Математические модели в менеджменте и маркетинге

Методы многокритериальной оптимизации и управления запасами. Методика административного наблюдения, основанная на определении той части запасов предприятия, которая требует внимания со стороны отдела снабжения. Модель оптимального размера заказа.

Рубрика Экономико-математическое моделирование
Вид лекция
Язык русский
Дата добавления 15.01.2011
Размер файла 569,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ЭЛЕМЕНТЫ ВРЕМЕННОГО РЯДА

Значения некоторой переменной (например, объемы продаж) изменяются во времени под воздействием целого ряда факторов. Если, к примеру, некоторая компания предлагает на рынке новый вид продукции, то с течением времени объемы продаж этой продукции возрастают. Общее изменение значений переменной во времени называется трендом и обозначается через Т. В примерах, которые будут рассмотрены ниже, тренд является линейным. Это означает, что модель тренда легко построить, используя для расчета параметров прямой, наилучшим образом аппроксимирующий данный тренд, метод регрессии. Затем данная модель может использоваться для прогнозирования будущих значений тренда. В действительности тренд в чистом виде либо не существует, например, при колебании значений спроса вокруг некоторой фиксированной величины, либо в большинстве случаев он является нелинейным. На приведенных ниже рис. 9.1 и 9.2 проиллюстрирован тренд значений спроса в соответствии с различными стадиями жизненного цикла продукта. Новым видам продукции соответствует возрастающий тренд, тогда как устаревшим продуктам на заключительной стадии их жизненного цикла -- убывающий.

Метод скользящего среднего, изложенный ниже, можно использовать для выделения тренда из модели, содержащей сезонную компоненту. Этот метод позволяет выравнивать тренд фактических значений через сглаживание сезонных колебаний. Однако тренды, полученные с использованием метода скользящего среднего, как правило, не используются для прогнозирования будущих значений, поскольку процесс их получения предполагает высокий уровень неопределенности.

В большинстве случаев значения переменных характеризуют не только тренд. Часто они подвержены циклическим колебаниям. Если эти колебания повторяются в течение небольшого промежутка времени, то они называются сезонной вариацией. Колебания, повторяющиеся в течение более длительного промежутка времени, называются циклической вариацией. Модели, содержащие сезонную компоненту, которые будут рассмотрены в данной главе, основаны на традиционном понятии сезона, однако, в более широком смысле термин «сезон» в прогнозировании применим к любым систематическим колебаниям. Например, при изучении товарооборота в течение недели под термином «сезон» подразумевается 1 день. При исследовании транспортных потоков дня или в течение недели также может использоваться модель с сезонной компонентой. Любые колебания относительно тренда, построенного по годовым значениям некоторого показателя, можно описать в виде модели с циклической компонентой. Не будем рассматривать примеры с циклическим фактором. Этот фактор можно выявить только по данным за длительные промежутки времени в 10, 15 или 20 лет, однако в данном случае колебания значений тренда могут быть вызваны воздействием общеэкономических факторов.

Наличие подобных циклических факторов можно легко обнаружить в данных за 1960--75 гг. В этот период было разработано множество методов прогнозирования, однако впоследствии тенденции общеэкономического развития претерпели значительные изменения. Остановимся подробнее на моделировании более коротких промежутков времени и не будем учитывать воздействие циклической компоненты.

Последняя предпосылка нашей модели также следует из метода линейной регрессии. Она связана со значением ошибки, или остатка, т.е. той части значения наблюдения, которую нельзя объяснить с помощью построенной модели. Величину ошибок можно использовать в качестве меры степени соответствия модели исходным данным. Обычно применяют два вида таких мер. Это среднее абсолютное отклонение (mean absolute deviation -- MAD):

равное отношению суммы величин всех ошибок без учета их знака к общему числу наблюдений, и среднеквадратическая ошибка (mean square error -- MCE):

которая представляет собой отношение суммы квадратов ошибок к общему числу наблюдений. Последняя из указанных мер резко возрастает при наличии высоких ошибок.

В процессе анализа временного ряда мы стараемся определить все имеющиеся факторы и построить модель, которая соответствующим образом отражала бы их.

Пример 9.1 Представленные ниже данные -- это количество продукции, проданной компанией "Lewplan pic" в течение последних 13 кварталов.

Необходимо проанализировать указанное множество данных и установить, можно ли обнаружить тенденцию. Если устойчивая тенденция действительно существует, данная модель будет использоваться нами для прогнозирования количества проданной продукции в следующие кварталы.

Решение

На рис. 9.3 нанесены соответствующие значения. При построении диаграммы временного ряда полезно последовательно соединить точки отрезками, чтобы более четко увидеть любую тенденцию.

Как следует из диаграммы, возможен возрастающий тренд, содержащий сезонные колебания. Объемы продаж в зимний период (1 и 4) значительно выше, чем в летний (2 и 3). Сезонная компонента практически не изменится в течение трех лет. Тренд показывает, что в целом объем продаж возрос примерно с 230 тыс. шт. в 19X6 г. до 390 тыс. шт. в 19X8 г., однако увеличения сезонных колебаний не * произошло. Этот факт свидетельствует в пользу модели с аддитивной компонентой (см. 9.3).

АНАЛИЗ МОДЕЛИ С АДДИТИВНОЙ КОМПОНЕНТОЙ: A=T+S+E

Моделью с аддитивной компонентой называется такая модель, в которой вариация значений переменной во времени наилучшим образом описывается через сложение отдельных компонент. Предположив, что циклическая вариация не учитывается, модель фактических значений переменной А можно представить следующим образом:

Фактическое значение = Трендовое значение + Сезонная вариация + Ошибка,

т.е.

А = Т + S + Е.

В моделях как с аддитивной, так и с мультипликативной компонентой общая процедура анализа примерно одинакова:

Шаг 1. Расчет значений сезонной компоненты.

Шаг 2. Вычитание сезонной компоненты из фактических значений. Этот процесс называется десезонализацией данных. Расчет тренда на основе полученных десезонализированных данных.

Шаг 3. Расчет ошибок как разности между фактическими и трендовыми значениями.

Шаг 4. Расчет среднего отклонения (MAD) или среднеквадратической ошибки (MSE) для обоснования соответствия модели исходным данным или для выбора из множества моделей наилучшей.

Расчет сезонной компоненты в аддитивных моделях

П Пример 9.2. Вернемся к примеру 9.1 предыдущего параграфа, в котором рассматриваются квартальные объемы продаж компании Lewplan pic. Мы уже выяснили, что этим данным отвечает аддитивная модель, т.е. фактически объемы продаж можно выразить следующим образом:

A = T + S + E.

Для того чтобы элиминировать влияние сезонной компоненты, воспользуемся методом скользящей средней. Просуммировав первые четыре значения, получим общий объем продаж в 19X6 г. Если поделить эту сумму на четыре, можно найти средний объем продаж в каждом квартале 19X6 года, т. е. (239 + 201 + 182 + 297)/4 = 229,75.

Полученное значение уже не содержит сезонной компоненты, поскольку представляет собой среднюю величину за год. У нас появилась оценка значения тренда для середины года, т.е. для точки, лежащей в середине между кварталами II и III. Если последовательно передвигаться вперед с интервалом в три месяца, можно рассчитать средние квартальные значения на промежутке: апрель 19X6 -- март 19X7 (251), июль 19X6 - июнь 19X7 (270,25) и т.д. Данная процедура позволяет генерировать скользящие средние по четырем точкам для исходного множества данных. Получаемое таким образом множество скользящих средних представляет наилучшую оценку искомого тренда.

Теперь полученные значения тренда можно использовать для нахождения оценок сезонной компоненты. Мы рассчитываем:

А - Т = S + Е.

К сожалению, оценки значений тренда, полученные в результате расчета скользящих средних по четырем точкам, относятся к несколько иным моментам времени, чем фактические данные. Первая оценка, равная 229,75, представляет собой точку, совпадающую с серединой 19X6 г., т.е. лежит в центре промежутка фактических значений объемов продаж во II и III кварталах. Вторая оценка, равная 251, лежит между фактическими значениями в III и IV кварталах. Нам же требуются десезонализированные средние значения, соответствующие тем же интервалам времени, что и фактические значения за квартал. Положение десезонализированных средних во времени сдвигается путем дальнейшего расчета среднего для каждой пары значений. Найдем среднюю из первой и второй оценок, центририруем их на июль-сентябрь 19X6 г., т. е. (229,75 + 250)/2 = 240,4.

Это и есть десезонализированная средняя за июль-сентябрь 19X6 г. Эту десезонализированную величину, которая называется центрированной скользящей средней, можно непосредственно сравнивать с фактическим значением за июль-сентябрь 19X6 г., равным 182. Отметим, что это означает отсутствие оценок тренда за первые два или последние два квартала временного ряда. Результаты этих расчетов приведены в табл. 9.2.

Для каждого квартала мы имеем оценки сезонной компоненты, которые включают в себя ошибку или остаток. Прежде чем мы сможем использовать сезонную компоненту, нужно пройти два следующих этапа. Найдем средние значения сезонных оценок для каждого сезона года. Эта процедура позволит уменьшить некоторые значения ошибок. Наконец, скорректируем средние значения, увеличивая или уменьшая их на одно и то же число таким образом, чтобы общая их сумма была равна нулю. Это необходимо, чтобы усреднить значения сезонной компоненты в целом за год. Корректирующий фактор рассчитывается следующим образом: сумма оценок сезонных компонент делится на 4. В последнем столбце табл. 9.2 эти оценки записаны под соответствующими квартальными значениями. Сама процедура приведена в табл. 9.3. производилось округление двух значений сезонной компоненты до ближайшего большего числа, а двух значений -- до ближайшего меньшего числа таким образом, чтобы общая сумма была равна нулю.

Значения сезонной компоненты еще раз подтверждают наши выводы, сделанные на основе диаграммы. Объемы продаж за два зимних квартала превышают среднее трендовое значение приблизительно на 40 тыс. шт., а объём продаж за два летних периода ниже средних на 21 и 62 тыс. шт. соответственно

Аналогичная процедура применима при определении сезонной вариации за любой промежуток времени. Если, например, в качестве сезонов выступают дни недели, для элиминирования влияния ежедневной «сезонной компоненты» также рассчитывают скользящую среднюю, но уже не по четырем, а по семи точкам. Эта скользящая средняя представляет собой значение тренда в середине недели, т.е в четверг; таким образом, необходимость в процедуре центрирования отпадает.

Десезонализация данных при расчете тренда

Шаг 2 - состоит в десезонализации исходных данных. Она заключается в вычитании соответствующих значений сезонной компоненты из фактических значений данных за каждый квартал, т.е. А -- S = Т + Е, что показано ниже.

Новые оценки значений тренда, которые еще содержат ошибку, можно использовать для построения модели основного тренда. Если нанести эти значения на исходную диаграмму, можно сделать вывод о существовании явного линейного тренда.

Уравнение линии тренда имеет вид:

Т = а + b *номер квартала,

где а и b характеризуют точку пересечения с осью ординат и наклон линии тренда. Для определения параметров прямой, наилучшим образом аппроксимирующей тренд, можно использовать метод наименьших квадратов. Таким образом, как мы знаем из предыдущей главы о линейной регрессии, уравнения для расчета параметров а и b будут иметь вид:

где х -- порядковый номер квартала, у -- значение (Т + Е) в предыдущей таблице. С помощью калькулятора подсчитаем:

Подставив найденные значения в соответствующие формулы, получим:

b = 19,978,а = 180,046.

Следовательно, уравнение модели тренда имеет следующий вид:

Трендовое значение объема продаж, тыс. шт. = 180,0 + 20,0 * номер квартала.

Расчет ошибок

Шаг 3 нашего алгоритма, предшествующий составлению прогнозов, состоит в расчете ошибок или остатка. Наша модель имеет следующий вид:

A = T + S + E.

Значение S было найдено в разделе 9.3.1, а значение Т -- в разделе 9.3.2. Вычитая каждое это значение из фактических объемов продаж, получим значение ошибок.

Последний столбец этой таблицы можно использовать в шаге 4 при расчете среднего абсолютного отклонения (MAD) или средней квадратической ошибки (MSE):

В нашем случае ошибки достаточно малы и составляют от 1 до 2%. Тенденция, выявленная по фактическим данным, достаточно устойчива и позволяет получить хорошие краткосрочные прогнозы.

Прогнозирование по аддитивной модели

Прогнозные значения по модели с аддитивной компонентой рассчитываются как

F = Т + S (тыс. шт. за квартал),

где трендовое значение Т = 180 + 20 х номер квартала, а сезонная компонента S составляет +42,6 в январе-марте, - 20,7 в апреле-июне, 62,0 в июле-сентябре и +40,1 в октябре-декабре.

Порядковый номер квартала, охватывающего ближайшие три месяца с апреля по июль 19X9 г., равен 14, таким образом, прогнозное трендовое значение составит: Т14 = 180 + 20 х 14 = 460 (тыс. шт. за квартал) .

Соответствующая сезонная компонента равна - 20,7 тыс. шт. Следовательно, прогноз на этот квартал определяется как:

F (апрель-июнь 19X9 г.) = 460 - 20,7 = 439,3 тыс. шт.

Не следует забывать: чем более отдаленным является период упреждения, тем меньшей оказывается обоснованность прогноза. В данном случае мы предполагаем, что тенденция, обнаруженная по ретроспективным данным, распространяется и на будущий период. Для сравнительно небольших периодов упреждения такая предпосылка может действительно иметь место, однако ее выполнение становится менее вероятным по мере составления прогнозов на более отдаленную перспективу.

АНАЛИЗ МОДЕЛИ С МУЛЬТИПЛИКАТИВНОЙ КОМПОНЕНТОЙ: А = Т х Sx E

В некоторых временных рядах значение сезонной компоненты не является константой, а представляет собой определенную долю трендового значения. Таким образом, значения сезонной компоненты увеличиваются с возрастанием значений тренда.

Пример 9.3. Компания CD pic осуществляет реализацию нескольких видов продукции. Объемы продаж одного из продуктов за последние 13 кварталов представлены в таблице 9.6.

Построим по этим данным точечную диаграмму:

Объем продаж этого продукта так же, как и в предыдущем примере, подвержен сезонным колебаниям, и значения его в зимний период выше, чем в летний. Однако размах вариации фактических значений относительно линии тренда постоянно возрастает. К таким данным следует применять модель с мультипликативной компонентой:

Фактическое значение = Трендовое значение * Сезонная вариация * Ошибка, т. е.

А = Т х S х Е.

В нашем примере есть все основания предположить существование линейного тренда, но чтобы полностью в этом убедиться, проведем процедуру сглаживания временного ряда.

Расчет значений сезонной компоненты

В сущности, эта процедура ничем не отличается от той, которая применялась для аддитивной модели. Так же вычисляются центрированные скользящие средние для трендовых значений, однако оценки сезонной компоненты представляют собой коэффициенты, полученные по формуле А/Т = S х Е, Результаты расчетов, приведены в табл. 9.7.

Значения сезонных коэффициентов получены на основе квартальных оценок по аналогии с алгоритмом, который применялся для аддитивной модели. Так как значения сезонной компоненты -- это доли, а число сезонов равно четырем, необходимо, чтобы их сумма была равна четырем, а не нулю, как в предыдущем случае. (Если бы в исходных данных предполагалось семь сезонов в течение недели по одному дню каждый, то общая сумма значений сезонной компоненты должна была бы равняться семи). Если эта сумма не равна четырем, производится корректировка значений сезонной компоненты точно таким же образом, как это уже делалось ранее. В таблице оценки, рассчитанные в последнем столбце предшествующей табл. 9.8, расположены под соответствующим номером квартала.

Как показывают оценки, в результате сезонных воздействий объемы продаж в январе--марте увеличиваются на 11,6% соответствующего значения тренда (1,116). Аналогично сезонные воздействия в октябре-декабре приводят к увеличению объема продаж на 5,5% от соответствующего значения тренда. В двух других кварталах сезонные воздействия состоят в снижении объемов продаж, которое составляет 90,7 и 92,2% от соответствующих трендовых значений.

Десезонализация данных и расчет уравнения тренда

После того как оценки сезонной компоненты определены, можем приступить к процедуре десезонализации данных по формуле A /S = Т х Е. Результаты расчетов этих оценок значений тренда приведены в табл. 9.9.

Полученные трендовые значения наносятся на исходную точечную диаграмму.

Точки, образующие представленный на графике тренд, достаточно сильно разбросаны. Объемы продаж в данном случае не образуют такой строгой последовательности, как в предыдущем примере с компанией Lewplan pic. Скорее всего, пример с CD pic более близок к реальной действительности.

Теперь нужно принять решение о том, какой вид будет иметь уравнение тренда. Очевидно, что линия тренда -- не кривая, наоборот, она несколько больше напоминает прямую, хотя отдельные точки, особенно значения за 19X6 г, расположены хаотически. Предположим для простоты, что тренд линейный, и для расчета параметров прямой, наилучшим образом его аппроксимирующей, будем применять метод наименьших квадратов. Воспользовавшись той же процедурой, что и в разделе 9.3.2, находим, что

Т = 64,6 + 1,36 * номер квартала (тыс. шт. в квартал) .

Это уравнение будем использовать в дальнейшем для расчета оценок трендовых объемов продаж на каждый момент времени.

Расчет ошибок:

А/(Т х S) = Е или А -- (Т х S) = Е

Итак, мы нашли значения тренда и сезонной компоненты. Теперь мы можем использовать их для того, чтобы рассчитать ошибки в прогнозируемых по модели объемах продаж Т х S по сравнению с фактическими значениями А. В табл. 9.10 эти ошибки рассчитаны как отношение Е = А/(Т х S).

Для каждого рода ошибки достаточно велики, что видно из графика десезонализированных значений. Однако, начиная с первого квартала 19X7 г. величина ошибки составляет в среднем 2-3% от фактического значения, и можно сделать вывод о соответствии построенной модели фактическим данным.

Прогнозирование по модели с мультипликативной компонентой

При составлении прогнозов по любой модели предполагается, что можно найти уравнение, удовлетворительно описывающее значения тренда. В обоих изложенных выше примерах эта предпосылка была успешно выполнена. Тренд, который нами рассматривался, был очевидно линейным. Если бы исследуемый тренд представлял собой кривую, мы были бы вынуждены моделировать эту связь с помощью одного из методов формализации нелинейных взаимосвязей, рассмотренных в предыдущей главе. После того как параметры уравнения тренда определены, процедура составления прогнозов становится совершенно очевидной. Прогнозные значения определяются по формуле:F = Т х S, где

Т = 64,6 + 1,36 * номер квартала (тыс. шт. за квартал),

а сезонные компоненты составляют 1,116 в первом квартале, 1,097 -- во втором 0,922 -- в третьем и 1,055 в четвертом квартале. Ближайший следующий квартал -- это второй квартал 19X9 г., охватывающий период с апреля по июнь и имеющий во временном ряду порядковый номер 14. Прогноз объема продаж в этом квартале составляет:

F = Т х S = (64,6 + 1,36 х 14) х 0,907 = 83,64 х 0,907 = 75,9 (тыс. шт. за квартал).

С учетом величины ошибки прогноза мы можем сделать вывод, что даннг-г оценка будет отклоняться от фактического значения не более чем на 2-3*4 Аналогично, прогноз на октябрь-декабрь 19X9 г., рассчитывается для квартала : порядковым номером 16 с использованием значения сезонной компоненты для Г-квартала года:

F = Т х S = (64,6 + 1,36 х 16) х 1,055 = 83,36 х 1,055 = 91,1 (тыс. шт. за квартал) .

Разумно предположить, что величина ошибки данного прогноза будет несколько выше, чем предыдущего, поскольку этот прогноз рассчитан на более длительную перспективу.

РЕЗЮМЕ

Под временным рядом понимается любое множество данных, относящихся к определенным моментам времени. Это могут быть, скажем, годы, кварталы месяцы или недели. В моделях временного ряда ретроспективная тенденция используется для прогнозирования поведения переменной в будущем. Краткосрочные прогнозы являются более точными, чем долгосрочные. Если прогноз составлялся на более длительный период времени при условии, что существующая тенденция сохранится в будущем, то тем больше величина ошибки.

Для моделирования временных рядов используются два типа моделей -аддитивная и мультипликативная. В обоих случаях предполагается, что значение переменной включает в себя ряд компонент. Временной ряд может состоять из собственно тренда -- общей тенденции изменения значений переменной; сезонной вариации -- краткосрочных периодических колебаний значений переменной; циклической вариации -- долгосрочных периодических колебаний значений переменной; ошибки или остатка. В данном учебном пособии не рассматривались массивы данных за длительные промежутки времени, содержащие циклическую вариацию

Рассмотренные нами модели имеют следующий вид:

Аддитивная А = Т + S + Е , Мультипликативная А = Т х S х Е .

В обоих видах моделей для десезонализации данных применяется метод скользящего среднего. Затем десезонализированные данные используются при построении модели тренда. По этой модели составляют прогнозы будущих значений тренда. В случае линейной модели для нахождения параметров прямой наилучшим образом аппроксимирующей фактические значения, используется метод наименьших квадратов. Процесс построения нелинейных моделей гораздо более сложен.

В отличие от линейных регрессионных моделей для оценки обоснованности или точности прогнозных моделей статистические методы, как правило, не используются. Наилучшую среди нескольких моделей выбирает специалист, составляющий прогноз. Чтобы определить, насколько точно рассматриваемая модель аппроксимирует прошлые данные, применяются два показателя: Среднее абсолютное отклонение и Среднеквадратическая ошибка.

Литература

Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике. -М.:"ДИС",1997.

Эддоус М., Стэнсфилд Р. Методы принятия решения. -М.:"Аудит",1997.

Аронович А.Б., Афанасьев М.Ю., Суворов Б.П. Сборник задач по исследованию операций. -М.:Издательство Московского университета,1997.

Исследование операций в экономике:Учебное пособие для вузов. Н.Ш. Кремер и др. -М.: Банки и биржи, ЮНИТИ, 1997. (гл.15, гл.16)

Ю.А. Толбатов. Економетрика. - К., 1997.

С.И. Шелобаев. Математические методы и модели в экономике, финансах, бизнесе. -М.:ЮНИТИ,2000.


Подобные документы

  • Сферы применения имитационного моделирования для выбора оптимальных стратегий. Оптимизация уровня запасов и построение модели управления. Построение имитационной модели и анализ при стратегии оптимального размера заказа и периодической проверки.

    контрольная работа [57,5 K], добавлен 23.11.2012

  • Построение модели управления запасами в условиях детерминированного спроса. Методы и приемы определения оптимальных партий поставки для однопродуктовых и многопродуктовых моделей. Определение оптимальных параметров системы управления движением запасов.

    реферат [64,5 K], добавлен 11.02.2011

  • Схема управления запасами для определения оптимального количества запасов. Потоки заказов, время отгрузки как случайные потоки с заданными интенсивностями. Определение качества предложенной системы управления. Построение модели потока управления запасами.

    контрольная работа [361,3 K], добавлен 09.07.2014

  • Описание проблемы оптимального управления запасами предприятия. Разработка модели оптимальной стратегии заказа новой партии товара. Основные стоимостные характеристики системы для построения модели. Программная реализация, результаты выполнения программы.

    курсовая работа [2,7 M], добавлен 09.09.2017

  • Построение оптимального плана поставок для ООО "Ресурс". Влияние отклонений от оптимального объема партии. Анализ коэффициентов линейной производственной функции комплексного аргумента предприятия. Корреляционно-регрессионная модель доходов предприятия.

    дипломная работа [1,5 M], добавлен 29.06.2011

  • Общая схема процесса проектирования. Формализация построения математической модели при проведении оптимизации. Примеры использования методов одномерного поиска. Методы многомерной оптимизации нулевого порядка. Генетические и естественные алгоритмы.

    курс лекций [853,2 K], добавлен 03.01.2016

  • Система с фиксированным размером заказа. Применение математических методов в системах оптимального управления запасами. Сущность метода технико-экономических расчетов. Расчет параметров моделей экономически выгодных размеров заказываемых партий.

    контрольная работа [545,1 K], добавлен 25.05.2015

  • Исследование детерминированной модели управления запасами без дефицита. Примеры ее реализации. Поиск пополнения и расхода запасов, при которой функция затрат принимает минимальное значение. Информационные технологии для моделирования экономической задачи.

    курсовая работа [2,0 M], добавлен 01.06.2010

  • Построение одноиндексной математической модели задачи линейного программирования, ее решение графическим методом. Разработка путей оптимизации сетевой модели по критерию "минимум исполнителей". Решение задачи управления запасами на производстве.

    контрольная работа [80,8 K], добавлен 13.12.2010

  • Предпосылки к возникновению теории управления запасами. Основные характеристики моделей системы снабжения и ее роль в обеспечении непрерывного и эффективного функционирования фирмы. Выбор концептуальной и математической модели, суть метода и алгоритма.

    курсовая работа [149,4 K], добавлен 03.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.