Методы и математические модели в экономике
Определение максимума целевой функции при различных системах ограничений. Применение экономико-математических методов при нахождении оптимальных планов транспортных задач. Решение линейных неравенств, максимальное и минимальное значения целевой функции.
Рубрика | Экономико-математическое моделирование |
Вид | методичка |
Язык | русский |
Дата добавления | 06.06.2012 |
Размер файла | 45,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Методическое пособие по ЭММ
для студентов заочной формы обучения
Задания №№ 1 - 10
Построить на плоскости область решений линейных неравенств и геометрически найти максимальное и минимальное значения целевой функции в этой области.
экономический математический целевая функция
1. 2.
3. 4.
5. 6.
7. 8.
9. 10.
Задания №№ 11-20
Решить задачу с помощью симплекс-метода.
Найти максимум целевой функции при данной системе ограничений.
11. |
(j=1,2,3,4). |
12. |
(j=1,2,3). |
|
13. |
(j=1,2,3). |
14. |
(j=1,2,3). |
|
15. |
(j=1,2,3,4). |
16. |
(j=1,2,3). |
|
17. |
(j=1,2,3). |
18. |
(j=1,2,3,4). |
|
19. |
(j=1,2,3,4). |
20. |
(j=1,2,3,4). |
Задания №№ 21-30
Найти оптимальные планы транспортных задач
№ 21
Четыре предприятия одного экономического района для производства продукции используют три вида сырья. Потребности в сырье каждого из предприятий соответственно равны 120, 50, 190 и 110 ед. Сырье сосредоточено в трех местах его получения, а запасы соответственно равны 160, 140, 170 ед. На каждое из предприятий сырье может завозиться из любого пункта его получения. Тарифы перевозок задаются матрицей
.
Составить такой план перевозок, при котором общая стоимость перевозок является минимальной и найти оптимальный план.
№ 22
На трех складах оптовой базы сосредоточен однородный груз в количествах 180, 60, 80 ед. Этот груз необходимо перевезти в четыре магазина. Каждый из магазинов должен получить соответственно 120, 40, 80 и 80 ед. груза. Тарифы перевозок единицы груза из складов во все магазины задаются матрицей
.
Составить такой план перевозок, при котором общая стоимость перевозок является минимальной, и найти оптимальный план.
№ 23
Производственное объединение имеет в своем составе три филиала, которые производят продукцию в количествах, равных 50, 30 и 10 ед. Эту продукцию получают четыре потребителя, расположенные в разных местах. Их потребности соответственно равны 30, 30, 10, 20 ед. Тарифы перевозок продукции от каждого из филиалов соответствующим потребителям задаются матрицей
.
Составить такой план прикрепления получателей продукции к ее поставщикам, при котором общая стоимость перевозок является минимальной, и найти оптимальное решение.
№ 24
Три предприятия одного экономического района могут производить некоторую продукцию в количествах, соответственно равных 180, 350 и 20 ед. Эта продукция должна быть поставлена пяти потребителям в количествах 110, 90, 120, 80 и 150 ед. Затраты, связанные с производством и доставкой единицы продукции, задаются матрицей
.
Составить такой план прикрепления получателей продукции к ее поставщикам, при котором общая стоимость перевозок является минимальной, и найти оптимальное решение.
№ 25
Для строительства четырех дорог используется гравий из трех карьеров. Запасы гравия в каждом из карьеров соответственно равны 120, 280 и 160 у.е. Потребности в гравии для строительства каждой из дорог соответственно равны 130, 220, 100 и 110 у.е. Известны также тарифы перевозок 1 у.е гравия из каждого карьера к каждой из строящихся дорог, которые задаются матрицей
.
Составить такой план перевозок гравия, при котором потребности в нем каждой из строящихся дорог были бы удовлетворены при наименьшей общей стоимости перевозок.
№ 26
Для строительства трех объектов используется кирпич, изготовляемый на трех заводах. Ежедневно каждый из заводов может изготовлять 100, 150 и 50 у.е. кирпича. Ежедневные потребности в кирпиче соответственно равны 75, 80, 60 и 85 у.е. Известны тарифы перевозок 1 у.е. кирпича с каждого из заводов к каждому из строящихся объектов:
.
Составить такой план перевозки кирпича, при котором общая стоимость перевозок будет минимальной.
№ 27
На трех хлебокомбинатах ежедневно производится 110, 190 и 90 т муки. Эта мука потребляется четырьмя хлебозаводами, ежедневные потребности которых равны соответственно 80, 60, 170 и 80 т. тарифы перевозок 1 т муки с хлебокомбинатов к каждому из заводов задаются матрицей
.
Составить такой план доставки муки, при котором общая стоимость перевозок будет минимальной.
№ 28
В трех хранилищах горючего ежедневно хранится 175, 125 и 140 т бензина. Этот бензин ежедневно получают четыре заправочные станции в количествах, равных соответственно 180, 110, 80 и 70 т. Стоимости перевозок 1 т бензина с хранилищ к заправочным станциям задаются матрицей
.
Составить такой план перевозок бензина, при котором общая стоимость перевозок будет минимальной.
№ 29
На трех складах оптовой базы сосредоточена мука в количествах равных соответственно 140, 360 и 180 тонн. Эту муку необходимо завести в пять магазинов, каждый из которых должен получить соответственно 90, 120, 230, 180 и 60 тонн. Зная тарифы перевозки 1 т муки с каждого из складов в соответствующие магазины, которые определяются матрицей
.
Составьте план перевозок, обеспечивающий минимальную общую стоимость перевозок.
№ 30
На трех железнодорожных станциях скопилось 120, 110 и 130 незагруженных вагонов. Эти вагоны необходимо перегнать на железнодорожные станции . На каждой из этих станций потребность в вагонах соответственно равна 80, 60, 70, 100 и 50. Стоимости перегона вагонов задаются матрицей
.
Составьте такой план перегонок вагонов, чтобы общая стоимость была бы минимальной.
Указания
При решении задач пользоваться теорией и примерами приведенными в методическом пособии для студентов заочной форму обучения «Методы и математические модели в экономике».
Литература указана в методическом пособии.
Контрольная работа состоит из трех задач.
Номера задач соответствуют последней цифре зачетной книжки, например, номер зачетной книжки - 209107, следовательно, Вы решаете задачи под номерами: 7, 17 и 27. Если номер зачетки оканчивается «0», то решаете задачи под номерами: 10, 20, 30.
Размещено на Allbest.ru
Подобные документы
Рассмотрение методов северо-западного пути, наименьшего элемента и аппроксимации Фогеля. Определение минимального значения целевой функции. Система ограничений в каноническом виде. Поиск наименьшего значения линейной функции графическим методом.
контрольная работа [463,9 K], добавлен 18.03.2013Разработка межотраслевого баланса с увеличением конечного продукта на 10 процентов. Использование данных таблиц межотраслевых потоков и конечных продуктов. Максимальное и минимальное значения целевой функции. Особенности симплексного метода решения задач.
контрольная работа [286,5 K], добавлен 19.11.2014Составление системы ограничений и целевой функции по заданным параметрам. Построение геометрической интерпретации задачи, ее графическое представление. Решение транспортной задачи распределительным методом и методом потенциалов, сравнение результатов.
контрольная работа [115,4 K], добавлен 15.11.2010Составление математической модели, целевой функции, построение системы ограничений и симплекс-таблиц для решения задач линейного программирования. Решение транспортной задачи: определение опорного и оптимального плана, проверка методом потенциалов.
курсовая работа [54,1 K], добавлен 05.03.2010Содержание и построение экономико-математических методов. Роль оптимальных методов в планировании и управлении производством. Экономико-математические модели оптимальной загрузки производственных мощностей. Отраслевое прогнозирование и регулирование.
контрольная работа [62,1 K], добавлен 30.08.2010Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.
реферат [91,1 K], добавлен 16.05.2012Моделирование экономических систем: основные понятия и определения. Математические модели и методы их расчета. Некоторые сведения из математики. Примеры задач линейного программирования. Методы решения задач линейного программирования.
лекция [124,5 K], добавлен 15.06.2004Построение математических моделей по определению плана выпуска изделий, обеспечивающего максимальную прибыль, с помощью графического и симплексного метода. Построение моделей по решению транспортных задач при применении метода минимальной стоимости.
задача [169,2 K], добавлен 06.01.2012Расчет минимального значения целевой функции. Планирование товарооборота для получения максимальной прибыли торгового предприятия. Анализ устойчивости оптимального плана. План перевозки груза от поставщиков к потребителям с минимальными затратами.
контрольная работа [250,6 K], добавлен 10.03.2012Нахождение оптимального значения целевой функции, позволяющей минимизировать себестоимость произведенной продукции. Оптимизационные задачи на максимум выручки от реализации готовой продукции. Экономико-математическая модель технологической матрицы.
контрольная работа [248,8 K], добавлен 25.10.2013