Модель задачи принятия решения в условиях риска
Рассмотрение теоретических и практических аспектов задачи принятия решения. Ознакомление со способами решения с помощью построения обобщенного критерия и отношения доминирования по Парето; примеры их применения. Использование критерия ожидаемого выигрыша.
Рубрика | Экономико-математическое моделирование |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 15.04.2014 |
Размер файла | 118,8 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Математическая модель задачи принятия решения в условиях риска. Нахождение оптимального решения по паре критериев. Построение реализационной структуры задачи принятия решения. Ориентация на математическое ожидание, среднеквадратичное отклонение.
курсовая работа [79,0 K], добавлен 16.09.2013Особенности формирования математической модели принятия решений, постановка задачи выбора. Понятие оптимальности по Парето и его роль в математической экономике. Составление алгоритма поиска парето-оптимальных решений, реализация программного средства.
контрольная работа [1,2 M], добавлен 11.06.2011Экономическое обоснование принятия решений в условиях риска. Понятие и формулировки, методы решения проблем. Критерий Гермейера, Гурвица, Байеса-Лапласа. Решение задачи при помощи компьютера: условные, абсолютные, искомые апостериорные вероятности.
курсовая работа [495,2 K], добавлен 09.04.2013Принятие решений в условиях неопределенности. Критерий Лапласа и принцип недостаточного основания. Критерий крайнего пессимизма. Требования критерия Гурвица. Нахождение минимального риска по Сэвиджу. Выбор оптимальной стратегии при принятии решения.
контрольная работа [34,3 K], добавлен 01.02.2012Применение линейного программирования для решения транспортной задачи. Свойство системы ограничений, опорное решение задачи. Методы построения начального опорного решения. Распределительный метод, алгоритм решения транспортной задачи методом потенциалов.
реферат [4,1 M], добавлен 09.03.2011Типы многокритериальных задач. Принцип оптимальности Парето и принцип равновесия по Нэшу при выборе решения. Понятие функции предпочтения (полезности) и обзор методов решения задачи векторной оптимизации с использованием средств программы Excel.
реферат [247,4 K], добавлен 14.02.2011Изучение порядка постановки задач и общая характеристика методов решения задач по календарному планированию: модель с дефицитом и без дефицита. Анализ решения задачи календарного планирования с помощью транспортной модели линейного программирования.
курсовая работа [154,0 K], добавлен 13.01.2012Основные подходы и способы решения транспортной задачи, ее постановка и методы нахождения первоначального опорного решения. Математическая модель транспортной задачи и алгоритм ее решения методом потенциалов. Составление опорного плана перевозок.
курсовая работа [251,0 K], добавлен 03.07.2012Решения, связанные с рисками. Снижение риска с помощью статистической теории принятия решений. Применение модели платежной матрицы и различных ее вариантов. Направленность изменений соотношений темпов роста показателей, формирующих динамические модели.
контрольная работа [41,2 K], добавлен 28.03.2013Виды задач линейного программирования и формулировка задачи. Сущность оптимизации как раздела математики и характеристика основных методов решения задач. Понятие симплекс-метода, реальные прикладные задачи. Алгоритм и этапы решения транспортной задачи.
курсовая работа [268,0 K], добавлен 17.02.2010