Математическая модель в пространстве состояний линейного стационарного объекта управления

Анализ линейного стационарного объекта управления, заданного передаточной функцией. Получение математической модели в пространстве состояний линейного стационарного объекта управления, заданного передаточной функцией. Метод параллельной декомпозиции.

Рубрика Экономико-математическое моделирование
Вид курсовая работа
Язык русский
Дата добавления 23.02.2010
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

СОДЕРЖАНИЕ

1. Анализ объекта управления

1.1 Анализ линейного стационарного объекта управления, заданного передаточной функцией

1.2 Получение математической модели в пространстве состояний линейного стационарного объекта управления, заданного передаточной функцией

1.2.1 Матрица Фробениуса

1.2.2 Метод параллельной декомпозиции

2. Решение задачи быстродействия симплекс-методом

3. Оптимальная l - проблема моментов

3.1 Оптимальная l - проблема моментов в пространстве «вход-выход»

3.2 Оптимальная l - проблема моментов в пространстве состояний

4. Нахождение оптимального управления с использованием грамиана управляемости (критерий - минимизация энергии)

5. Аналитическое конструирование оптимальных регуляторов (акор)

5.1 Стабилизации объекта управления на полубесконечном интервале времени

5.1.1 Решение алгебраического уравнения Риккати методом диагонализации

5.1.2 Решение алгебраического уравнения Риккати интегрированием в обратном времени до установившегося состояния

5.2 Стабилизации объекта управления на конечном интервале времени

5.3 Задача акор - стабилизации для компенсации известного возмущающего воздействия.

5.4 Задача акор для отслеживания известного задающего воздействия. i подход

5.5 Задача акор для отслеживания известного задающего воздействия. ii подход (линейный сервомеханизм)

5.6 Задача акор - слежения со скользящими интервалами.

6. Синтез наблюдателя полного порядка

Литература

Приложение

PlotTimeFrHaract.m

ProstranstvoSostoyanii.m

SimplexMetod2.m

Optimal_L_problem_moments.m

Gramian_Uprav.m

AKOR_stabilizaciya_na_polybeskon_interval.m

AKOR_stabilizaciya_na_konech_interval.m

Sravnenie_stabilizacii.m

AKOR_stabilizaciya_pri_vozmusheniyah.m

AKOR_slegenie_na_konech_interval_I_podxod.m

AKOR_slegenie_na_konech_interval_II_podxod.m

AKOR_slegenie_so_skolz_intervalami_Modern.m

Sintez_nablyud_polnogo_poryadka.m

Solve_Riccati_Method_Diag.m

Solve_Riccati_Method_Revers_Integr.m

Vozmyshyayushee_Vozdeistvie_Discrete_Revers.m

Zadayushee_Vozdeistvie_Discrete_Revers_Modern.m

1. Анализ объекта управления

1.1 Анализ линейного стационарного объекта управления, заданного передаточной функцией

Передаточная функция данного объекта имеет вид:

,

где:

, ;

, , , , , .

или

.

Нули передаточной функции:

Полюса передаточной функции (полученные стандартными функциями среды Matlab 7.4):

Рис.1. График расположения нулей и полюсов передаточной функции объекта на комплексной плоскости.

Найдем временные характеристики объекта управления.

К временным характеристикам относятся и .

- переходная характеристика;

- импульсная переходная функция;

Для нахождения и воспользуемся пакетом Matlab 7.4.

,

Аналитическое выражение для :

В этом случае имеет вид

Рис.2. График переходной характеристики .

Рис.3. График переходной характеристики на интервале (увеличенное).

,

Аналитическое выражение для :

.

В этом случае имеет вид

Рис.4. График импульсной переходной характеристики .

Рис.5. График импульсной переходной характеристики на интервале (увеличенное).

Найдем частотные характеристики объекта управления.

К частотным характеристикам относятся:

амплитудно - частотная характеристика (АЧХ),

фазо - частотная характеристика (ФЧХ),

амплитудно - фазовая частотная характеристика (АФЧХ),

Аналитическое выражение для АЧХ:

.

В этом случае АЧХ имеет вид

Рис.6. График АЧХ

Рис.7. График АЧХ на интервале (увеличенное). Аналитическое выражение для ФЧХ:

В этом случае ФЧХ имеет вид

Рис.8. График ФЧХ .

Рис.9. График ФЧХ на интервале (увеличенное).

Рис.10. График АФЧХ.

Рис.11. График АФЧХ (увеличенное).

Аналитическое выражение для ЛАЧХ:

.

В этом случае ЛАЧХ имеет вид

Рис.12. График ЛАЧХ.

Аналитическое выражение для ЛФЧХ:

В этом случае ЛФЧХ имеет вид

Рис.13. График ЛФЧХ.

1.2 Получение математической модели в пространстве состояний линейного стационарного объекта управления, заданного передаточной функцией

Передаточная функция данного объекта имеет вид:

,

где:

, ;

, , , , , .

или

Описание системы в пространстве состояний имеет следующий вид:

Переходя в область изображений описание системы в пространстве состояний будет иметь следующий вид:

1.2.1 Матрица Фробениуса

Получим выражения, которые определяют вектор состояний и выход заданного объекта в общем виде:

.

.

Тогда получим:

(1)

(2)

Числитель передаточной функции имеет вид: .

Знаменатель передаточной функции:

.

Тогда согласно равенству (1) и (2) имеем

,

.

Перейдем из области изображений в область оригиналов

,

и затем перейдем к нормальной форме Коши

.

Запишем матрицы состояний

, ,

Численное значение матриц состояний:

, ,

1.2.2 Метод параллельной декомпозиции

Запишем передаточную функцию объекта в другом виде, а именно:

или

.

Согласно формуле получим

Рассмотрим каждое из слагаемых в отдельности согласно принципу параллельной декомпозиции.

a. ,

.

b. ,

.

c. ,

,

,

d. ,

Получим выход системы:

Запишем матрицы состояний

, ,

Вычисление коэффициентов разложения дробной рациональной функции на сумму элементарных дробей и проверка правильности получения матриц состояния сделано с помощью пакета Matlab 7.4 (скрипт ProstranstvoSostoyanii.m)

Получены следующие результаты:Матрица СЛАУ:

, ,

,

Численное значение матриц состояний:

, ,

.

2. Решение задачи быстродействия симплекс-методом

Дана система:

(3)

1. Проверим управляемость данной системы.

Запишем систему ДУ в матричном виде:

,

где .

Данная система является стационарной, её порядок , поэтому матрица управляемости имеет вид:

Найдем матрицу управляемости:

Ранг матрицы управляемости равен порядку системы, следовательно, данная система является управляемой.

следовательно .

Собственные числа матрицы найдем из уравнения :

Действительные части собственных значений матрицы являются неположительными, следовательно, все условия управляемости выполнены.

2. Ссылаясь на решение задачи быстродействия из ДЗ№2 по СУЛА «Решение задачи быстродействия» имеем:

Запишем зависимости , , полученные при решении систем дифференциальных уравнений:

:

:

:

:

Перейдем к дискретной модели заданной системы. Имеем

(4)

где шаг дискретизации и соответствующие матрицы

(5)

Пусть управление ограничено интервальным ограничением

(6)

Тогда на шаге имеем

(7)

Известны начальная и конечная точки

где - оптимальное число шагов в задаче быстродействия.

Решается задача быстродействия

а) Формирование задачи быстродействия как задачи линейного программирования

Конечная точка в дискретной модели представлена в виде

(8)

Получаем - равенств

(9)

Для приведения ограничений (9) к канонической форме сделаем необходимое преобразование в правой и левой частях, чтобы правые части были неотрицательными (если правая часть меньше нуля, то домножаем на (-1) левую и правую части). Отметим проведенные изменения точкой в правом верхнем углу соответствующих векторов

. (10)

Для того чтобы получить необходимый допустимый базис для задачи линейного программирования, добавим формально остаточные искусственные переменные (). Таким образом, уравнения (10) представляются в виде

(11)

Так как текущее управление - управление имеет любой знак, то сделаем необходимую замену

Тогда уравнения (11) примут вид

(12)

Введем остаточные переменные в ограничения на управление

(13)

При объединении выражений (12) и (13) получаем ограничений.

Начальный допустимый базис состоит из остаточных и остаточных искусственных переменных

Формируем целевую функцию (по второму методу выбора начального допустимого базиса)

(14)

б) Решение задачи быстродействия

Предположим, что , где - оптимальное число шагов. Так как значение нам неизвестно (но известно точно), выбираем некоторое начальное и решаем задачу линейного программирования (12)-(14).

При этом

Общее число столбцов в симплекс-таблице:

Число базисных переменных:

Сформируем строку. Имеем

Выразим из уравнения (12) начальные базисные переменные

и подставим в целевую функцию. Получим - строку

(15)

Решаем задачу (12) - (14) симплекс-методом.

В случае,

если , - малое число

иначе

1) если увеличить и целое,рвернуться к первому шагу формирования задачи линейного программирования;

2) если (не все управления будут равны предельным, могут быть, в том числе нулевые)), , уменьшить , вернуться к первому шагу формирования задачи линейного программирования.

Решения данной задачи получено с помощью пакета Matlab 7.4 (скрипт SimplexMetod2.m):

Рис. 14. График фазовой координаты .

Рис. 15. График фазовой координаты .

Рис. 16. График .

Рис. 17. График оптимального управления .

Выводы: Сравнивая полученные результаты с результатами полученными в ДЗ№2 по СУЛА, можно сделать вывод, что решения совпадают, с точностью до .

3. Оптимальная L - проблема моментов

3.1 Оптимальная L - проблема моментов в пространстве «вход-выход»

Укороченная система данного объекта имеет вид:

,

где:

;

;

;

;

;

.

Полюса укороченной передаточной функции:

;

;

;

;

.

Заданы начальные и конечные условия:

, , .

Для определения начальных и конечных условий для воспользуемся следующей формулой:

,

Где матрица имеет следующий вид

,

где , .

ИПФ укороченной системы:

Составим фундаментальную систему решений:

ФСР: .

Составим матрицу .

, где - матрица Вронского

,

Тогда

.

Составим моментные уравнения (связь между входом и выходом):

Моментные функции определяются по следующей формуле

Составим моментные функции:

Найдем моменты по следующей формуле:

.

Числовое значение найденных моментов:

Составим функционал качества, который имеет следующий вид:

при условии, что :, т.е.

Выразим из данного условия , тогда получим следующее равенство:

.

Подставляя полученное равенство в функционал и заменяя их правыми частями получаем

Найдем частные производные и приравняем их к нулю. Решая полученную систему уравнений, определяем оптимальные значения коэффициентов , а вычислим по формуле

.

Т.о. имеем:

Минимальная энергия:

Найдем управление по следующей формуле:

Тогда оптимальное управление

.

3.2 Оптимальная L - проблема моментов в пространстве состояний

Система задана в виде:

Решение ДУ имеет вид:

, при имеем:

.

Составим моментные уравнения:

Подставляя необходимые данные в выше приведенные формулы, получим следующие моменты и моментные функции:

Числовое значение найденных моментов:

Моментные функции:

Заметим, что моменты и моментные функции совпадают с моментами и моментными функциями, найденными в пункте (а).

Из этого следует, что функционал, значения , управление и минимальная энергия будут иметь точно такие же числовые значения и аналитические выражения, как и в пункте (3.1).

Оптимальное управление имеет вид:

Проверим правильность полученного решения.

Эталонные значения координат в начальный и конечный момент времени:

,

,

Найденные значения координат в начальный и конечный момент времени:

,

,

Вычислим погрешность полученных результатов:

,

,

Ниже представлены графики полученного решения с помощью скрипта Optimal_L_problem_moments.m.

Рис. 18. Графики фазовых координат системы при переходе из в .

Рис. 19. Графики выходных координат системы при переходе из в .

Рис.20. График оптимального управления .

Выводы: Задача перевода системы из начальной точки в конечную с помощью L-проблемы моментов в пространстве состояний и в пространстве вход-выход была решена с точностью до 12-го знака после запятой. Результаты, полученные при переводе системы из начальной точки в конечную, полностью совпадают.

4. Нахождение оптимального управления с использованием грамиана управляемости (критерий - минимизация энергии)

Система имеет вид:

с начальными условиями:

,

.

Составим матрицу управляемости и проверим управляемость системы:

.

Составим грамиан управляемости для данной системы:

Найдем грамиан по формуле:

Тогда управление имеет вид:

.

или

Ниже представлен график оптимального управления полученного с помощью скрипта Gramian_Uprav.m.:

Рис.21. График оптимального управления .

Графики фазовых координат аналогичны, как и в оптимальной L - проблеме моментов.

Сравним управление, полученное в начальной и конечной точках в пунктах 3 и 4 соответственно:

и

Выводы: Как видно, значения граничных управлений совпадают. А это значит, что задача перевода объекта из начального состояния в конечное решена с высокой степенью точности и с минимальной энергией.

Графическое сравнение оптимальных управлений из пунктов 3 и 4:

Рис.21. Сравнение графиков оптимального управления .

5. Аналитическое конструирование оптимальных регуляторов (АКОР)

5.1 Стабилизации объекта управления на полубесконечном интервале времени

Рассмотрим линейный объект управления, описываемый системой дифференциальных уравнений в нормальной форме

Необходимо получить закон управления

минимизирующий функционал вида

Начальные условия для заданной системы

Моменты времени фиксированы. Матрицы -- симметричные неотрицательно определенные:

матрица -- положительно определенная:

Матричное дифференциальное уравнение Риккати имеет вид:

Если линейная стационарная система является полностью управляемой и наблюдаемой, то решение уравнения Риккати при стремится к установившемуся решению не зависящему от и определяется следующим алгебраическим уравнением:

В рассматриваемом случае весовые матрицы и в функционале не зависят от времени.

Оптимальное значение функционала равно

и является квадратичной функцией от начальных значений отклонения вектора состояния.

Таким образом, получаем, что при оптимальное управление приобретает форму стационарной обратной связи по состоянию

где -- решение алгебраического матричного уравнения Риккати.

5.1.1. Решение алгебраического уравнения Риккати методом диагонализации

Для решения данной задачи найдем весовые матрицы и :

Выберем произвольно , тогда

Взяв значения из решения задачи L - проблемы моментов получим:

Матрицы системы имеют вид:

, .

Введем расширенный вектор состояния .

Тогда матрица Z будет иметь следующий вид: ,

или в численном виде

.

Собственные значения матрицы : .

Зная собственные значения и собственные вектора матрицы Z, построим матрицу

По определению все решения должны быть устойчивы при любых начальных условиях , т.е. при . Чтобы не оперировать комплексными числами, осуществим следующий переход. Пусть:

Тогда матрица формируется следующим образом:

.

Можно показать, что матрицу можно получить из прямой матрицы собственных векторов:

,

.

Установившееся решение уравнения Риккати, полученное с помощью скрипта Solve_Riccati_Method_Diag.m. имеет вид:

5.1.2 Решение алгебраического уравнения Риккати интегрированием в обратном времени до установившегося состояния

Весовые матрицы и такие же как и в пункте (5.1.1).

Матрицы тоже аналогичны.

Запишем уравнение Риккати

.

Зная, что , решаем уравнение методом обратного интегрирования на достаточно большом интервале (примерно 10 с.), получим установившееся решение с помощью скрипта

Solve_Riccati_Method_Revers_Integr.m.:

Рис.22. Графики решения уравнения Риккати.

Найдем разницу между решениями уравнения Риккати в пунктах 5.1.1 и 5.1.2:

Выводы: сравнивая решения полученные в пунктах 5.1.1 и 5.1.2 можно сказать, что решения уравнения Риккати первым и вторым методами совпадают с заданной точностью. Погрешность расхождения решений невелика.

Используя скрипт AKOR_stabilizaciya_na_polybeskon_interval.m получим коэффициенты регулятора, фазовые координаты системы и управление.

Рис.23. Графики коэффициентов регулятора обратной связи.

Рис.24. Графики фазовых координат.

Рис.25. График управления.

Выводы: т.к. решения уравнения Риккати методом диагонализации и интегрирования в обратном времени дают практически одинаковый результат, то можно считать, что задача АКОР - стабилизации на полубесконечном интервале решена с заданной точностью.

5.2 Стабилизации объекта управления на конечном интервале времени

Рассмотрим линейный объект управления, описываемый системой дифференциальных уравнений в нормальной форме

Начальные условия для заданной системы

Время стабилизации .

Необходимо получить закон управления

минимизирующий функционал вида

Закон оптимального управления в данной задаче имеет вид

Матричное дифференциальное уравнение Риккати будет иметь следующий вид:

Если обозначить то можно записать

Уравнение замкнутой скорректированной системы примет вид

Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Используя скрипт AKOR_stabilizaciya_na_konech_interval.m получили следующие результаты:

Рис.26. Графики решения уравнения Риккати.

Рис.27. Графики коэффициентов регулятора обратной связи.

Рис.28. Графики фазовых координат.

Рис.29. График управления.

Сравним, как стабилизируется система управления с постоянными и переменными коэффициентами регулятора обратной связи на начальном этапе:

Рис.30. Графики фазовых координат.

Выводы: из графиков видно, что система, у которой коэффициенты регулятора меняются со временем, стабилизируется не хуже, чем, система, у которой коэффициенты регулятора не изменяются.

5.3 Задача АКОР - стабилизации для компенсации
известного возмущающего воздействия

Рассмотрим систему вида

,

где - возмущающее воздействие.

Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Начальные условия для заданной системы .

Время стабилизации .

Задаем возмущающее воздействие только на первую координату, так как только она имеет значение

и .

Решение задачи стабилизации сводится к решению уравнения Риккати

с начальными условиями:

Введём вспомогательную вектор-функцию , ДУ которой имеет вид:

с начальными условиями: .

Управление определяется по формуле:

.

Используя скрипт AKOR_stabilizaciya_pri_vozmusheniyah.m, получили следующие результаты:

Рис.31. Графики решения уравнения Риккати.

Рис.32. Графики коэффициентов регулятора обратной и прямой связи.

Рис.33. График возмущающего воздействия.

Рис.34. График вспомогательной вектор - функции.

Рис.35. Графики фазовых координат.

Рис.36. График управления.

Рис.37. График возмущающего воздействия.

Рис.38. График вспомогательной вектор - функции.

Рис.39. Графики фазовых координат.

Рис.40. График управления.

Выводы: По графикам фазовых координат при различных воздействиях видно, что влияние возмущающего воздействия не существенно и фазовые координаты устанавливаются в ноль. При этом видно, что графики первой фазовой координаты при различных воздействиях мало отличаются друг от друга, т.е. система отрабатывает любое возмущение.

5.4 Задача АКОР для отслеживания известного задающего воздействия. I подход

Система задана в виде:

Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Начальные условия для заданной системы .

Время слежения .

Задающее воздействие в виде системы ДУ

Начальные условия для воздействия:

.

Введем расширенный вектор состояния и расширенные матрицы

,

,

.

Тогда новое описание системы имеет вид:

с начальными условиями: .

Решением уравнения Риккати будет матрица:

с н.у.

Тогда оптимальное управление, находится по формуле:

Используя скрипт AKOR_slegenie_na_konech_interval_I_podxod, получили следующие результаты:

Рис.41. Графики решения уравнения Риккати.

Рис.42. Графики коэффициентов регулятора обратной и прямой связи.

Рис.43. Графики фазовых координат.

Рис.44. График управления.

Выводы: На данном этапе была решена задача АКОР-слежения. В качестве отслеживаемого воздействия была взята исходная система, но с другими начальными условиями, поэтому графики фазовых координат отличаются от заданных, но только на начальном участке движения.

5.5 Задача АКОР для отслеживания известного задающего воздействия. II подход (линейный сервомеханизм)

Система задана в виде:

Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Начальные условия для заданной системы .

Задающее воздействие имеет вид:

, .

Время слежения

Введём вспомогательную вектор-функцию , ДУ которой определяется

,

,

НУ определяются из соотношения

Зная закон изменения и , можно определить управление:

.

Используя скрипт AKOR_slegenie_na_konech_interval_II_podxod, получили следующие результаты:

Рис.45. Графики решения уравнения Риккати.

Рис.46. График задающего воздействия.

Рис.47. Графики коэффициентов регулятора обратной и прямой связи.

Рис.48. Графики фазовых координат.

Рис.49. График управления.

Выводы: На данном этапе была решена задача построения линейного сервомеханизма. В качестве отслеживаемого воздействия была задана экспоненциальная функция. Анализируя выше приведенные графики, можно сказать, что все состояния заданной системы, особенно первая фазовая координата, отслеживается с заданной точностью.

5.6 Задача АКОР - слежения со скользящими интервалами

Пусть интервал времени является объединением нескольких отрезков. Известно некоторое задающее воздействие заданное аналитическим выражением, причем информация о задающем сигнале на следующем отрезке времени поступает только в конце предыдущего. Таким образом, зная задающий сигнал только на одном отрезке времени, мы будем синтезировать управление на этом отрезке.

Разобьем весь интервал на 3 равных отрезка.

Данная задача похожа на задачу отслеживания известного задающего воздействия, заданного аналитическим выражением, но с некоторыми изменениями:

1. Поскольку в уравнение Риккати относительно матрицы входят только параметры системы и функционала качества, то решать его будем один раз на первом отрезке, так как на остальных отрезках решение будет иметь тот же вид, но будет смещено по времени:

2. Начальными условиями для системы на каждом отрезке будет точка, в которую пришла система на предыдущем отрезке:

3. Вектор необходимо пересчитывать на каждом отрезке.

4. В остальном данная задача аналогична задаче построения линейного сервомеханизма (пункт 5.5).

Используя скрипт AKOR_slegenie_so_skolz_intervalami_Modern, получили следующие результаты:

Рис.50. Графики решения уравнения Риккати.

Рис.51. Графики фазовых координат.

Рис.52. График управления.

Выводы: при сравнении полученных результатов, можно сказать, что различия в фазовых координатах при наличии трех участков и при наличии одного участка несущественные. Если сравнивать скорость вычислений и используемые ресурсы, то скорость увеличивается почти в 3 раза, а памяти требуется в 3 раза меньше для решения поставленной задачи. В точках соединения участков наблюдаются скачки, связанные с тем, что требуется значительные затраты на управление, но для первой координаты этот скачок незначительный.

6. Синтез наблюдателя полного порядка

Наблюдателями называются динамические устройства, которые позволяют по известному входному и выходному сигналу системы управления получить оценку вектора состояния. Причем ошибка восстановления .

Система задана в виде:

Начальные условия для заданной системы .

Матрицы заданы в пункте 5.1.1.

Весовые матрицы и имеют следующий вид:

, .

Построим наблюдатель полного порядка и получим значения наблюдаемых координат таких, что:

В качестве начальных условий для наблюдателя выберем нулевые н.у.:

Ранг матрицы наблюдаемости:

- матрица

наблюдаемости.

.

.

Т. е. система является наблюдаемой.

Коэффициенты регулятора:

,

тогда

Собственные значения матрицы :

Коэффициенты наблюдателя выберем из условия того, чтобы наблюдатель был устойчивым, и ближайший к началу координат корень матрицы лежал в 3 - 5 раз левее, чем наиболее быстрый корень матрицы . Выберем корни матрицы

Коэффициенты матрицы наблюдателя:

.

Используя скрипт Sintez_nablyud_polnogo_poryadka, получили следующие результаты:

Рис.53. Графики решения уравнения Риккати.

Рис.54. Графики фазовых координат.

Рис.55. Графики управлений.

Выводы: Так как система является полностью наблюдаема и полностью управляема, то спектр матрицы может располагаться произвольно. Перемещая собственные значения матрицы левее, относительно собственных значений матрицы мы улучшаем динамику системы, однако, наблюдатель становится более чувствителен к шумам.

Литература

1. Методы классической и современной теории автоматического управления: Учебник в 5 - и т. Т.4: Теория оптимизации систем автоматического управления / Под ред. Н.Д. Егупова. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. - 748 с.

2. Краснощёченко В.И.: Методическое пособие: «Методы теории оптимального управления».

Приложение.

PlotTimeFrHaract.m

clc

clear all

close all

b1 = 9;

b0 = 5;

a4 = 0.1153;

a3 = 1.78;

a2 = 3.92;

a1 = 14.42;

a0 = 8.583;

% syms s w

% W_s_chislit = b1 * s + b0;

% W_s_znamen = s * (a4 * s^4 + a3 * s^3 + a2 * s^2 + a1 * s + a0);

%

% W_s_obj = W_s_chislit/W_s_znamen;

%A_w = collect(simplify(abs(subs(W_s_obj, s, i*w))))

%----------------------Построение АЧХ-------------------------------------%

figure('Name', '[0,10]');

w = 0 : 0.01 : 10;

A_w = sqrt((b0^2 + b1^2.*w.^2)./((-a1*w.^2+a3*w.^4).^2+(a0*w-a2*w.^3+a4*w.^5).^2));

plot(w,A_w,'k', 'LineWidth', 2);

grid on

xlabel('w')

ylabel('A(w)')

title('Function ACHX(w)')

%-------------------------------------------------------------------------%

r_ch = roots([b1 b0])

r_zn = roots([a4 a3 a2 a1 a0 0])

%----------------------Построение ФЧХ-------------------------------------%

figure('Name', '[0,100]');

w = 0 : 0.01 : 100;

fi_w = (atan(w/0.5556)-atan(w/0)-atan(w/13.5832)-atan((w-2.7677)/0.5850)...

-atan((w+2.7677)/0.5850) - atan(w/(0.6848)))*180/pi;

plot(w,fi_w, 'k', 'LineWidth', 2);

grid on

xlabel('w')

ylabel('fi(w)')

title('Function FCHX(w)')

%-------------------------------------------------------------------------%

%----------------------Построение АФЧХ------------------------------------%

figure('Name', '[0,100]');

w = 0 : 0.01 : 100;

A_w = sqrt((b0^2 + b1^2.*w.^2)./((-a1*w.^2+a3*w.^4).^2+(a0*w-a2*w.^3+a4*w.^5).^2));

fi_w = (atan(w/0.5556)-atan(w/0)-atan(w/13.5832)-atan((w-2.7677)/0.5850)...

-atan((w+2.7677)/0.5850) - atan(w/(0.6848)));

polar(fi_w,A_w, 'k');

grid on

xlabel('Re(W(jw))')

ylabel('Im(W(jw))')

title('Function AFCHX(fi_w,A_w)')

%-------------------------------------------------------------------------%

%----------------------Построение ЛАЧХ------------------------------------%

figure('Name', '[0,100]');

w = -100 : 0.01 : 100;

LA_w = 20*log(sqrt((b0^2 + b1^2.*w.^2)./((-a1*w.^2+a3*w.^4).^2+(a0*w-a2*w.^3+a4*w.^5).^2)));

plot(w,LA_w,'k', 'LineWidth', 2);

grid on

xlabel('w')

ylabel('L(w)')

title('Function L(w)')

%-------------------------------------------------------------------------%

%----------------------Построение ФАЧХ------------------------------------%

%-------------------------------------------------------------------------%

%----------------------Построение h(t)------------------------------------%

figure('Name', '[0,50]');

t = 0 : 0.01 : 50;

h_t = 0.0024 * exp(-13.5832.*t) - 0.2175 * exp(-0.6848.*t)...

+ 0.1452 * exp(-0.5850.*t).* cos(2.7677.*t)...

- 0.2217 * exp(-0.5850.*t).* sin(2.7677.*t)...

+ 0.5825 .* t + 0.0699;

plot(t,h_t, 'k', 'LineWidth', 2);

grid on

xlabel('t')

ylabel('h(t)')

title('Function h(t)')

%-------------------------------------------------------------------------%

%----------------------Построение k(t)------------------------------------%

figure('Name', '[0,50]');

t = 0 : 0.01 : 50;

k_t = - 0.0329 * exp(-13.5832.*t) + 0.1489 * exp(-0.6848.*t)...

- 0.6986 * exp(-0.5850.*t).* cos(2.7677.*t)...

- 0.2721 * exp(-0.5850.*t).* sin(2.7677.*t)...

+ 0.5826;

plot(t,k_t, 'k', 'LineWidth', 2);

grid on

xlabel('t')

ylabel('k(t)')

title('Function k(t)')

%-------------------------------------------------------------------------%

x1=tf([b1 b0],[a4 a3 a2 a1 a0 0]);

ltiview(x1)

ProstranstvoSostoyanii.m

clc

clear all

%format rational

b1 = 9;

b0 = 5;

a5 = 0.1153;

a4 = 1.78;

a3 = 3.92;

a2 = 14.42;

a1 = 8.583;

a0 = 0;

%1. Матрица Фробениуса

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A=[0 1 0 0 0;

0 0 1 0 0;

0 0 0 1 0;

0 0 0 0 1;

0 -a1/a5 -a2/a5 -a3/a5 -a4/a5]

B=[0; 0; 0; 0; 1/a5]

C=[b0 b1 0 0 0]

%Проверка

syms s

W_s = collect(simplify(C*(s.*eye(5)-A)^(-1)*B),s)

pretty(W_s)

%2. Параллельная декомпозиция

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

b1 = b1/a5;

b0 = b0/a5;

s1 = 0;

s2 = -6615/487;

s3 = -1022/1747 + 4016/1451*i;

s4 = -1022/1747 - 4016/1451*i;

s5 = -415/606;

alfa = real(s3);

beta = imag(s3);

syms s A B C D E

W_s_etal = collect(((b1*s+b0)/((s-s1)*(s-s2)*((s+alfa)^2+beta^2)*(s-s5))),s)

%pretty(W_s_etal)

Slag_1 = simplify(collect(A*(s-s2)*((s+alfa)^2+beta^2)*(s-s5),s));

Slag_2 = simplify(collect(B*(s-s1)*((s+alfa)^2+beta^2)*(s-s5),s));

Slag_3 = simplify(collect(C*(s-s1)*((s+alfa)^2+beta^2)*(s-s2),s));

Slag_4 = simplify(collect((D*s+E)*(s-s1)*(s-s2)*(s-s5),s));

Chislit_W_s =collect(Slag_1 + Slag_2 + Slag_3 + Slag_4,s);

%Решение системы линейных уравнений

MS =double( [1 1 1 1 0;

6753029497/515578134 -513659/1058682 10560977/850789 4210795/295122 1;

77456808434995506239663107/126764366837761533378822144 1874500571398143988939141/260296441145300889894912 -3300780600401725219142291/418364246989311991349248 915075/98374 4210795/295122;

26189071674868424275768861465/253528733675523066757644288 2853037197681682345182805/520592882290601779789824 45476725452203201718998205/418364246989311991349248 0 915075/98374;

6290947020888109571128085025/84509577891841022252548096 0 0 0 0])

PCH = [0; 0; 0; b1; b0];

Koeff = MS^(-1)*PCH

%Проверка

MS*[Koeff(1);Koeff(2);Koeff(3);Koeff(4);Koeff(5)];

Slag_1 = simplify(collect(Koeff(1)*(s-s2)*((s+alfa)^2+beta^2)*(s-s5),s));

Slag_2 = simplify(collect(Koeff(2)*(s-s1)*((s+alfa)^2+beta^2)*(s-s5),s));

Slag_3 = simplify(collect(Koeff(3)*(s-s1)*((s+alfa)^2+beta^2)*(s-s2),s));

Slag_4 = simplify(collect((Koeff(4)*s+Koeff(5))*(s-s1)*(s-s2)*(s-s5),s));

Chislit_W_s =collect((Slag_1 + Slag_2 + Slag_3 + Slag_4),s);

Znamena_W_s = collect((s-s1)*(s-s2)*((s+alfa)^2+beta^2)*(s-s5),s);

W_s = collect(simplify(Koeff(1)/(s-s1)+Koeff(2)/(s-s2)+(Koeff(4)*s+Koeff(5))/((s+alfa)^2+beta^2)+Koeff(3)/(s-s5)),s)

pretty(W_s)

%Расчет матриц состояния

A = [s1 0 0 0 0;

0 s2 0 0 0 ;

0 0 0 1 0;

0 0 -(alfa^2+beta^2) -2*alfa 0;

0 0 0 0 s5]

B = [Koeff(1); Koeff(2); 0; 1; Koeff(3)]

C = [1 1 Koeff(5) Koeff(4) 1]

%Проверка

W_s = collect(simplify(C*(s.*eye(5)-A)^(-1)*B),s)

pretty(W_s)

%ВСЕ ПОДСЧИТАНО ВЕРНО!!!

SimplexMetod2.m

function SimplexMetod2

clc

clear all

close all

format short

%%%%%%%%%%%%%%%%%%%%%%%ВВОДИМЫЕ ДАННЫЕ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Матрицы системы

A = [0 2;

-3 0];

B = [0; 2];

% Координаты начальной и конечной точки

X_0 = [14; 0];

X_N = [0; 0];

% Ограничение на управление

u_m = -3;

u_p = 5;

eps = 1e-10;% погрешность сравнения с нулем

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N = 195;% число шагов

%h = t1/N;% шаг дискретизации

h = 0.0162;

alfa = 1;

a = 0;

b = 0;

%t1 = 796/245;% время перехода в конечное состояние

n = size(A);

n = n(1);% порядок системы

% Нахождение матричного экспоненциала

syms s t

MatrEx = ilaplace((s*eye(n)-A)^(-1));

MatrEx_B = MatrEx*B;

% Вычисление матриц F и G

F = subs(MatrEx, t, h);

G = double(int(MatrEx_B, t, 0, h));

%%%%%%%%%%ФОРМИРОВАНИЕ ЗАДАЧИ БЫСТРОДЕЙСТВИЯ КАК ЗАДАЧИ%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for index = 1 : 1e+10

% Вычисление правой части

PravChast = X_N - F^N * X_0;

% Вычисление произведения F на G

FG = zeros(n, N);% формирование матрицы для хранения данных

for j = 1 : n

for i = 0 : N - 1

fg = F^(N-i-1) * G;

if PravChast(j) < 0

fg = -fg;

end

FG(j, i+1) = fg(j);

end

end

% Построение z-строки

z_stroka = zeros(1, 4*N+n+2);% формирование матрицы для хранения данных

% Первый элемент z-строки

z_stroka(1) = 1;

% Суммирование правых частей

for j = 1 : n

z_stroka(4*N+n+2) = z_stroka(4*N+n+2) + abs(PravChast(j));

end

% Формирование элементов z-строки между 1-м и последним элементами

%при 2N небазисных переменных, т.е. при управлениях

for i = 2 : 2 : 2 * N

for j = 1 : n

z_stroka(i) = z_stroka(i) + FG(j, i/2);

end

for j = 1 : n

z_stroka(i+1) = z_stroka(i+1) - FG(j, i/2);

end

end

% Формирование симплекс-таблицы

CT = zeros(n+2*N+1, 4*N+n+2);

% Построение симплекс-таблицы начиная с z-строки

CT(1,:) = z_stroka(1,:);

% Формирование R-строк в симплекс-таблице

for j = 2 : n + 1

% Формирование правой части в R-строках

CT(j, 4*N+n+2) = abs(PravChast(j-1));

% Формирование элементов R-строк между 1-м и последним элементами

%при 2N небазисных переменных, т.е. при управлениях

for i = 2 : 2 : 2 * N

CT(j, i) = FG(j-1, i/2);

CT(j, i+1) = -FG(j-1, i/2);

end

end

% Формирование S-строк в симплекс-таблице

l = 2;

for j = n + 2 : 2 : n + 2 * N + 1

% Формирование правой части в S-строках

CT(j, 4*N+n+2) = u_p;

CT(j+1, 4*N+n+2) = abs(u_m);

% Формирование элементов S-строк между 1-м и последним элементами

%при 2N небазисных переменных, т.е. при управлениях

CT(j, l : l+1) = [1 -1];

CT(j+1, l : l+1) = [-1 1];

l = l + 2;

end

% Формирование базиса в симплекс-таблице, т.е коэффициентов, стоящих при

%базисных переменных от 2N небазисных переменных до правой части (до 4*N+n+1)

CT(2 : n+2*N+1, 2*N+2 : 4*N+n+1) = eye(n+2*N, n+2*N);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%

РЕШЕНИЕ ЗАДАЧИ БЫСТРОДЕЙСТВИЯ%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%СИМПЛЕКС-МЕТОДОМ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Цикл смены базисных переменных

nn = size(find(CT(1,2:2*N+1) >= eps));

while nn > 0

[znach, N_stolb] = max(CT(1, 2 : 2*N+1));

N_stolb = N_stolb + 1; % т.к. при небазисн. перемен.

PravChast = CT(:, 4*N+n+2);

for j = 2 : n + 2 * N + 1

if CT(j, N_stolb) > 0

PravChast(j) = PravChast(j) / CT(j, N_stolb);

else

PravChast(j) = inf;

end

end

[znach, N_str] = min(PravChast(2 : n+2*N+1));

N_str = N_str + 1;

% Формирование матрицы перехода B

B = eye(n+2*N+1, n+2*N+1);

B(:, N_str) = CT(:, N_stolb);

% Обращение матрицы B

RE = B(N_str, N_str);

for j = 1 : n + 2 * N + 1

if j == N_str

B(j, N_str) = 1 / RE;

else

B(j, N_str) = -B(j, N_str) / RE;

end

end

%B = inv(B);

% Получение новой симплекс таблицы

CT = B * CT;

nn = size(find(CT(1,2:2*N+1) >= eps));

end

u = zeros(1,N);

% Формирование управления

for j = 2 : n + 2 * N + 1

for i = 2 : 2 * N + 1

if CT(j, i) >= eps

if mod(i, 2) < eps

u(i/2) = CT(j, 4*N+n+2);

else

u((i-1)/2) = -CT(j, 4*N+n+2);

end

end

end

end

% Формирование x1 и x2

X = zeros(n, N);

X(:, 1) = F * X_0 + G * u(1);

for i = 2 : N

X(:, i) = F * X(:, i-1) + G * u(i);

end

% Объединение с начальными условиями

X1 = [X_0(1) X(1, :)];

X2 = [X_0(2) X(2, :)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% проверка на окончание выбора количества шагов

XX = [X_0 X];

% Вычисление нормы вектора состояния

normaXX = norm(XX(:,N))

% Вычисление значения переменной R

R = abs(X_N - F^N * X_0) - FG * u';

R = R';

z = sum(R);

% Погрешность приближения к точному решению

pogresh = 0.3;

if (normaXX < pogresh)

N_opt = N;

break;

else

if (z > h)

if a == 1

alfa = ceil(alfa/2);

end

N = N + alfa;

a = 0;

b = 1;

else

if b == 1

alfa = ceil(alfa/2);

end

N = N - alfa;

a = 1;

b = 0;

end

end

t_perevoda = N * h;

end

N_opt

h

t_perevoda

%%%%%%%%%%%%%%%%%%%%ОФОРМЛЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%В ГРАФИЧЕСКОМ ВИДЕ%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Построение графика x1(t);

figure(1)

t = (0 : 1 : length(X1)-1) * h;

plot(t, X1, 'b', 'LineWidth', 2);

hl=legend('x_1(t)');

set(hl, 'FontName', 'Courier');

xlabel('t, cek'); ylabel('x_1(t)');

grid on

% Построение графика x2(t);

figure(2)

t = (0 : 1 : length(X2)-1) * h;

plot(t, X2, 'b', 'LineWidth', 2);

hl=legend('x_2(t)');

set(hl, 'FontName', 'Courier');

xlabel('t, cek'); ylabel('x_2(t)');

grid on

% Построение графика x2 = x2(x1);

figure(3)

plot(X1, X2, 'm', 'LineWidth', 2);

hl=legend('x_2 = x_2(x_1)');

set(hl, 'FontName', 'Courier');

xlabel('x_1(t)'); ylabel('x_2(x_1(t))');

grid on

% Построение графика u(t)

figure(4)

t = (0 : 1 : length(u)-1) * h;

plot(t, u, 'r', 'LineWidth', 2);

hl=legend('u(t)');

set(hl, 'FontName', 'Courier');

xlabel('t, cek'); ylabel('u(t)');

grid on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Optimal_L_problem_moments.m

clc

close all

clear all

format long

% ------------------------------------------------------------------------%

b_0 = 5;

b_1 = 9;

% Укороченная система данного объекта

a_5 = 0.1153;

a_4 = 1.78;

a_3 = 3.92;

a_2 = 14.42;

a_1 = 8.583;

a_0 = 0;

% ------------------------------------------------------------------------%

% Приведение системы

b0 = b_0/a_5;

b1 = b_1/a_5;

a5 = a_5/a_5;

a4 = a_4/a_5;

a3 = a_3/a_5;

a2 = a_2/a_5;

a1 = a_1/a_5;

a0 = a_0/a_5;

% ------------------------------------------------------------------------%

% Порядок системы

poryadok = 5;

% Начальные и конечные условия относительно вектора Y

Y_0 = [3 2 1 5]';

Y_T = [0 -1 0 3]';

% Конечное время перехода

T = 3;

% Матрица перехода от Н.У. Y к Н.У. X

B_ = [b0 b1 0 0 0;

0 b0 b1 0 0;

0 0 b0 b1 0;

0 0 0 b0 b1];

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Начальные условия для упорядоченной системы

X_0 = B_' * inv(B_ * B_') * Y_0

X_T = B_' * inv(B_ * B_') * Y_T

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Представление системы в пространстве состояний

A = [0 1 0 0 0;

0 0 1 0 0;

0 0 0 1 0

0 0 0 0 1;

-a0 -a1 -a2 -a3 -a4]

B = [0; 0; 0; 0; 1]

C = [b0 b1 0 0 0]

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Вычисление матричной экспоненты

syms s t

MatrEx = simplify (vpa(ilaplace(inv(s*eye(5) - A)), 50))

% ------------------------------------------------------------------------%

RETURN = 1;

while RETURN == 1

disp('L - проблема моментов в пространстве вход-выход: 1')

disp('L - проблема моментов в пространстве состояний : 2')

reply = input('Выберете метод решения [1 или 2]: ', 's');

switch reply

case '1'

disp('L - проблема моментов в пространстве вход-выход')

% ------------------------L - проблема моментов---------------------------%

% ----------------------в пространстве вход-выход-------------------------%

% ------------------------------------------------------------------------%

% Передаточная функция

W_obj_s = 1/(a5*s^5 + a4*s^4 + a3*s^3 + a2*s^2 + a1*s + a0);

% Полюса передаточной функции

polyusa_TF = roots([a5 a4 a3 a2 a1 a0]);

% ИПФ

K_t = simplify (vpa (ilaplace(1 / (a5*s^5 + a4*s^4 + a3*s^3 + ...

a2*s^2 + a1*s + a0)),50))

% K_t = vpa(K_t,6)

% ------------------------------------------------------------------------%

% Составление матрицы Вронского

for i = 1 : poryadok

Matrix_Vron (i, 1) = diff (exp (polyusa_TF(1) *t), t, i - 1);

Matrix_Vron (i, 2) = diff (exp (polyusa_TF(2) *t), t, i - 1);

Matrix_Vron (i, 3) = diff (exp (real(polyusa_TF(3))*t) * ...

cos(imag(polyusa_TF(3))*t), t, i - 1);

Matrix_Vron (i, 4) = diff (exp (real(polyusa_TF(4))*t) * ...

sin(imag(polyusa_TF(4))*t), t, i - 1);

Matrix_Vron (i, 5) = diff (exp (polyusa_TF(5) *t), t, i - 1);

end

% Матрица Вронского при t = 0;

Matrix_Vron_t_0 = double(subs(Matrix_Vron,t,0));

% Матрица Вронского при t = T;

T = 3;

Matrix_Vron_t_T = double(subs(Matrix_Vron,t,T));

% vpa(Matrix_Vron_t_0,6)

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Определение неизвестных коэффициентов C

C_ = inv(Matrix_Vron_t_0) * X_0;

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Нахождение моментных функций

K_Tt_1 = subs (K_t,t, T - t);

K_Tt = diff (K_t);

K_Tt_2 = subs (K_Tt, t, T - t);

K_Ttt = diff (K_Tt);

K_Tt_3 = subs (K_Ttt, t, T - t);

K_Tttt = diff (K_Ttt);

K_Tt_4 = subs (K_Tttt, t, T - t);

K_Ttttt = diff (K_Tttt);

K_Tt_5 = subs (K_Ttttt, t, T - t);

h1_Tt = K_Tt_1

h2_Tt = K_Tt_2

h3_Tt = K_Tt_3

h4_Tt = K_Tt_4

h5_Tt = K_Tt_5

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Нахождение моментов

for i = 1 : poryadok

Matrix_a(i) = X_T(i) - C_' * Matrix_Vron_t_T(i,:)';

end

Matrix_a = Matrix_a'

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

RETURN = 2;

case '2'

disp('L - проблема моментов в пространстве состояний')

% ------------------------L - проблема моментов---------------------------%

% ----------------------в пространстве состояний--------------------------%

% ------------------------------------------------------------------------%

Matr_Ex_T = subs(MatrEx, t, T);

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Нахождение моментов

for i = 1 : poryadok

Matrix_a(i) = X_T(i) - Matr_Ex_T(i,:) * X_0;

end

Matrix_a = Matrix_a'

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Нахождение моментных функций

Matr_Ex_Tt = subs(MatrEx, t, T - t);

h_Tt = vpa(expand(simplify(Matr_Ex_Tt * B)),50);

h1_Tt = h_Tt(1)

h2_Tt = h_Tt(2)

h3_Tt = h_Tt(3)

h4_Tt = h_Tt(4)

h5_Tt = h_Tt(5)

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

RETURN = 2;

otherwise

disp('Неизвестный метод.')

RETURN = 1;

end

end

% h1_Tt = vpa(h1_Tt,6)

% h2_Tt = vpa(h2_Tt,6)

% h3_Tt = vpa(h3_Tt,6)

% h4_Tt = vpa(h4_Tt,6)

% h5_Tt = vpa(h5_Tt,6)

% ------------------------------------------------------------------------%

% --------Нахождение управления и вычисление минимальной энергии----------%

% ------------------------------------------------------------------------%

syms ks1 ks2 ks3 ks4 ks5

% ------------------------------------------------------------------------%

% Формирование функционала

d_v_2 = vpa (simplify (int ((ks1*h1_Tt + ks2*h2_Tt + ks3*h3_Tt + ...

ks4*h4_Tt + ks5*h5_Tt)^2, t, 0, T)), 50);

% Выражаем ks1 через остальные

ks1 = vpa ((1 - ks2*Matrix_a(2) - ks3*Matrix_a(3) - ...

ks4*Matrix_a(4) - ks5*Matrix_a(5))/Matrix_a(1), 50);

% Подставляем в функционал ks1

d_v_2 = vpa (expand (subs (d_v_2, ks1)), 50);

% Находим частные производные по ksi

eq_1= diff(d_v_2, ks2);

eq_2= diff(d_v_2, ks3);

eq_3= diff(d_v_2, ks4);

eq_4= diff(d_v_2, ks5);

% Решаем СЛАУ относительно ksi

ksi= solve(eq_1, eq_2, eq_3, eq_4);

% Полученные значения ksi

ks2= double(ksi.ks2)

ks3= double(ksi.ks3)

ks4= double(ksi.ks4)

ks5= double(ksi.ks5)

ks1 = double(vpa ((1 -ks2*Matrix_a(2) -ks3*Matrix_a(3) -ks4*Matrix_a(4) - ...

ks5*Matrix_a(5))/Matrix_a(1), 50))

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Проверка условия полученного результата

ks1*Matrix_a(1) + ks2*Matrix_a(2) + ks3*Matrix_a(3) + ...

ks4*Matrix_a(4) + ks5*Matrix_a(5)

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Вычисление управления и минимальной энергии

d_v_2 = vpa (simplify (int ((ks1*h1_Tt + ks2*h2_Tt + ks3*h3_Tt + ...

ks4*h4_Tt + ks5*h5_Tt)^2, t, 0, T)), 50)

% d_v_2 = double(d_v_2)

gamma_v_2 = 1/d_v_2

% gamma_v_2 = double(gamma_v_2)

u = vpa (expand(simplify(gamma_v_2 * (ks1*h1_Tt + ks2*h2_Tt + ks3*h3_Tt + ...

ks4*h4_Tt + ks5*h5_Tt))), 50)

% u = vpa(u,6)

u_0 = subs(u,t,0)

u_T = subs(u,t,T)

ezplot(u, [0 T], 1)

hl=legend('u(t)');

set(hl, 'FontName', 'Courier');

title ('u(t)');

xlabel('t')

grid on

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Нахождения X

% Вычисление матричной экспоненты

MatrEx = simplify (vpa(ilaplace(inv(s*eye(5) - A)), 50));

syms t tay

X_svob = MatrEx * X_0;

X_vinyg = int ((subs(MatrEx, t, t - tay))*B*(subs (u, t, tay)), tay, 0,t);

X_real = X_svob + X_vinyg;

save Sostoyaniya X_real u

X_real = vpa (expand (simplify(X_real)), 50)

X_real_0 = double(subs (X_real, t, 0))

X_real_T = double(subs (X_real, t, T))

% Погрешность X

delta_X_T = double(vpa(X_T - X_real_T, 50))

delta_X_0 = double(vpa(X_0 - X_real_0, 50))

% Нахождение Y

for i = 1 : poryadok - 1

Y_real(i) = B_(i,:) * X_real;

end

Y_real = vpa (expand(simplify(Y_real')), 50)

Y_real_0 = double(subs (Y_real, t, 0))

Y_real_T = double(subs (Y_real, t, T))

% Погрешность Y

delta_Y_T = double(vpa(Y_T - Y_real_T, 50))

delta_Y_0 = double(vpa(Y_0 - Y_real_0, 50))

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Вычисление max значений для задачи АКОР

h = 0.01;

tic

tt = 0 : h : T;

for i = 1 : poryadok

X_max(i) = max(abs(subs(X_real(i),t,tt)));

end

U_max = max(abs(subs(u,t,tt)));

toc

save Sostoyaniya X_max U_max

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Построение результатов X(t)

ezplot (X_real(1), [0 T],2)

title ('x_1(t)');

grid on

ezplot (X_real(2), [0 T],3)

title ('x_2(t)');

grid on

ezplot (X_real(3), [0 T],4)

title ('x_3(t)');

grid on

ezplot (X_real(4), [0 T],5)

title ('x_4(t)');

grid on

ezplot (X_real(5), [0 T],6)

title ('x_5(t)');

grid on

% Построение результатов Y(t)

ezplot (Y_real(1), [0 T],7)

title ('y_1(t)');

grid on

ezplot (Y_real(2), [0 T],8)

title ('y_2(t)');

grid on

ezplot (Y_real(3), [0 T],9)

title ('y_3(t)');

grid on

ezplot (Y_real(4), [0 T],10)

title ('y_4(t)');

grid on

% ------------------------------------------------------------------------%

Gramian_Uprav.m

clc

close all

clear all

format long

% ------------------------------------------------------------------------%

b_0 = 5;

b_1 = 9;

% Укороченная система данного объекта

a_5 = 0.1153;

a_4 = 1.78;

a_3 = 3.92;

a_2 = 14.42;

a_1 = 8.583;

a_0 = 0;

% ------------------------------------------------------------------------%

% Приведение системы

b0 = b_0/a_5;

b1 = b_1/a_5;

a5 = a_5/a_5;

a4 = a_4/a_5;

a3 = a_3/a_5;

a2 = a_2/a_5;

a1 = a_1/a_5;

a0 = a_0/a_5;

% ------------------------------------------------------------------------%

% Порядок системы

poryadok = 5;

% Начальные и конечные условия относительно вектора Y

Y_0 = [3 2 1 5]';

Y_T = [0 -1 0 3]';

% Конечное время перехода

T = 3;

% Матрица перехода от Н.У. Y к Н.У. X

B_ = [b0 b1 0 0 0;

0 b0 b1 0 0;

0 0 b0 b1 0;

0 0 0 b0 b1];

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Начальные условия для упорядоченной системы

X_0 = B_' * inv(B_ * B_') * Y_0

X_T = B_' * inv(B_ * B_') * Y_T

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Представление системы в пространстве состояний

A = [0 1 0 0 0;

0 0 1 0 0;

0 0 0 1 0

0 0 0 0 1;

-a0 -a1 -a2 -a3 -a4];

B = [0; 0; 0; 0; 1];

C = [b0 b1 0 0 0];

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Вычисление матричной экспоненты

syms s t

MatrEx = simplify (vpa(ilaplace(inv(s*eye(5) - A)), 50));

MatrEx_T = vpa(subs(MatrEx, t, T),50);

MatrEx_Tt = vpa(subs(MatrEx, t, T-t),50);

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Вычисление матрицы управляемости

M_c = [B A*B A^2*B A^3*B A^4*B]

rank_M_c = rank(M_c); %ранк = 5 - система управляема

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Вычисление грамиана управляемости

W_Tt = double(vpa(simplify(int(MatrEx_Tt*B*B'*MatrEx_Tt',t,0,T)),50))

% ------------------------------------------------------------------------%

% ------------------------------------------------------------------------%

% Формирование управления

u = vpa(expand(simplify(B'*MatrEx_Tt'*inv(W_Tt)*(X_T-MatrEx_T*X_0))),50)

u_0 = subs(u,t,0)

u_T = subs(u,t,T)

u = vpa(u,6)

% ------------------------------------------------------------------------%

ezplot(u, [0 T], 1)

title ('u(t)');

xlabel('t')

grid on

tt = 0 : 0.01 : T;

u2 = -20.605579750692850622177761310569*exp(-40.749492463732569440253455897187+13.583164154577523146751151965729*t)+19.011167813350479567880663060491*exp(-2.0544534472800777280645828326668+.68481781576002590935486094422228*t)+1.3356706538317879679656856470126*exp(-1.7550088311372150108106250409710+.58500294371240500360354168032368*t)*cos(-8.3032397968812277095785721047505+2.7677465989604092365261907015835*t)+7.2830359327562658520685140088852*exp(-1.7550088311372150108106250409710+.58500294371240500360354168032368*t)*sin(-8.3032397968812277095785721047505+2.7677465989604092365261907015835*t)-8.6096491449877801097840179781687;


Подобные документы

  • Особенности управления состоянием сложных систем. Способы нахождения математической модели объекта (системы) методом площадей в виде звена 2-го и 3-го порядков. Формы определения устойчивости ЗСАУ. Нахождение переходной характеристики ЗСАУ и основных ПКР.

    курсовая работа [112,5 K], добавлен 04.02.2011

  • Модели оптимальных систем автоматического управления с объектами, динамика которых описывается линейными дифференциальными уравнениями второго порядка. Моделирование объекта с передаточной функцией. Расчет стоимости разработки программы. Расчет освещения.

    дипломная работа [1,8 M], добавлен 24.04.2013

  • Определение передаточной функции объекта управления. Построение кривой разгона на выходе объекта. Вычисление и построение комплексно–частотной характеристики объекта, границ устойчивости. Выбор настроек ПИ-регулятора по методике Кона и Копеловича.

    курсовая работа [292,8 K], добавлен 03.05.2012

  • Построение экономической модели по оптимизации прибыли производства. Разработка математической модели задачи по оптимизации производственного плана и её решение методами линейного программирования. Определение опорного и оптимального плана производства.

    дипломная работа [311,3 K], добавлен 17.01.2014

  • Линеаризация математической модели регулирования. Исследование динамических характеристик объекта управления по математической модели. Исследование устойчивости замкнутой системы управления линейной системы. Определение устойчивости системы управления.

    курсовая работа [1,6 M], добавлен 07.08.2013

  • Транспортная задача линейного программирования, закрытая модель. Создание матрицы перевозок. Вычисление значения целевой функции. Ввод зависимостей из математической модели. Установление параметров задачи. Отчет по результатам транспортной задачи.

    контрольная работа [202,1 K], добавлен 17.02.2010

  • Цель работы: изучить и научиться применять на практике симплекс - метод для решения прямой и двойственной задачи линейного программирования. Математическая постановка задачи линейного программирования. Общий вид задачи линейного программирования.

    реферат [193,4 K], добавлен 28.12.2008

  • Подсчет запасов устойчивости контуров по амплитуде и фазе в трактовке критерия Найквиста. Проверка устойчивости объекта по двум замкнутым контурам. Составление цифровой модели объекта для системы Simulink. Переходные характеристики объекта управления.

    курсовая работа [748,6 K], добавлен 19.02.2012

  • Методика формирования математической модели в операторной форме, а также в форме дифференциального уравнения и в пространстве состояний. Построение графа системы. Оценка устойчивости, управляемости, наблюдаемости системы автоматического управления.

    контрольная работа [200,4 K], добавлен 03.12.2012

  • Построение экономико-математической модели задачи, комментарии к ней и получение решения графическим методом. Использование аппарата теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования.

    контрольная работа [2,2 M], добавлен 27.03.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.