических явлений и процессов в условиях качественной определенности. Качественная определенность показателя заключается в том, что он непосредственно связан с внутренним содержанием изучаемого явления или процесса, его сущностью.

Как правило, изучаемые статистикой процессы и явления достаточно сложны, и их сущность не может быть отражена посредством одного отдельного взятого показателя. В таких случаях используется система статистических показателей.

Система статистических показателей - это совокупность взаимосвязанных показателей, имеющая одноуровневую или многоуровневую структуру и нацеленная на решение конкретной статистической задачи. Так, например, сущность промышленного предприятия заключается в производстве какой - либо продукции на базе эффективного взаимодействия средств производства и трудовых ресурсов. Следовательно, для полной экономической характеристики функционирования предприятия необходимо использовать систему, включающую прежде всего такие показатели, как прибыль, рентабельность, численность промышленно-производственного персонала, производительность труда, фондовооруженность и др.

В отличие от признака, статистический показатель получается расчетным путем. Это может быть простой подсчет единиц совокупности, суммирование их значений признака, сравнения двух или нескольких величин или более сложные расчеты. Различают конкретный статистический показатель и показатель-категорию.

Конкретный статистический показатель характеризует размер, величину изучаемого явления или процесса в данном месте и в данное время (под привязкой к месту понимается отношение показателя к какой-либо территории или объекту). Так, если мы называем конкретную величину стоимости промышленно-производственных фондов, то обязательно должны указать, к какому предприятию или отрасли и какому моменту времени она относится. Однако в теоретических работах и на этапе проектирования статистического наблюдения (при построении системы статистических показателей, обосновании методики их расчета) также оперируют и абстрактными показателями или показателями - категориями.

Показатель-категория отражает сущность, общие отличительный свойства конкретных статистических показателей одного и того же вида без указания места, времени и числового значения. Например, показатели розничного товарооборота предприятий торговли и общественного питания в Москве и Санкт-Петербурге в 2000 и 2002гг. отличаются местом, временем и конкретными числовыми значениями, но имеют одну и ту же сущность (продажа товаров через розничную торговую сеть и сеть предприятий общественного питания), которая отражена в показатели - категории “розничный товарооборот предприятий торговли и общественного питания”.

Все статистические показатели по охвату единиц совокупности разделяются на индивидуальные и сводные, а по форме выражения - на абсолютные, относительные и средние.

Индивидуальные показатели характеризуют отдельный объект или отдельную единицу совокупности - предприятие, фирму, банк, домохозяйство и т.п. Примером индивидуальных абсолютных показателей может служить численность промышленно-производственного персонала предприятия, оборот торговой фирмы, совокупный доход домохозяйства.

На основе соотнесения двух индивидуальных показателей, характеризующих один и тот же объект или единицу, получают индивидуальный относительный показатель. В статистике рассчитываются и индивидуальные средние показатели, но только во временном измерении (среднегодовая численность персонала предприятия).

Сводные показатели, в отличие от индивидуальных, характеризуют группу единиц, представляющую собой часть статистической совокупности или всю совокупность в целом. Эти показатели, в свою очередь, подразделяются на объемные и расчетные.

Объемные показатели получают путем сложения значений признака отдельных единиц совокупности. Полученная величина, называемая объемом признака, может выступать в качестве объемного абсолютного показателя (например, стоимость основных фондов предприятий отрасли), а может сравниваться с другой объемной абсолютной величиной (например, с численностью промышленно-производственного персонала этих предприятий) или объемом совокупности (в данном примере - с числом предприятий). В последних двух случаях получают объемный относительный и объемный средний показатели (в наших примерах - фондовооруженность и средняя стоимость основных фондов).

Расчетные показатели, вычисляемые по различным формулам, служат для решения отдельных статистических задач анализа - измерения вариации, характеристики структурных сдвигов, оценки взаимосвязи и т.д. Они также делятся на абсолютные, относительные или средние. В эту группу входят индексы, коэффициенты тесноты связи, ошибки выборки и прочие показатели.

Охват единиц совокупности и форма выражения являются основными, но не единственными классификационными признаками статистических показателей. Важным классификационным признаком является также временной фактор. Социально-экономические процессы и явления находят свое отражение в статистических показателях либо по состоянию на определенный момент времени, как правило, на определенную дату, начало или конец месяца, года (численность населения, стоимость основных фондов, дебиторская задолженность), либо за определенный период - день, неделю, месяц, квартал, год (производство продукции, число заключенных браков, сумма страховых выплат). В первом случае показатели являются моментными, во втором - интервальными.

В зависимости от принадлежности к одному или двум объектам изучения различают однообъектные и межобъектные показатели. Если первые характеризуют только один объект, то вторые получают в результате сопоставления двух величин, относящихся к разным объектам (соотношение численности населения городов Екатеринбурга и Челябинска, соотношение детей дошкольного возраста и числа мест в детских дошкольных учреждениях и т.п.). Межобъектные показатели выражаются в форме относительных или средних величин.

С точки зрения пространственной определенности статистические показатели подразделяют на общетерриториальные, характеризующие изучаемый объект или явление в целом по стране, региональные и местные (локальные), относящиеся к какой-либо части территории или отдельному объекту.

Абсолютные статистические величины

Исходной, первичной формой выражения статистических показателей являются абсолютные величины. Абсолютные величины характеризуют размер явлений в мерах массы, площади, объема, протяженности, времени и т.д. Индивидуальные абсолютные показатели получаются, как правило, непосредственно в процессе наблюдения в результате замера, взвешивания, подсчета и оценки интересующего количественного признака. В некоторых случаях индивидуальные абсолютные показатели имеют разностный характер: разность между численностью зарегистрированных безработных в данном населенном пункте на конец и на начало года, разность между выручкой от реализации торгового предприятия и общей суммой затрат и т.п.

Сводные объемные абсолютные показатели, характеризующие объем признака или объем совокупности в целом как по изучаемому объекту, так и по какой-либо его части, получают в результате сводки и группировки индивидуальных значений.

Абсолютные статистические показатели всегда являются именованными числами. В зависимости от социально-экономической сущности исследуемых явлений, их физических свойств, они выражаются в натуральных, стоимостных или трудовых единицах измерения.

В международной практике используют такие натуральные единицы измерения, как тонны, килограммы, унции, квадратные, кубические и простые метры, мили, километры, галлоны, литры, штуки и т.д.

В группу натуральных также входят условно-натуральные измерители, используемые в тех случаях, когда какой-либо продукт имеет несколько разновидностей и общий объем можно определить только исходя из общего для всех разновидностей потребительского свойства. Так, различные виды органического топлива переводятся в условное топливо с теплотой сгорания 29,3 МДж/кг(700Ккал/кг); мыло разных сортов - в условное мыло с 40% -м содержанием жирных кислот; консервы различного объема - в условные консервные банки объемом 353,4 см3 и т.д.

Перевод в условные единицы измерения осуществляется на основе специальных коэффициентов, рассчитываемых как соотношение потребительских свойств отдельных разновидностей продукта к эталонному значению. Так, например, в апреле 1996г. в РФ было добыто 23,8 млн. тонн нефти. Зная теплоту сгорания нефти, равную 45 мДж/кг, рассчитаем коэффициент перевода: 45/29,3=1,536. С учетом данного коэффициента добытый объем нефти эквивалентен 36,6 млн. тонн условного топлива (23,8* 1,536).

В отдельных случаях для характеристики какого-либо явления одной единицы измерения недостаточно, и используется произведение двух единиц измерения. Например, показатели грузооборота и пассажирооборота, оцениваемые соответственно в тонно-километрах и пассажиро-километрах, производство электроэнергии в киловатт-часах и др.

В условиях рыночной экономики наибольшее значение и применение имеют стоимостные единицы измерения (рубль, доллар, марка и т.д.). Они позволяют получить денежную оценку любых социально-экономических явлений и процессов. Так, в системе национальных счетов одним из важнейших стоимостных показателей, характеризующих общий уровень развития экономики страны, является валовой внутренний продукт, который в России в 2000г. составил 7,1 трлн. руб. Однако, следует помнить, что в условиях высоких темпов инфляции показатели в денежной оценке становятся несопоставимыми. Это следует учитывать при анализе стоимостных показателей в динамике. Для достижения сопоставимости показатели необходимо пересчитывать в сопоставимые цены.

К трудовым единицам измерения, позволяющим учитывать как общие затраты труда на предприятии, так и трудоемкость отдельных операций технологического процесса, относятся человеко-дни и человеко-часы.

Относительные статистические величины

Относительный показатель представляет собой результат деления одного абсолютного показателя на другой и выражает соотношение между количественными характеристиками социально-экономических процессов и явлений. Поэтому по отношению к абсолютным показателям относительные показатели или показатели в форме относительных величин являются производными (вторичными). Без относительных показателей невозможно измерить интенсивность развития изучаемого явления во времени, оценить уровень развития одного явления на фоне других взаимосвязанных с ним явлений, осуществить пространственно-территориальные сравнения, в том числе и на международном уровне.

При расчете относительного показателя абсолютный показатель, находящийся в числителе получаемого отношения, называется текущим, или сравниваемым. Показатель же, с которым производится сравнение и который находится в знаменателе, называется основанием, или базой сравнения. Таким образом, рассчитываемый относительный показатель указывает, во сколько раз, сравниваемый абсолютный показатель больше базисного, или какую долю, он составляет от базисного показателя, или сколько единиц приходится на 1,100,1000 и т.д. единиц второго.

Относительные показатели могут выражаться в коэффициентах, процентах, промилле, продецимилле или быть именованными числами. Если база сравнения принимается за единицу, то относительный показатель выражается в коэффициентах, если база принимается за 100,1000 или 10 000, то относительный показатель соответственно выражается в процентах, промилле и продецимилле.

Проценты, как правило, используются в тех случаях, когда сравниваемый абсолютный показатель превосходит базисный не более чем в 2-3 раза. Проценты же свыше 200-300 обычно заменяются кратным соотношением, коэффициентом. Так, вместо 470% говорят, что сравниваемый показатель превосходит базисный в 4,7 раза.

Относительный показатель, полученный в результате соотнесения равноименных абсолютных показателей, в большинстве случаев должен быть именованным. Его наименование представляет собой сочетание наименований сравниваемого и базисного показателей (например, производство какой-либо продукции в соответствующих единицах измерения в расчете на душу населения).

Все используемые на практике относительные статистические показатели можно подразделить на следующие виды:

показатели динамики

показатели плана

показатели реализации плана

показатели структуры

показатели координации

показатели интенсивности и уровня экономического развития

показатели сравнения

Теоретический вопрос №5

Индексный анализ, область его применения

В статистической практике индексный метод имеет такое же широкое распространение, как и метод средних величин.

Индексами называют сравнительные относительные величины, которые характеризуют изменение сложных социально-экономических показателей (показатели, состоящие из несуммируемых элементов) во времени, в пространстве, по сравнению с планом.

Индекс - это результат сравнения двух одноименных показателей, при исчислении которого следует различать числитель индексного отношения (сравниваемый или отчетный уровень) и знаменатель индексного отношения (базисный уровень, с которым производится сравнение). Выбор базы зависит от цели исследования. Если изучается динамика, то за базисную величину может быть взят размер показателя в периоде, предшествующем отчетному. Если необходимо осуществить территориальное сравнение, то за базу можно принять данные другой территории. За базу сравнения могут приниматься плановые показатели, если необходимо использовать индексы как показатели выполнения плана.

Индексы формируют важнейшие экономические показатели национальной экономики и ее отдельных отраслей. Индексные показатели позволяют осуществить анализ результатов деятельности предприятий и организаций, выпускающих самую разнообразную продукцию или занимающихся различными видами деятельности. С помощью индексов можно проследить роль отдельных факторов при формировании важнейших экономических показателей, выявить основные резервы производства. Индексы широко используются в сопоставлении международных экономических показателей при определении уровня жизни, деловой активности, ценовой политики и т.д.

Существует два подхода в интерпретации возможностей индексных показателей: обобщающий (синтетический) и аналитический, которые в свою очередь определяются разными задачами.

Суть обобщающего подхода - в трактовке индекса как показателя среднего изменения уровня исследуемого явления. В этом случае основной задачей, решаемой с помощью индексных показателей, будет характеристика общего изменения многофакторного экономического показателя.

Аналитический подход рассматривает индекс как показатель изменения уровня результативной величины, на которую оказывает влияние величина, изучаемая с помощью индекса. Отсюда и иная задача, которая решается с помощью индексных показателей: выделить влияние одного из факторов в изменении многофакторного показателя.

От содержания изучаемых показателей, методологии расчета первичных показателей, целей и задач исследования зависят и способы построения индексов.

По степени охвата элементов явления индексы делят на индивидуальные и общие (сводные).

Индивидуальные индексы (i) - это индексы, которые характеризуют изменение только одного элемента совокупности.

Общий (сводный) индекс (I) характеризует изменение по всей совокупности элементов сложного явления. Если индексы охватывают только часть явления, то их называют групповыми. В зависимости от способа изучения общие индексы могут быть построены или как агрегатные (от лат. аggrega - присоединяю) индексы, или как средние взвешенные индексы (средние из индивидуальных).

Способ построения агрегатных индексов заключается в том, что при помощи так называемых соизмерителей можно выразить итоговые величины сложной совокупности в отчетном и базисном периодах, а затем первую сопоставить со второй.

В статистике имеют большое значение индексы переменного и фиксированного состава, которые используются при анализе динамики средних показателей.

Индексом переменного состава называют отношение двух средних уровней.

Индекс фиксированного состава есть средний из индивидуальных индексов. Он рассчитывается как отношение двух стандартизованных средних, где влияние изменения структурного фактора устранено, поэтому данный индекс называют еще индексом постоянного состава.

В зависимости от характера и содержания индексируемых величин различают индексы количественных (объемных) показателей и индексы качественных показателей.

Индексы количественных показателей

К индексам количественных (объемных) показателей относятся такие индексы, как индексы физического объема производства продукции, затрат на выпуск продукции, стоимости продукции, а также индексы показателей, размеры которых определяются абсолютными величинами. Используются различные виды индексов количественных показателей.

Индекс физического объема продукции (ФОП) отражает изменение выпуска продукции.

Индивидуальный индекс ФОП отражает изменение выпуска продукции одного вида и определяется по формуле

(10.1)

где q1 и q0 - количество продукции данного вида в натуральном выражении в текущем и базисном периодах.

Агрегатный индекс ФОП (предложен Э. Ласпейресом) отражает изменение выпуска всей совокупности продукции, где индексируемой величиной является количество продукции q, а соизмерителем - цена р:

(10.2)

где q1 и q0 - количество выработанных единиц отдельных видов продукции соответственно в отчетном и базисном периодах; p0 - цена единицы продукции (отдельного вида) в базисном периоде.

При вычислении индекса ФОП в качестве соизмерителей может выступать также себестоимость продукции или трудоемкость.

Средние взвешенные индексы ФОП используются в том случае, если известны индивидуальные индексы объема по отдельным видам продукции и стоимость отдельных видов продукции (или затраты) в базисном или отчетном периоде.

Средний взвешенный арифметический индекс ФОП определяется по формуле

(10.3)

где iq - индивидуальный индекс по каждому виду продукции; q0 p0 - стоимость продукции каждого вида в базисном периоде.

Средний взвешенный гармонический индекс ФОП

(10.4)

где q1 p1 - стоимость продукции каждого вида в текущем периоде.

Аналогично рассчитывается индекс затрат на выпуск продукции (ЗВП), который отражает изменение затрат на производство и может быть как индивидуальным, так и агрегатным.

Индивидуальный индекс ЗВП отражает изменение затрат на производство одного вида и определяется по формуле

(10.5)

где z1 и z0 - себестоимость единицы продукции искомого вида в текущем и базисном периодах; q1 z1 и q0 z0 - суммы затрат на выпуск продукции искомого вида в текущем и базисном периодах.

Агрегатный индекс ЗВП характеризует изменение общей суммы затрат на выпуск продукции за счет изменения количества выработанной продукции и ее себестоимости и определяется по формуле

(10.6)

где q1 z1 и q0 z0 - затраты на выпуск продукции каждого вида соответственно в отчетном и базисном периодах.

Рассмотрим построение индекса стоимости продукции (СП), который может определяться и как индивидуальный, и как агрегатный.

Индивидуальный индекс СП характеризует изменение стоимости продукции данного вида и имеет вид:

(10.7)

где p1 и p0 - цена единицы продукции данного вида в текущем и базисном периодах; q1 p1 и q0 p0 - стоимость продукции данного вида в текущем и базисном периодах.

Агрегатный индекс СП (товарооборота) характеризует изменение общей стоимости продукции за счет изменения количества продукции и цен и определяется по формуле

(10.8)

Индексы качественных показателей. Факторный анализ

Качественные показатели определяют уровень исследуемого итогового показателя и определяются путем соотношения итогового показателя и определенного количественного показателя (например, средняя заработная плата определяется путем соотношения фонда заработной платы и количества работников). К индексам качественных показателей относятся индексы цен, себестоимости, средней заработной платы, производительности труда.

Самым распространенным индексом в этой группе является индекс цен.

Индивидуальный индекс цен характеризует изменение цен по одному виду продукции и определяется по формуле

(10.9)

где p1 и p0 - цена за единицу продукции в текущем и базисном периодах.

Соответственно определяются индексы себестоимости и затрат рабочего времени по каждому виду продукции.

Агрегатный индекс цен определяет среднее изменение цены р по совокупности определенных видов продукции q.

Для характеристики среднего изменения цен на потребитель-ские товары используют индекс цен, предложенный Э. Ласпейресом (индекс Ласпейреса):

(10.10)

где q0 - потребительская корзина (базовый период); p0 и p1 - соответственно цены базисного и отчетного периодов.

Если количество набора продуктов принимается на уровне отчетного периода (q1 ), то в этом случае индекс цен именуется индексом Пааше:

(10.11)

Если известны индивидуальные индексы цен по отдельным видам продукции и стоимость отдельных видов продукции, то применяются средние взвешенные индексы цен (средний взвешенный арифметический и средний взвешенный гармонический индексы цен).

Формула среднего взвешенного арифметического индекса цен

(10.12)

где i - индивидуальный индекс по каждому виду продукции; p0 q0 - стоимость продукции каждого вида в базисном периоде.

Формула среднего взвешенного гармонического индекса цен

(10.13)

где p1 q1 - стоимость продукции каждого вида в текущем периоде.

В статистической практике очень широко используется агрегатный территориальный индекс цен, который может быть рассчитан по следующей формуле:

(10.14)

где pA pB - цена за единицу продукции каждого вида соответственно на территории А и В; qA - количество выработанной или реализованной продукции каждого вида по территории А (в натуральном выражении).

Из формулы видно, что в данном индексе в качестве фиксированного показателя (веса) принят объем продукции территории А. При расчете данного индекса в качестве веса можно принять также объем продукции территории В или суммарный объем продукции двух территорий.

Возможны два способа расчета индексов: цепной и базисный.

Цепные индексы получают путем сопоставления текущих уровней с предшествующим, при этом база сравнения постоянно меняется.

Базисные индексы получают путем сопоставления с тем уровнем периода, который был принят за базу сравнения.

В качестве примера можно привести цепные и базисные индексы цен.

Цепные индивидуальные индексы цен имеют следующий ряд расчета:

  ... . (10.15)

Базисные индивидуальные индексы цен:

  ... . (10.16)

Следует помнить, что произведение цепных индивидуальных индексов цен равно последнему базисному индексу:

(10.17)

Цепные агрегатные индексы цен:

  ... . (10.18)

Базисные агрегатные индексы цен:

  ... . (10.19)

Между индексами существует также взаимосвязь и взаимозависимость, как и между самими экономическими явлениями, что позволяет проводить факторный анализ. Благодаря индексному методу можно рассматривать все факторы независимо друг от друга, что дает возможность определить размер абсолютного изменения сложного явления за счет каждого фактора в отдельности.

Предположим, что результативный признак зависит от трех факторов и более. В этом случае результативный индекс примет вид

(10.20)

Изменение результативного индекса за счет каждого фактора может быть выражено следующим образом:

 

  (10.21)

Для выявления роли каждого фактора в отдельности индекс сложного показателя разлагают на частные (факторные) индексы, которые характеризуют роль каждого фактора. При этом используют два метода:

o метод обособленного изучения факторов;

o последовательно-цепной метод.

При первом методе сложный показатель берется с учетом изменения лишь того фактора, который взят в качестве исследуемого, все остальные остаются неизменными на уровне базисного периода.

Последовательно-цепной метод предполагает использование системы взаимосвязанных индексов, которая требует определенного расположения факторов. Как правило, на первом месте в цепи располагают качественный фактор. При определении влияния первого фактора все остальные сохраняются в числителе и знаменателе на уровне базисного периода, при определении второго факторного индекса первый фактор сохраняется на уровне базисного периода, а третий и все последующие - на уровне отчетного периода, при определении третьего факторного индекса первый и второй факторы сохраняются на уровне базисного периода, четвертый и все остальные - на уровне отчетного периода и т.д.

Практическое задание №1

Задание:

Имеются данные об экспорте продукции предприятия:

Вид продукции

Удельный вес продукции на экспорт, %

Стоимость продукции на экспорт, тыс. руб.

А

40,0

320

Б

32.0

425

Решение:

Практическое задание №2

Задание:

Имеются следующие данные о распределении населения Московской области по уровню среднемесячного дохода в 1995 г.

среднемесячный душевный доход, тыс.руб.

до 200

200-400

400-600

600-800

800-1000

свыше 1000

Численность населения, % к итогу

15,3

50,6

23,5

7,3

2,2

1,1

Определить: 1) Моду; 2)Медиану.

Решение:

среднемесячный душ. доход

Численность (f)

До 200

15,3

200-400

50,6

400-600

23,5

600-800

7,3

800-1000

2,2

Свыше 1000

1,1

15,3

65,9

89,4

96,7

98,9

100

Практическое задание №7

статистический показатель индекс динамика

Задание:

Производство автомобилей характеризуется данными тыс. штук:

годы

1999

2000

2001

2002

2003

грузовые

362

380

408

437

478

легковые

139

201

230

251

280

Приведите ряды динамики к одному основанию, определите коэффициент опережения, сделайте выводы.

Решение:

1999

2000

2001

2002

2003

100

105

112,7

120,7

132

100

144,6

165,5

180,6

201,4

Вывод: темп роста производства легковых авто в 1,5 раза выше, чем темп роста производства грузовых авто.

Практическое задание №11

Задание:

год

Размер прибыли, т.руб.

Абсолютный прирост цепной, тыс.руб.

Темп роста цепной, %

2000

456,7

2001

32,9

2002

108,7

2003

97,5

Заполните таблицу, определите среднегодовой уровень труда.

Решение:

год

Размер прибыли, т.руб.

Абсолютный прирост цепной, тыс.руб.

Темп роста цепной, %

2000

456,7

-

-

2001

32,9

107,2

2002

42,6

108,7

2003

-13,3

97,5

Абсолютный прирост цепной, тыс.руб. -

Темп роста цепной, % -

Практическое задание №13

Задание:

По группе семей имеются данные:

Доходы на 1 члена семьи, т.руб. (х)

2,3

3,6

5,4

6,3

7,4

Потребление молока в месяц, л. (у)

7

8

10

8

10

Уравнение корреляционной связи:

Определите следующие характеристики:

а) коэффициент корреляции

б) коэффициент детерминации

в) коэффициент чистой регрессии

г) коэффициент эластичности

Решение:

x

y

x2

y2

xy

2,3

7

5,29

49

16,1

3,6

8

12,96

64

28,8

5,4

10

29,16

100

54

6,3

8

39,69

64

50,4

7,4

10

54,76

100

74

Итого: 25

43

141,86

377

223,3

Средние значения:

Дисперсия:

Среднеквадратичное отклонение:

Коэффициент корреляции:

Связь между признаком у и фактором х сильная и прямая.

Уравнение регрессии:

Коэффициент эластичности k=a=0,49. Коэффициент чистой регрессии = 0,56.

Коэффициент детерминации:

Т.е. в 56% случаев изменения х приводит к изменению у. Другими словами - точность подбора уравнения регрессии - средняя.

Размещено на Allbest.ru


Подобные документы

  • Методология статистики. Задачи, этапы и методы статистического исследования. Взаимосвязь показателей деятельности предприятия. Система статистических показателей. Абсолютные и относительные величины. Корреляция, понятия и варианты ее зависимости.

    контрольная работа [92,5 K], добавлен 05.10.2010

  • Определение и классификация индексов, применение индексного метода в статистических исследованиях. Виды индексов количественных и качественных показателей, выбор базы и весов индексов. Индекс-дефлятор и методология расчёта индекса потребительских цен.

    презентация [203,3 K], добавлен 27.04.2013

  • Предмет и метод статистики, сводка и группировка, абсолютные и относительные величины. Определение показателей вариации и дисперсии. Понятие о выборочном наблюдении и его задачи. Классификация экономических индексов. Основы корреляционного анализа.

    контрольная работа [80,0 K], добавлен 05.06.2012

  • Виды и применение абсолютных и относительных статистических величин. Сущность средней в статистике, виды и формы средних величин. Формулы и техника расчетов средней арифметической, средней гармонической, структурной средней. Расчет показателей вариации.

    лекция [985,6 K], добавлен 13.02.2011

  • Понятие статистики, история ее развития. Организация статистики в Российской Федерации. Понятие о статистическом наблюдении. Виды экономических индексов. Виды статистических показателей. Абсолютные и относительные величины. Этапы построения группировки.

    лекция [92,0 K], добавлен 20.10.2010

  • Структурная и аналитическая группировка статистических наблюдений. Анализ динамики выполненных работ на предприятии с помощью расчета статистических показателей и средних характеристик. Анализ перевозок грузов с помощью расчета индексов сезонности.

    курсовая работа [647,1 K], добавлен 25.03.2014

  • Особенности расчета интенсивных, экстенсивных показателей заболеваний. Применение коэффициента достоверности различий при изучении изменения показателей функций внешнего дыхания у больных. Вычисление стандартизированных показателей заболеваемости.

    контрольная работа [52,5 K], добавлен 18.08.2009

  • Организационно-производственная характеристика строительства Орловской области. Расчет и анализ статистических показателей объема строительных работ (темп роста, прироста, средние показатели рядов динамики), математических функций при построении тренда.

    курсовая работа [446,1 K], добавлен 22.07.2011

  • Трудовые показатели как объект статистического изучения. Применение балансового метода в изучении трудовых показателей. Система статистических показателей трудовых и материальных ресурсов. Анализ результатов статистических компьютерных расчетов.

    курсовая работа [1,5 M], добавлен 15.01.2011

  • Понятие статистических рядов распределения и их виды: атрибутивные и вариационные. Графическое изображение статистических данных: расчет показателей вариации, моды и медианы. Анализ группы предприятий по признакам Товарооборот и Средние товарные запасы.

    курсовая работа [498,5 K], добавлен 09.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.