Эконометрические методы управления качеством и сертификации продукции

Основы статистического контроля качества продукции. Качество продукции и рыночная экономика. развитие статистических методов сертификации в России. Статистический контроль - это выборочный контроль на научной основе. Планы статистического контроля.

Рубрика Экономика и экономическая теория
Вид реферат
Язык русский
Дата добавления 08.01.2009
Размер файла 121,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Использование экономических показателей при выборе планов статистического (выборочного) контроля пропагандировалось давно, но делалось это в рамках парадигмы обязательности контроля. Здесь рассматривается более широкая система взглядов, согласно которой контроль качества продукции - лишь один из способов урегулирования взаимоотношений между поставщиками и потребителями.

В более широком плане речь идет об отказе от получения детальной информации, если она стоит слишком дорого, и переходе к использованию иных механизмов управления. Так, качественные методы химического анализа часто используют именно потому, что соответствующие количественные методы более трудоемки и дороги, но не намного полезнее с практической точки зрения. Пример из всем знакомой области: в средней школе знания учащихся контролируются еженедельно, в высшей же - один или несколько раз в семестр, однако разница с точки зрения эффективности управления процессом обучения невелика. Другой пример: как показано в статистике интервальных данных (см. главу 9), из-за погрешностей измерений нецелесообразно увеличивать их число сверх некоторого "рационального объема выборки", а для увеличения точности оценивания характеристик вероятностных распределений необходимо использовать более точные средства измерения. С учетом сказанного описываемый в настоящем пункте подход представляется менее необычным.

Оценка снизу необходимого объема выборки. Как известно, в теории статистического приемочного контроля качества продукции разработано много подходов к выбору планов контроля:

- на основе приемочного и браковочного уровней дефектности;

- исходя из предела среднего выходного уровня дефектности (при контроле с разбраковкой);

- с использованием экономических показателей, относящихся к предприятию (см., например, ГОСТ 24660-81);

- с использованием экономических показателей, относящихся к народному хозяйству в целом; и т.д. (см. предыдущий пункт).

Имеется обширная литература, посвященная обоснованию и сравнению этих подходов, разработке соответствующей математической теории и программного обеспечения. Не углубляясь в эти проблемы, сосредоточим внимание на одном парадоксальном явлении: при повышении качества выпускаемой продукции теория рекомендует увеличивать объем контроля!

Действительно, при повышении качества выпускаемой продукции требования потребителя, очевидно, обеспечиваются все лучше. Следовательно, должен уменьшаться браковочный уровень дефектности, т.е. то значение входного уровня дефектности, при котором вероятность приемки партии равна риску потребителя. Из всех планов с общим объемом контроля n минимум вероятности приемки партии (т.е. оперативной характеристики) достигается на одноступенчатом плане (n,0). (Напомним, что согласно этому плану партия принимается тогда и только тогда, когда из n проверенных единиц продукции все оказываются годными.) Другими словами, оперативная характеристика для плана (n,0) является огибающей (снизу) множества всех оперативных характеристик. Следовательно, из всех планов с общим объемом контроля n минимум браковочного уровня дефектности достигается также на плане (n,0).

В дальнейшем будем исходить из биномиальной модели выборки, согласно которой число дефектных единиц продукции в выборке объема n имеет биномиальное распределение с параметрами n и p, где p - входной уровень дефектности. Как хорошо известно, эта модель является приближением для модели простой случайной выборки из партии, согласно которой указанное число имеет гипергеометрическое распределение. Напомним, что гипергеометрическая модель переходит в биномиальную, если объем партии безгранично возрастает, а доля дефектных единиц продукции в партии приближается к p. Если объем выборки составляет не более 10% объема партии, то с достаточной для практики точностью принимают, что соответствующее биномиальное распределение хорошо приближает гипергеометрическое.

Примем обычное предположение о том, что риск потребителя равен 0,10. Как известно, браковочный уровень дефектности pбр для плана (n,0) определяется из условия

(1 - pбр )n = 0,10 .

Это соотношение дает возможность по заданному браковочному уровню дефектности pбр найти необходимый объем выборки:

n = ln 0,10 / ln (1 - pбр ) = - 2,30 / ln (1 - pбр ) .

Поскольку в силу сказанного ранее представляют интерес малые значения браковочного уровня дефектности, воспользуемся тем, что при малых x согласно правилам математического анализа

ln (1 + x) = x + O (x2) .

Вторым слагаемым в правой части последней формулы, как обычно в асимптотических рассуждениях, можно пренебречь. Следовательно, необходимый объем выборки с достаточной точностью может быть найден по формуле

n = 2,30 / pбр .(15)

(При конкретных расчетах надо, очевидно, правую часть округлить до ближайшего целого числа.) Например, при довольно низком (с точки зрения мирового рынка) качестве выпускаемой продукции можно задать pбр = 0,01, т.е. потребовать, чтобы почти все (точнее, не менее 90%) партии, в которых дефектных единиц больше, чем 1 из 100, были забракованы и не достигли потребителя. Тогда объем контроля должен составлять не менее n = 230.

Основной парадокс теории статистического приемочного контроля. Как следует из сказанного выше, необходимый объем выборки, определяемый для какого-либо плана контроля по заданному браковочному уровню дефектности pбр , будет не меньше, чем для плана (n,0), т.е. не меньше, чем 2,30 / pбр .Таким образом, если достигнут достаточно высокий уровень качества, такой, что потребителю может попасть не более 1 дефектной единицы продукции из 10000, т.е. pбр = 0,0001, то объем контроля должен быть не меньше n = 23000. Если же качество повысится в 100 раз, т.е. потребителю сможет попасть не более 1 дефектной единицы продукции из 1000000, то объем контроля и затраты на него возрастут также в 100 раз, и минимально необходимый объем контроля составит 2,3 миллиона единиц продукции. Поскольку объем партий большинства видов продукции существенно меньше этого числа, то проведенные выше расчеты говорят о необходимости перехода на сплошной контроль.

Итак, выводы парадоксальны: если качество выпускаемой продукции не очень хорошее, то целесообразно проводить статистический (выборочный) контроль, если же качество возрастает, то объем контроля и затраты на него увеличиваются, вплоть до перехода на сплошной контроль. Если это возможно, т.е. контроль не является разрушающим. А если невозможно, то попадаем в тупиковую ситуацию - высокое качество не может быть подтверждено.

В реальных ситуациях объемы контролируемых выборок - единицы или десятки, но обычно отнюдь не сотни и тысячи. Если контролируются 100 изделий, то согласно формуле (15) браковочный уровень дефектности равен 2,3 %. И это - предел для реально используемых объемов контроля. Следовательно, статистический приемочный контроль (в том числе выходной или входной) может быть применен для контроля лишь такой продукции, в которой из 50 изделий хотя бы одно дефектно. Другими словами, этот метод управления качеством предназначен лишь для продукции сравнительно низкого качества (входной уровень дефектности не менее 1-2%) или при обслуживании потребителя, согласного на довольно высокий браковочный уровень дефектности (не менее 2,3%).

Следовательно, для повышения качества необходимо использовать контрольные карты и другие методы статистического регулирования технологических процессов на предприятии (о них подробно рассказано, например, в монографиях [1,10]), методы "всеобщего (в другом переводе - тотального) контроля качества" и др. Недаром этим методам уделяется больше внимания в зарубежных методических изданиях, чем собственно статистическому приемочному контролю.

От контроля к пополнению партии. Рассмотрим простую идею: отказываемся от контроля качества вообще, но зато по первому требованию потребителя заменяем дефектную единицу продукции на новую. При этом экономим на контроле, но вместо этого тратим средства на замену продукции. Выгодно это или не выгодно?

Замена продукции может проводиться различными способами. Для многих видов товаров народного потребления это делается с помощью системы гарантийного обслуживания, гарантийных сроков и мастерских, через сеть розничной торговли и т.д.

Другой вариант - к партии поставляемой продукции добавляется некоторое количество единиц продукции для замены имеющихся, возможно, в ней дефектных единиц. Сначала обсудим подробнее именно этот вариант идеи замены продукции.

Пусть поставщик выпускает продукцию с известным ему уровнем дефектности p. Тогда число Х дефектных единиц в партии объема N имеет биномиальное распределение с параметрами N и p. По теореме Муавра-Лапласа Х не превосходит (при достаточно большом N) величины

D0(t) = Np + t (Np(1-p))1/2

с вероятностью Ф(t). где Ф(.) - функция стандартного нормального распределения с математическим ожиданием 0 и дисперсией 1. Поскольку Ф(4) = 0,999968329, то для практических целей достаточно положить t = 4, при этом более чем D0(4) дефектных единиц продукции попадет в партию лишь в 3 случаях из 100000.

Пусть С0 - цена одной единицы продукции, С1 - стоимость неразрушающего контроля одной единицы продукции (с исправлением дефектов при их обнаружении). Сравним сначала две стратегии технико-экономических отношений поставщика с потребителями:

сплошной контроль (затраты С1N)

и пополнение партии дополнительными изделиями в числе D0(4) (затраты С0D0(4) ). Вторая стратегия лучше (экономически выгоднее), если

(16)

Поделим на получим равносильное неравенство

.

Поскольку p(1-p) не превосходит 1/4 при всех p, то из неравенства

С10 > p + 2 / N1/ 2 (17)

вытекает неравенство (16). Ясно, что в случае, если

С10 > p ,

неравенство (17) (а потому и неравенство (16)) выполняется при достаточно больших объемах партии, а именно, при

N > {2 С0 / (С1 - С0 p)} 2 .

Например, если стоимость контроля составляет 10% от стоимости продукции (типовая ситуация в машиностроении), т.е. С10 = 0,1, а уровень дефектности p = 0,01, то последнее неравенство дает N>493. В то же время нетрудно проверить, что неравенство (16) выполняется при

0,1 > 0.01 + 4 (0.01*0,99)1/ 2 / N1/ 2 ,

т.е. при N > 19. Расхождение более чем на порядок (в 26 раз) объясняется заменой при переходе от формулы (16) к формуле (17) величины p(1-p) на 1/4, т.е. на гораздо большую величину - при малом входном уровне дефектности p.

Выгодно ли введение статистического контроля? Пусть рассматривается описанная выше стратегия пополнения партий. Мы сравнивали ее со стратегией сплошного контроля, которая во многих случаях оказалась хуже. Может быть, поставщику имеет смысл использовать статистический контроль? Понятно, что речь может идти лишь о (неразрушающем) контроле с разбраковкой, поскольку только в этом случае меняется доля дефектности в потоке партий, направляемых потребителям.

Пусть используется план (n,0) с приемочным уровнем дефектности, равным реально достигнутому предприятием уровню дефектности p. Как известно, тогда объем выборки определяется из условия

(1-p)n = 0,95,

т.е.

n = ln 0,95 / ln (1 - p ) = - 0,0513 / ln (1 - p ) .

При малом p уже не раз применявшееся соотношение из математического анализа дает с достаточной для практики точностью

n = 0,05 / p .

С вероятностью (1-p)n = 0,95 партия принимается, с вероятностью 0,05 подвергается разбраковке. В первом случае партия поступает к потребителю с тем же уровнем дефектности, что и до контроля, но при этом добавляются затраты на контроль, равные С1n. Партию необходимо пополнить D0(4) изделиями (затраты С0D0(4)), общие затраты (в среднем на одну выпущенную партию) равны

0,95 (С1n + С0 D0 (4)) .

Во втором случае фактически проводится сплошной контроль с исправлением дефектов и затратами С1N. Суммарные затраты при использовании выборочного контроля равны

0,95 (С1n + С0 D0 (4)) + 0,05 С1N .

Он более выгоден, чем отсутствие контроля (с добавлением "запасных" изделий), в случае справедливости неравенства

0,95 (С1n + С0 D0 (4)) + 0,05 С1N < С0 D0 (4),

что эквивалентно неравенству

19 С1n + С1N < С0 D0 (4).

Сравнение с формулой (16) показывает, что если контроль не является разрушающим, то выборочный контроль менее выгоден, чем сплошной (по сравнению с формулой (16) добавляется первое слагаемое в левой части последней формулы), и тем более весьма проигрывает в экономической эффективности по сравнению с отсутствием контроля в сочетании с пополнением партии.

Итак, введение статистического контроля в схеме пополнения партии не выгодно.

От системы контроля к системе технического обслуживания. Вернемся к первому из указанных ранее вариантов замены продукции. Что выгоднее - сплошной контроль на предприятии или замена дефектных изделий, обнаруженных потребителями? Реальное перекладывание контроля на потребителей влечет потери, связанные с удовлетворением их претензий, но при малой доле дефектных изделий эти потери малы по сравнению с затратами на контроль.

Действительно, пусть W - средние потери поставщика, связанные с пропуском потребителю дефектной единицы продукции. Сюда входят, в частности, такие виды потерь:

- стоимость новой единицы продукции (при замене изделия или возврате его стоимости);

- расходы системы распределения продукции и гарантийного ремонта, включая издержки на устранение дефектов;

- потери из-за нежелательного изменения предпочтений потребителя, из-за снижения имиджа фирмы;

- затраты на возмещение ущерба, понесенного потребителем, страховые сборы, судебные издержки, и т.д.

Потери W в несколько раз (по экспертной оценке - обычно в 5-10 раз) превышают расходы С0 на изготовление единицы продукции. Кроме того, для быстрого решения проблем потребителей, связанных с обнаружением дефектов, необходима развитая система технического обслуживания.

Пусть изготовлена партия продукции объема N. Тогда расходы на сплошной (неразрушающий) контроль составляют С1N (при этом дефектные единицы продукции извлекаются и утилизируются, расходами на утилизацию или доходами от нее в настоящем изложении пренебрегаем). Пусть p - доля дефектных единиц продукции в партии. Тогда Np - математическое ожидание числа дефектных единиц продукции в партии, а WNp - математическое ожидание потерь. Если

WNp < С1 N, p < С1 / W, (18)

то выгоднее отказаться от сплошного контроля. При повышении качества, т.е. снижении доли дефектности, целесообразно переходить к поиску и устранению дефектов не непосредственно на предприятии, а в пунктах системы технического обслуживания.

В формуле (18) участвует математическое ожидание WNp. Реальные потери могут быть больше, но не намного. Как и выше, с помощью теоремы Муавра-Лапласа можно утверждать, что практически наверняка они не превышают WD0(4), а потому преимущество решения об отказе от контроля неоспоримо при

WD0(4) < С1N, p + 4 (p(1-p))1/ 2 / N1/ 2 < С1 / W. (19)

Аналогично выводу неравенства (17) заключаем, что неравенство (19) наверняка будет выполнено, если

p + 2 / N1/ 2 < С1 / W. (20)

Пусть С1 / W = 0,1, выпускается партия объема N = 1600. Тогда согласно неравенству (20) отказ от контроля выгоден уже при p< 0,05, т.е. граничное значение соответствует довольно низкому уровню качества - 1 единица продукции из 20.

Выгодно ли в рассматриваемой ситуации вводить выборочный контроль? Пусть объем контроля равен n, приемочное число с = 0, с вероятностью y партия принимается, а с вероятностью 1 - y бракуется (и затем подвергается разбраковке). В первом случае расходы на контроль равны С1n, а остальная часть партии содержит в среднем (N - n) p дефектных единиц продукции, и средние издержки равны y{С1n + W(N - n)p}. Во втором случае суммарные затраты равны (1 - y)С1N . Следовательно, введение контроля выгодно, если

y{С1n + W(N - n)p} + (1 - y)С1 N < WNp .

Преобразуем это неравенство к виду

yn{С1 - Wp}(1 - y)-1 + С1N < WNp. (21)

Если выполнено неравенство p<С1/W, то второе слагаемое в левой части неравенства (21) больше правой части этого неравенства, в то время как первое слагаемое в левой части (21) положительно. Следовательно, неравенство (21) неверно, и введение выборочного контроля нецелесообразно - как и в разобранном ранее случае метода пополнения партий.

Выше приведен базовый (простейший, исходный) метод сравнения различных систем взаимоотношений поставщиков и потребителей. Целесообразно дальнейшее его развитие, которое предоставляем читателю.

Отметим в заключение, что реально статистический контроль качества продукции, осуществляемый поставщиком (выходной контроль), решает две основные задачи: обеспечение интересов потребителя и обнаружение разладок собственных технологических процессов (по результатам контроля последовательности партий). Как показано выше, для решения первой из этих задач он не всегда оптимален. Вторую из названных задач также часто эффективнее решать с помощью иных методов, например, обнаруживать разладку технологических процессов с помощью тех или иных контрольных карт. Таким образом, область применения методов статистического приемочного контроля является довольно ограниченной. Очевидно, однако, что нельзя исключать эти методы из арсенала менеджеров по качеству, в частности, при использовании концепции "всеобщего управления качеством (TQM - Total Quality Management)". Хотя бы потому, что они незаменимы при использовании разрушающих методов контроля.

Наиболее перспективным представляется использование результатов настоящего пункта в рамках концепции контроллинга - современной концепции системного управления организацией, в основе которой лежит стремление обеспечить ее долгосрочное эффективное существование (см., например, [11-13]).

Итак, в настоящем пункте сформулирован основной парадокс теории статистического приемочного контроля - повышение качества выпускаемой продукции приводит к увеличению объема контроля. Описан способ разрешения этого парадокса на основе перехода от чисто технической политики выбора плана контроля к технико-экономической, основанной на сравнении по экономическим показателям схем контроля и схем технического обслуживания и пополнения партий. Проанализирован базовый метод такого сравнения, позволяющий выделить область экономического преимущества схемы пополнения партий и схемы технического обслуживания по сравнению со схемой контроля.

Статистический контроль по двум альтернативным признакам

и метод проверки их независимости по совокупности малых выборок

В настоящем пункте рассмотрим статистический приемочный контроль по двум альтернативным признакам одновременно. Обсуждается соотношение входного уровня дефектности изделия в целом с входными уровнями дефектности отдельных контролируемых параметров. На основе результатов статистики объектов нечисловой природы (глава 8) рассмотрен метод проверки независимости двух альтернативных признаков. Метод нацелен на применение прежде всего в задачах статистического контроля качества продукции. При этом проверка независимости проводится по совокупности малых выборок, т.е. в так называемой асимптотике А.Н.Колмогорова, когда число неизвестных параметров распределения не является постоянным, а растет пропорционально объему данных.

При статистическом контроле качества продукции, в частности, при сертификации, чаще всего используют контроль по альтернативным признакам. При этом устанавливается, соответствует ли контролируемый параметр единицы продукции (изделия, детали) заданным в нормативно-технической документации требованиям или не соответствует. Если соответствует - единица продукции признается годной. Примем для определенности, что в этом случае результат контроля кодируется символом 0. Если же не соответствует - единица продукции признается дефектной, а результат контроля кодируется символом 1.

Таким образом, в рассматриваемой нами математической модели контроля альтернативный признак - это функция X = X(w), определенная на множестве единиц продукции W = {w} и принимающая два значения 0 и 1, причем X(w) = 0 означает, что единица продукции w является годной, а X(w) = 1 - что она является дефектной.

Методы статистического контроля, в частности, включенные в государственные стандарты и иную нормативно-техническую документацию (НТД), как правило, используют контроль по одному признаку. В НТД указывают правила выбора планов контроля и расчета различных их характеристик, приводят графики оперативных характеристик и т.п.

Однако на производстве контроль нередко проводится по нескольким альтернативным признакам. Возникает проблема выбора плана контроля и расчета его характеристик. В настоящее время для решения этой проблемы нет достаточно обоснованных и общепринятых рекомендаций.

Рассмотрим сначала контроль по двум альтернативным признакам X(w) и Y(w). В вероятностной модели X(w) и Y(w) - случайные величины, принимающие два значения - 0 и 1. Пусть, пользуясь стандартной терминологией,

p1 = P ( X(w) = 1)

- входной уровень дефектности для первого признака, а

p2 = P ( Y(w) = 1)

- для второго. Вероятности результатов контроля по двум признакам одновременно описываются четырьмя числами:

P ( X(w) = 0, Y(w) = 0) = p00 , P ( X(w) = 1, Y(w) = 0) = p10 ,

P ( X(w) = 0, Y(w) = 1) = p01 , P ( X(w) = 1, Y(w) = 1) = p11 ,

при этом справедливы соотношения:

p00 + p10 + p01 + p11 = 1, p10 + p11 = p1 , p01 + p11 = p2 .

С прикладной точки зрения наиболее интересна вероятность p00 того, что единица продукции является годной (по всем параметрам), и вероятность ее дефектности (1-p00 ), т.е. входной уровень дефектности для изделия в целом.

В табл.1 сведены вместе введенные выше вероятности.

Табл. 1. Вероятности результаты испытаний

при контроле по двум альтернативным признакам

X=0

X=1

Всего

Y=0

Y=1

Всего

1

Есть три важных частных случая - поглощения, несовместности и независимости дефектов, другими словами, поглощения, несовместности и независимости событий {w: X(w) = 1} и {w: Y(w) = 1}. В случае поглощения одно из этих событий содержит другое, а потому

p00 = 1 - max ( p1 , p2 ) .

В случае несовместности

p00 = 1 - p1 - p2 .

В случае независимости

p00 = (1 - p1 )(1 - p2) = 1 - p1 - p2 + p1p2 .

Ояевидно, что вероятность годности изделия всегда заключена между значениями, соответствующими случаям поглощения и несовместности. Кроме того, известно, что при большом числе признаков и малой вероятности дефектности по каждому из них случаи поглощения и независимости дают (в асимптотике) крайние значения для вероятности годности изделия, т.е. формулы, соответствующие независимости и несовместности, асимптотически совпадают.

Рассмотрим несколько примеров. Пусть некоторая продукция, скажем, гвозди, контролируются по двум альтернативным признакам, для определенности, по весу и длине. Пусть результаты контроля 1000 единиц продукции представлены в табл.2

Табл. 2. Результаты 1000 испытаний

по двум альтернативным признакам (случай поглощения)

Х=0

Х=1

Всего

У=0

952

0

952

У=1

0

48

48

Всего

952

48

1000

Судя по данным табл.2, дефекты всегда встречаются парами - если есть один, то есть и другой. Входной уровень дефектности как по каждому показателю, так и по обоим вместе - один и тот же, а именно, 0,048. Получив по результатам статистического наблюдения данные типа приведенных в табл.2, целесообразно перейти к контролю только одного показателя, а не двух. Каково именно? Видимо, того, контроль которого дешевле. Однако совсем иная ситуация в случае несовместности дефектов (табл.3).

Табл. 3.

Результаты 1000 испытаний

по двум альтернативным признакам (случай несовместности )

Х=0

Х=1

Всего

У=0

904

48

952

У=1

48

0

48

Всего

952

48

1000

Судя по данным табл.3, дефекты всегда встречаются поодиночке - если есть один, то другого нет. В результате входной уровень дефектности по каждому признаку по-прежнему равен 0,048, в то время как доля дефектных изделий (т.е. имеющих хотя бы один дефект) вдвое выше, т.е. входной уровень дефектности для изделия в целом равен 0,096.

Случай независимости результатов контроля по двум независимым признакам (табл.4) лежит между крайними случаями поглощения и несовместности. Независимость альтернативных признаков обосновывается путем статистической проверки с помощью описанного ниже критерия n1/2V, значение которого для данных табл.4 равно 1,866.

Табл. 4.

Результаты 1000 испытаний

по двум альтернативным признакам (случай независимости)

Х=0

Х=1

Всего

У=0

909

43

952

У=1

43

5

48

Всего

952

48

1000

Согласно данным табл.4, входной уровень дефектности для каждого из двух альтернативных признаков по-прежнему равен 0,048, в то время как для изделий в целом он равен 0,091, т.е. на 5,5% меньше, чем в случае несовместности, и на 47% больше, чем в случае поглощения.

Проблема состоит в том, что таблицы и стандарты по статистическому приемочному контролю относятся обычно к случаю одного контролируемого параметра. А как быть, если контролируемых параметров несколько? Приведенные выше примеры показывают, что входной уровень дефектности изделия в целом не определяется однозначно по входным уровням дефектности отдельных его параметров.

Как должны соотноситься характеристики планов контроля по отдельным признакам с характеристиками плана контроля по двум (или многим) признакам одновременно? Рассмотрим распространенную рекомендацию - складывать уровни дефектности, т.е. считать, что уровень дефектности изделия в целом равен сумме уровней дефектности по отдельным его параметрам. Она, очевидно, опирается на гипотезу несовместности дефектов, а потому во многих случаях преувеличивает дефектность, а потому ведет к использованию излишне жестких планов контроля, что экономически невыгодно.

Зная специфику применяемых технологических процессов, в ряде конкретных случаев можно предположить, что дефекты по различным признакам возникают независимо друг от друга. Это предположение необходимо обосновывать по статистическим данным. Если же оно обосновано, следует рассчитывать входной уровень дефектности по формуле

1 - p00 = p1 + p2 - p1p2 ,

соответствующей независимости признаков.

Итак, необходимо уметь проверять по статистическим данным гипотезу независимости двух альтернативных признаков. Речь идет о статистической проверке нулевой гипотезы

Н0: p11 = p1 p2 (22)

(что эквивалентно проверке равенства p00 = (1 - p1)(1 - p2)). Нетрудно проверить, что гипотеза о справедливости равенства (22) эквивалентна гипотезе

Н0 : p00 p11 - p10 p01 = 0. (23)

В простейшем случае предполагается, что проведено n независимых испытаний (Xi , Yi), i = 1,2,...,n, в каждом из которых проконтролированы два альтернативных признака, а вероятности результатов контроля не меняются от испытания к испытанию. Общий вид статистических данных приведен в табл.5.

Табл. 5.

Общий вид результатов контроля

по двум альтернативным признакам.

Х=0

Х=1

Всего

У=0

a

b

a+b

У=1

c

d

c+d

Всего

a+c

b+d

n

В табл.5 величина a - число испытаний, в которых (Xi , Yi) = (0,0), величина b - число испытаний, в которых (Xi , Yi) = (1,0), и т.д.

Случайный вектор (a, b, c, d) имеет мультиномиальное распределение с числом испытаний n и вектором вероятностей исходов (p00 , p10 , p01 , p11 ). Состоятельными оценками этих вероятностей являются дроби a/n, b/n, c/n, d/n соответственно. Следовательно, критерий проверки гипотезы (23) может быть основан на статистике

Z = ad - bc . (24)

Как вытекает из известной формулы для ковариаций мультиномиального вектора (см., например, формулу (6.3.5) в учебнике С.Уилкса [14] на с. 153),

М(Z) = n (p10 p01 - p00 p11), (25)

что равно 0 при справедливости гипотезы независимости (23).

Связь между переменными X и Y обычно измеряется коэффициентом, отличающимся от Z нормирующим множителем:

V = (ad - bc) { (a + b)(a + c)(b + d)(c + d) } - 1/2(26)

(см. классическую монографию М. Дж. Кендалла и А. Стьюарта [15, с.723], на которую уже были ссылки, в частности, в главе 5). При справедливости гипотезы Н0 и больших n случайная величина nV2 имеет хи-квадрат распределение с одной степенью свободы, а n1/2V имеет стандартное нормальное распределение с математическим ожиданием 0 и дисперсией 1 (см. [15, с.736]).

Рассмотрим еще один пример. Пусть проведено 100 испытаний, результаты которых описаны в табл.6. Тогда

V = (50 . 20 - 10 . 20) (60 . 70 . 30 . 40)-1/2 =

= (1000 - 200) . 5940000-1/2 = 800 / 2245 = 0,35635,

n1/2V = 3,5635 .

Табл. 6.

Результаты 100 испытаний

по двум альтернативным признакам.

Х=0

Х=1

Всего

У=0

50

10

60

У=1

20

20

40

Всего

70

30

100

Поскольку полученное значение n1/2V превышает критическое значение при любом применяемом в статистике уровне значимости, то гипотезу о независимости признаков необходимо отклонить.

К сожалению, приведенный простой метод годится не всегда. При статистическом анализе реальных данных возникают проблемы, связанные с отсутствием достаточно больших однородных выборок, т.е. выборок, в которых постоянны параметры вероятностных распределений. Реально единицы продукции представляются на контроль партиями, из каждой партии контролируются лишь несколько изделий, т.е. малая выборка. При этом от партии к партии меняются параметры p00, p10, p01, p11, описывающие уровень дефектности. Поэтому необходимы статистические методы, позволяющие проверять гипотезу независимости признаков по совокупности малых выборок. Построим один из возможных методов.

Рассмотрим вероятностную модель совокупности k малых выборок объемов n1 , n2 ,..., nk соответственно. Пусть j -я выборка (Xjt , Yjt), t = 1, 2,..., nj , имеет распределение, задаваемое вектором параметров (p00j, p10j, p01j, p11j) в соответствии с ранее введенными обозначениями, j = 1,2,...,k . Будем проверять гипотезу

Н0: p11j = (p10j + p11j) (p01j + p11j), j = 1,2,...,k, (27)

или в эквивалентной формулировке

Н0 : p11j p00j - p10j p01j , j = 1,2,...,k .(28)

Основная идея состоит в нахождении асимптотического распределения статистики типа n1/2V при росте числа k малых выборок, а именно, статистики

S = g1 Z1 + g2 Z2 + ... + gk Zk , (29)

где Z1 , Z2 ,..., Zk - статистики, рассчитанные по формуле (24) для каждой из k выборок, т.е. Zj = ajdj - bjcj , j = 1,2,...,k, а g1 , g2 , ... , gk - некоторые весовые коэффициенты, которые, в частности, могут совпадать. Поскольку

М(S) = g1 М(Z1) + g2 М(Z2) + ... + gk М(Zk),(30)

то при справедливости гипотезы независимости (27) - (28) имеем М(S) = 0 согласно соотношению (25). Поскольку слагаемые в сумме (29) независимы, то при росте k случайная величина S в силу Центральной Предельной Теоремы является асимптотически нормальной. Дисперсия этой величины равна сумме дисперсий слагаемых:

D(S) = g12 D(Z1 ) + g22 D(Z2) + ... + gk2 D(Zk) . (31)

Для оценивания дисперсии S необходимо использовать несмещенные оценки дисперсий в каждой из k выборок (и в этом одна из основных "изюминок" разбираемого метода). Предположим, что построены статистики Tj такие, что

М(Tj) = D(Zj) , j = 1,2,...,k . (32)

Тогда при некоторых математических "условиях регулярности", на которых нет необходимости здесь останавливаться, несмещенная оценка дисперсии статистики S, имеющая согласно формулам (31) и (32) вид

L = g12 T1 + g22 T2 + ... + gk2 Tk , (33)

в силу закона больших чисел такова, что дробь D(S) / L приближается к 1 при росте числа выборок (сходимость по вероятности). Отсюда следует, что распределение случайной величины Q = S L-1/2 приближается при росте числа выборок к стандартному нормальному распределению с математическим ожиданием 0 и дисперсией 1. Следовательно, критерий проверки гипотезы (27) - (28) независимости признаков, состоящий в том, что при - 1,96 < Q < 1,96 гипотеза принимается, а при Q , выходящих за пределы интервала (- 1,96; 1,96) , гипотеза отклоняется, имеет уровень значимости, приближающийся к 0,05 при росте числа выборок. Мощность этого критерия зависит от величины М(S)D(S)-1/2 при альтернативе.

Для реализации намеченного плана осталось научиться несмещенно оценивать D(Zj). К сожалению, в литературе по несмещенному оцениванию не рассматривают случай мультиномиального распределения, поэтому кратко опишем процедуру построения несмещенной оценки D(Zj). Поскольку согласно формулам (24) и (25)

D(Zj) = М( Zj2 ) - (М( Zj ))2 = М (aj2dj2) - 2 М (ajbjcjdj) +

+ М (bj2cj2) + nj2 (p11j p00j - p10j p01j)2, (34)

то для вычисления D(Zj) достаточно найти входящие в правую часть формулы (34) начальные смешанные моменты мультиномиального распределения (четвертого порядка). Теоретически это просто - известен вид характеристической функции мультиномиального распределения (см., например, формулу (6.3.4) в монографии [14, с.152]), а начальные смешанные моменты равны значениям ее соответствующих производных в 0, деленным на нужную степень мнимой единицы (формула (5.2.3) в монографии [4, с.131]). Например, с помощью описанной процедуры после некоторых вычислений получаем, что (для упрощения записи здесь и далее опустим индекс j)

М (a2d2) = n(n-1)(n-2)(n-3)p11 2p002 + n(n-1)(n-2)(p112p00 +

+ p11 p002 ) + n(n-1)p11 p00 . (35)

Формула (35) показывает, что начальные смешанные моменты мультиномиального распределения являются многочленами от параметров p11, p00, p10, p01 этого распределения, однако конкретный вид этих многочленов достаточно громоздок, поэтому не будем их здесь выписывать, ограничившись формулой (35) в качестве образца.

Как вытекает из формул (34) и (35), для построения несмещенной оценки D(Zj) достаточно научиться несмещенно оценивать произведения типа p11rp00m , где целые неотрицательные числа r, m не превосходят 2. Эта задача решается, начиная с меньших степеней. Известно, что для ковариации мультиномиального вектора

М (ad) = - n p00 p11(36)

(см., например, формулу (6.3.5) в монографии [14, с.153]), а потому несмещенной оценкой для p00 p11 является ( - ad / n ). Далее, поскольку справедлива аналогичная (35) формула

М(a2d) = n(n-1)(n-2) p11p002 + n(n-1)p11p00 ,(37)

то с помощью формулы (36) преобразуем формулу (37) к виду

М(a2d + (n-1)ad) = n(n-1)(n-2)p11p002 ,(38)

т.е. несмещенной оценкой p11p002 является ad(a + n-1){n(n-1)(n-2)}-1.

Следующий шаг - аналогичным образом с помощью формул (36) и (38) получаем несмещенную оценку для p112p002, а затем и для D(Zj) . Промежуточные формулы опущены из-за громоздкости. Окончательный результат таков:

Tj = ( bj + dj )(cj + dj)(aj+ cj)(aj + bj)(n-1)-1 . (39)

Как легко видеть,

Zj / Tj-1/2 = (nj -1)1/2 Vj ,

т.е. в случае одной выборки предлагаемый метод совпадает с классическим.

Общая идея рассматриваемого метода проверки гипотез по совокупности малых выборок состоит в том, что подбирается статистика, математическое ожидание которой для каждой малой выборки равно 0 при справедливости проверяемой гипотезы. Затем для каждой выборки строится несмещенная оценка дисперсии этой статистики. Итоговая статистика критерия для проверки гипотезы - это сумма рассматриваемых статистик для всех малых выборок, деленная на квадратный корень из суммы всех несмещенных оценок дисперсий рассматриваемых статистик. При справедливости нулевой гипотезы эта итоговая статистика имеет в асимптотике стандартное нормальное распределение (при выполнении некоторых математических "условий регулярности", которые обычно выполняются при анализе реальных статистических данных).

Впервые такой способ проверки гипотез по совокупности малых выборок был предложен в монографии [16, раздел 4.5]. Нестандартность постановки состоит в том, что число неизвестных параметров растет пропорционально объему данных, т.е. имеет место т.н. "асимптотика Колмогорова", или асимптотика растущей размерности. Дальнейшее развитие применительно к данных типа "да"-"нет" (или "годен" - "дефектен") шло в рамках теории люсианов как части статистики объектов нечисловой природы (см. главу 8).

Эконометрика качества и сертификация

Как уже отмечалось, вслед за экономически развитыми странами в России намечается всё расширяющаяся тенденция к сертификации продукции, т.е. к официальной гарантии поставки производителем продукции, удовлетворяющей установленным требованиям. Поставщики и продавцы должны иметь сертификаты качества на предлагаемые ими товары и услуги. Маркетинг, т.е. производственная и коммерческая политика, нацеленная на получение максимальной прибыли на основе изучения рынка, создания конкурентоспособной продукции и ее полной реализации, включает в себя работы по сертификации.

Не будем останавливаться на быстро меняющейся организационной стороне процесса сертификации и соответствующих отечественных и зарубежных нормативных документах, а также на различных системах сертификации. Как общие проблемы сертификации, так и выбор схемы сертификации для конкретной продукции активно обсуждаются в печати. Приведем лишь несколько замечаний, необходимых для дальнейшего изложения.

Напомним, что, говоря о сертификации продукции, могут иметь в виду качество конкретной ее партии. В ряде случаев это оправдано - рядового потребителя интересует качество лишь той единицы продукции, которую он приобрел. Однако установление долговременных хозяйственных связей целесообразно лишь в случае, когда поставщик гарантирует высокое качество не одной, а всех партий своей продукции. Другими словами, должны быть проведены оценка и сертификация технологических процессов и производств.

Еще больше повышается доверие к поставщику, если не только отдельные технологические процессы, но и всё предприятие в целом гарантированно выпускает продукцию высокого качества. Это обеспечивается действующей на предприятии системой качества, удовлетворяющей требованиям Международной организации по стандартизации ИСО.

В условиях рыночной экономики одна из основных характеристик товара - его конкурентоспособность. Очевидно, производителю необходимо уметь оценивать конкурентоспособность перед запуском продукции в производство или началом работы по продвижению на зарубежный рынок (подробнее см. рекомендации [2]). Следует отметить, что в литературе имеются различные мнения по поводу понятия "конкурентоспособность". В частности, нельзя согласиться с крайне упрощенным подходом в учебнике [17], в котором конкурентоспособность сводится к соотношению цен на внутреннем и внешнем рынках. Достаточно напомнить о таких приемах конкурентной борьбы, как демпинг и (недобросовестная) реклама, таможенные пошлины и квоты.

Одним из основных компонентов конкурентоспособности продукции является ее технический уровень. В западных учебниках справедливо отмечают, что фирма, обладающая патентом или новой научно-технической разработкой, имеет более высокий “излишек производителя” по сравнению с другими фирмами (см., например, учебники [18-20]). В частности, согласно одному из наиболее популярных западных учебников [21] при выборе направления инвестиционных вложений одна из основных учитываемых характеристик - технический уровень продукции.

Из сказанного вытекает, что сертификация материалов и других видов продукции - это современная форма управления качеством продукции. На Западе общепринято, что основная составляющая в управлении качеством продукции - это статистические методы (см., например, отчет Комитета ИСО по изучению принципов стандартизации [3]). В нашей стране внедрение комплексных систем управления качеством (КС УКП), к сожалению, сводилось во многом всего лишь к подготовке документации организационного характера. Статистические методы использовались в промышленности недостаточно, прежде всего из-за недостаточной подготовки кадров, а государственные стандарты по этой тематике зачастую содержали грубейшие ошибки (см. ниже). Ситуация в области применения статистических методов и причины нашего отставания достаточно подробно разобраны в публикациях [4, 22].

За новыми терминами зачастую скрываются хорошо известные понятия, несколько модернизированные в соответствии с современной обстановкой. Так, "маркетинг в широком смысле - это усовершенствованная, ориентированная на рыночную экономику КС УКП" (см. рекомендации [2, с.61]). Другими словами, идея КС УКП была хороша, а вот ее реализация…

Подготовка предприятий к сертификации продукции, технологических процессов и производств, систем качества требует приложения труда квалифицированных специалистов, причем в достаточно большом объеме. Подобную работу обычно проводят специализированные организации на основе системы методических материалов, охватывающих все стороны подготовки предприятия к сертификации, в частности, с целью выхода на международный рынок.

Как отмечалось в начале главы, около 150 лет статистические методы применяются в России для проверки соответствия продукции установленным требованиям, т.е. для сертификации. С начала 1970-х годов стали разрабатываться государственные стандарты по статистическим методам. В связи с обнаружением в них грубых ошибок в 1985 г. была организована "Рабочая группа по упорядочению системы стандартов по прикладной статистике и другим статистическим методам". В ее работе приняли участие 66 специалистов, в том числе 15 докторов и 36 кандидатов наук. Выводы Рабочей группы кратко отражены в статьях [4, 22]. В соответствии с рекомендациями Рабочей группы 24 из 31 государственного стандарта по статистическим методам были отменены в 1986-87 гг. К сожалению, потеряв правовую силу как нормативные документы, ошибочные стандарты продолжают использоваться инженерами как научно-технические издания. Полученные Рабочей группой результаты и выводы не были широко и подробно опубликованы, ошибки в государственных стандартах не были публично вскрыты, и авторы дальнейших публикаций продолжают ссылаться на издания с грубейшими ошибками. Так, в многочисленных работах пропагандируются ошибочные стандарты, посвященные применению контрольных карт при статистическом регулировании технологических процессов. Продолжает широко использоваться грубо ошибочный ГОСТ 11.006-74 (СТ СЭВ 1190-78) "Прикладная статистика. Правила проверки согласия опытного распределения с теоретическим", хотя разбору ошибок в этом стандарте посвящена уже давняя статья [23] (см. также главу 4). Перечисленные факты делают целесообразным популяризацию результатов и выводов Рабочей группы и в настоящее время, через 15 лет после окончания анализа стандартов по статистическим методам.

В 1988-89 гг. наиболее активная часть Рабочей группы (10 докторов и 15 кандидатов наук) составили "Аванпроект комплекса методических документов и пакетов программ по статистическим методам стандартизации и управления качеством". Это обширное сочинение (около 1600 стр.) и на настоящий момент является наиболее полным руководством по рассматриваемой тематике. Информация о нем приложена к переводу книги японских авторов по аналогичной тематике [1].


Подобные документы

  • Основы управления качеством. Значение стандартизации и сертификации. Система качества. Структурирование функции качества. Текущее управление качеством. Статистический приемочный контроль по альтернативному признаку. Стандарты статистического контроля.

    курсовая работа [58,9 K], добавлен 09.07.2002

  • Макроэкономическая ситуация в Украине на современном этапе развития. Развитие системы контроля качества. Определение понятия качества продукции, ее характеристик и уровней. Рассмотрение управления качеством продукции на примере конкретного предприятия.

    курсовая работа [213,0 K], добавлен 06.04.2011

  • Контроль качества непрерывно поступающей продукции. Неудобства и преимущества непрерывной выборки. Планы выборочной проверки, анализ риска, связанного с их применением. Порядок использования ГОСТ Р 50779.51–95 при статистическом приёмочном контроле.

    курсовая работа [6,2 M], добавлен 26.02.2011

  • Основные цели и принципы управления качеством. Задачи и функции службы технического контроля качества продукции на предприятии. Виды и методы технического контроля качества продукции. Учет и анализ затрат на качество продукции. Анализ брака и рекламаций.

    курсовая работа [82,6 K], добавлен 12.03.2003

  • Виды и методы организации контроля качества продукции, система показателей качества. Характеристика предприятия и анализ организации технического уровня качества продукции. Влияние организационных методов на трудоемкость контроля качества продукции.

    курсовая работа [261,9 K], добавлен 12.08.2011

  • Понятие качества продукции, его сущность и особенности, методы и критерии оценивания. Значение повышения качества для предприятия-производителя. Основные положения и методы управления качеством. Цели и задачи, методы контроля качества на предприятии.

    курсовая работа [103,5 K], добавлен 24.02.2009

  • Основы статистического контроля качества продукции. Типовые расчеты по курсу теории вероятностей: построение закона распределения и расчет основных характеристик непрерывной случайной величины. Интервальное оценивание параметров генеральной совокупности.

    контрольная работа [1,2 M], добавлен 21.01.2016

  • Обзор методов статистического обеспечения качества. Применение семи традиционных японских методов анализа качества. Разработка идеи статистического приемочного контроля. Основы и применение математического аппарата, используемого для статистики.

    методичка [58,3 K], добавлен 18.08.2009

  • Изучение теоретических аспектов применения статистических методов. Изучение применения статистических методов для обеспечения качества на производстве. Анализ управления качеством на примере материала пенобетон. Особенности приемочного контроля.

    курсовая работа [799,8 K], добавлен 15.05.2023

  • Проблема повышения качества продукции заводов стройиндустрии. Организация службы контроля качества и управление качеством на предприятии. Исследование влияния повышения качества продукции на годовой эффект предприятия на примере строительной организации.

    курсовая работа [1,1 M], добавлен 10.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.