Эконометрические задачи
Исследование зависимости производительности труда от уровня механизации работ по данным 14 промышленных предприятий. Критическое значение статистики Фишера. Оценка параметров множественной линейной регрессии. Построение кривой и диаграммы рассеяния.
Рубрика | Экономико-математическое моделирование |
Предмет | Эконометрика |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | try124 |
Дата добавления | 17.05.2015 |
Размер файла | 308,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Исследование линейных моделей парной (ЛМПР) и множественной регрессии (ЛММР) методом наименьших квадратов. Исследование зависимости производительности труда от уровня механизации. Анализ развития товарооборота по данным о розничном товарообороте региона.
контрольная работа [23,8 K], добавлен 08.12.2008Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.
задача [142,0 K], добавлен 20.03.2010Построение модели множественной линейной регрессии по заданным параметрам. Оценка качества модели по коэффициентам детерминации и множественной корреляции. Определение значимости уравнения регрессии на основе F-критерия Фишера и t-критерия Стьюдента.
контрольная работа [914,4 K], добавлен 01.12.2013Оценка распределения переменной Х1. Моделирование взаимосвязи между переменными У и Х1 с помощью линейной функции и методом множественной линейной регрессии. Сравнение качества построенных моделей. Составление точечного прогноза по заданным значениям.
курсовая работа [418,3 K], добавлен 24.06.2015Понятие модели множественной регрессии. Сущность метода наименьших квадратов, который используется для определения параметров уравнения множественной линейной регрессии. Оценка качества подгонки регрессионного уравнения к данным. Коэффициент детерминации.
курсовая работа [449,1 K], добавлен 22.01.2015Построение уравнения множественной регрессии в линейной форме с полным набором факторов, отбор информативных факторов. Проверка значимости уравнения регрессии по критерию Фишера и статистической значимости параметров регрессии по критерию Стьюдента.
лабораторная работа [217,9 K], добавлен 17.10.2009Использование метода оценки параметров в стандартных масштабах для определения неизвестных параметров линейной модели множественной регрессии. Специфика изучения взаимосвязей по временным рядам. Моделирование взаимосвязей и тенденций в финансовой сфере.
контрольная работа [326,7 K], добавлен 22.04.2016Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.
курсовая работа [243,1 K], добавлен 17.01.2016Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.
контрольная работа [1,6 M], добавлен 14.05.2008