Сооружение и эксплуатация трубопроводных систем

Анализ грунтовых условий и их возможного изменения в процессе строительства и эксплуатации трубопроводов. Расчетные характеристики материалов труб и соединительных деталей. Расчет компенсаторов на воздействие продольных перемещений трубопроводов.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 05.06.2013
Размер файла 88,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Расчет трубопроводов на прочность и устойчивость

2. Расчетные характеристики материалов. Нагрузки и воздействия

3. Прочность и устойчивость подземных и надземных трубопроводов

4. Компенсаторы

Заключение

Список литературы

Введение

Трубопроводами называются устройства, по которым транспортируются жидкие, газообразные и сыпучие вещества.

По трубопроводам котельных установок транспортируются топливо (газ, мазут и т.д.), вода для питания котлов отопления, реагенты для химической очистки воды, вода для отопления под давлением и нагретая выше 100 °С, пар под различным давлением и различной температуры для технологических нужд. Трубопроводы котельных установок малой и средней мощности работают под различным избыточным давлением при температуре транспортируемого продукта до 450 °С. Часть трубопроводов работает под разрежением.

В зависимости от условий работы и назначения трубопроводы классифицируют по давлению:

- безнапорные, работающие без избыточного давления;

- низкого давления, работающие под давлением от 0,1 до 1,6 МПа;

- среднего давления, работающие под давлением от 1,6 до 10 МПа;

- высокого давления, работающие под давлением более 10 МПа;

-вакуумные, работающие под давлением ниже 0,1 МПа;

по температуре транспортируемого вещества:

- нормальные, температура продукта от 1 до 50 °С; горячие, температура продукта выше 50 °С;

по роду транспортируемого вещества:

- газопроводы, водопроводы, паропроводы, кислотопроводы, щелочепроводы, маслопроводы, нефтепроводы и т.д.;

по месторасположению:

- межцеховые, соединяющие отдельные технологические установки;

-внутрицеховые, соединяющие отдельные аппараты и машины в пределах одной установки или цеха.

Транспортируемые по трубопроводу вещества по степени агрессивности разделяются на неагрессивные и агрессивные, вызывающие коррозию металла. Для трубопроводов, транспортирующих агрессивные продукты, применяют трубы из легированных (нержавеющих) сталей, неметаллических материалов и углеродистых сталей, защищенных изнутри коррозионно-стойкими покрытиями.

1. Расчет трубопроводов на прочность и устойчивость

Обеспечению высокой надежности трубопроводов как одной из важнейших задач развития технического прогресса в области строительства объектов трубопроводного транспорта должно уделяться самое серьезное внимание. Расчет трубопроводов на прочность и устойчивость следует рассматривать как важнейшее звено в общей цепи формирования надежности трубопроводных систем.

В СНиП требования к материалу труб содержат максимальное отношение предела текучести к временному сопротивлению, минимальную ударную вязкость, минимальное относительное удлинение и направлены на предотвращение хрупкого разрушения трубопровода в процессе эксплуатации. Выполнение требований к сварочным материалам обеспечивает равнопрочность сварных стыков основному металлу труб.

Магистральные трубопроводы рассчитываются по методу предельных состояний. Сущность метода заключается в том, что рассматривается такое напряженное состояние трубопровода, при котором дальнейшая его эксплуатация невозможна.

Методика расчета магистральных трубопроводов по предельным состояниям создана впервые в нашей стране сотрудниками ВНИИСТ И. П. Петровым, А. Г. Камерштейном, В. С. Туркиным и другими. Нормы проектирования магистральных трубопроводов (СНиП II-45--75), разработанные под руководством В. И. Прокофьева, основаны на этой методике.

Первое предельное состояние трубопровода -- разрушение его под действием внутреннего давления Поэтому характеристикой несущей способности трубопровода является временное сопротивление, металла труб (предел прочности).

Для обеспечения надежной работы трубопровода при определении расчетного сопротивления вводится ряд дифференцированных коэффициентов, отражающих вероятностный характер различных факторов, влияющих на несущую способность трубопровода. К ним относятся коэффициент безопасности по материалу, коэффициент условия работы трубопровода и коэффициент надежности.

Коэффициент безопасности по материалу отражает возможное уменьшение временного сопротивления металла труб по сравнению с его нормативным значением, возможное уменьшение толщины стенки трубы по сравнению с ее номинальным значением и надежность конструкции трубы. Последний фактор зависит от технологии производства труб.

Коэффициент условия работы показывает возможное несоответствие принятой расчетной схемы реальной трубопроводной конструкции, в том числе особенности взаимодействия трубопровода с окружающей средой. Кроме того, коэффициент условия работы показывает влияние последствий разрушения трубопроводов на здоровье людей, а также на приведенную стоимость выполнения ремонтио-восстановительных работ

Коэффициент надежности впервые введен в нормы проектирования магистральных трубопроводов в 1975 г., что вызвано увеличением диаметров сооружаемых трубопроводов и рабочего давления продукта. Коэффициент надежности учитывает следующие факторы, влияющие на надежность работы системы:

· с увеличением диаметра возрастает поверхность, контактируемая с грунтом, следовательно, трубопроводы больших диаметров при деформациях грунта находятся в более тяжелых условиях, чем трубопроводы малых диаметров;

· с увеличением диаметра трубопровода резко возрастает его изгибная жесткость, поэтому при кладке может не быть обеспечено его опирание на дно траншеи но всей длине, в результате чего в нем могут возникнуть дополнительные изгибные напряжения;

· с увеличением диаметра трубопровода возрастает его металлоемкость, общая длина сварных стыков и объем наплавленного металла, поэтому вероятность каких-либо технологических дефектов повышается;

· с увеличением рабочего давления продукта и диаметра трубопровода возрастает пропускная способность системы, отказ которой может привести к большим народнохозяйственным потерям.

Коэффициент надежности назначается в соответствии со СНиП II-45--75 различный дня газо- и нефтепроводов и зависит от диаметра трубопровода и давления продукта.

При определении напряженного состояния трубопровода для проверки первого предельною состояния учитывают только тс напряжения, которые практически влияют на разрушающее давление.

На основании экспериментальных исследований установлено, что к ним относятся кольцевые напряжения от внутреннего давления и продольные осевые напряжения от всех нагрузок и воздействий.

В СНиП II-45--75 первое предельное состояние записано в виде равенства растягивающих кольцевых и растягивающих осевых продольных напряжений расчетному сопротивлению, а при разнозначном напряженном со стоянии -- равенства эквивалентных напряжений расчетному сопротивлению.

Для ограничения пластических деформаций СНиП 11-45--75 предусматривает проверку трубопровода по второму предельному состоянию. Второе предельное состояние выражается через напряжения.

Напряжения определяются от всех нормативных нагрузок и воздействий (с учетом их сочетания) для наиболее напряженной точки сечения трубы.

Критерием выполнения второго предельного состояния является условие, при котором кольцевые и растягивающие продольные напряжения, а при разнозначном напряженном состоянии эквивалентные напряжения не должны превышать значений, определяемых пределом текучести металла труб. Отметим также, что при проверке по первому предельному состоянию согласно нормам СНиП требуется выполнять расчет трубопроводов, исходя из упруго- пластической работы металла труб, а по второму -- исходя из упругой работы самих трубопроводов.

2. Расчетные характеристики материалов. Нагрузки и воздействия

Для трубопроводов следует применять трубы и соединительные детали, отвечающие требованиям национальных стандартов и технических условий, утвержденных в установленном порядке, что должно быть подтверждено сопроводительным документом (паспортом или сертификатом). При отсутствии указанного документа соответствие труб и соединительных деталей требованиям национальных стандартов или технических условий должно быть подтверждено испытанием их образцов в объеме, определяемом нормативными документами на соответствующие трубопроводы.

Расчет трубопроводов на прочность производится по методу предельных состояний и включает определение толщин стенок труб, тройников, переходов, отводов и заглушек, проведение поверочного расчета принятого конструктивного решения трубопровода.

Поверочный расчет трубопроводов следует производить на неблагоприятные сочетания нагрузок и воздействий для конкретно принятого конструктивного решения с оценкой прочности и устойчивости продольных и поперечных сечений рассматриваемого трубопровода.

Нагрузки и воздействия

Расчет трубопроводов на прочность следует выполнять с учетом нагрузок и воздействий, возникающих при их сооружении, испытании и эксплуатации.

Расчетные нагрузки, воздействия и их возможные сочетания необходимо принимать в соответствии с требованиями СНиП 2.01.07-85*.

Коэффициенты надежности по нагрузке f следует принимать по таблице 1.

Нормативные нагрузки от собственного веса трубопровода, арматуры и обустройств изоляции, от веса и давления грунта необходимо принимать в соответствии с требованиями СНиП 2.01.07-85*.

Нормативное значение воздействия от предварительного напряжения трубопровода (упругий изгиб по заданному профилю, предварительная растяжка компенсаторов при надземной прокладке и др.) надлежит определять по принятому конструктивному решению трубопровода.

Нормативное значение давления транспортируемой среды устанавливается проектом.

Нормативную нагрузку от веса транспортируемой среды на единицу длины трубопровода следует определять по формуле:

Нормативный температурный перепад в трубопроводе принимается равным разнице между максимально или минимально возможной температурой стенок трубопровода в процессе эксплуатации и наименьшей или наибольшей температурой, при которой фиксируется расчетная схема трубопровода.

Нормативную снеговую нагрузку на единицу длины надземного трубопровода надлежит определять по формуле

Таблица 1

Нагрузки и воздействия

Способ прокладки трубопровода

Коэффициент надежности по нагрузке f

Вид

Характеристика

подземный

надземный

Постоянные

Собственный вес трубопровода, арматуры и обустройств

+

+

1,1 (0,95)

Вес изоляции

+

+

1,2

Вес и давление грунта (засыпки, насыпи)

+

-

1,2 (0,8)

Предварительное напряжение трубопровода (упругий изгиб по заданному профилю, предварительная растяжка компенсаторов и др.) и гидростатическое давление воды

+

+

1,0

Временные длительные

Внутреннее давление транспортируемой среды:

газообразной

+

+

1,1

жидкой

+

+

1,15

Вес транспортируемой среды:

газообразной

+

+

1,1 (1,0)

жидкой

+

+

1,0 (0,95)

Температурный перепад металла стенок трубопровода

+

+

1,1

Неравномерные деформации грунта, не сопровождающиеся изменением его структуры (осадки, пучения и др.)

+

+

1,5

Кратко-временные

Снеговая

-

+

1,4

Гололедная

-

+

1,3

Ветровая

-

+

1,2

Транспортирование отдельных секций, сооружение трубопровода, испытание и пропуск очистных устройств

+

+

1,0

Особые

Сейсмические воздействия

+

+

1,0

Нарушение технологического процесса, временные неисправности или поломка оборудования

+

+

1,0

Неравномерные деформации грунта, сопровождающиеся изменением его структуры (селевые потоки и оползни; деформации земной поверхности в районах горных выработок и карстовых районах; деформации просадочных грунтов при замачивании или вечномерзлых при оттаивании и др.)

+

+

1,0

где sg - расчетное значение веса снегового покрова следует принимать по СНиП 2.01.07-85.

Нормативную нагрузку от обледенения на единицу длины надземного трубопровода следует определять:

- при наружном диаметре трубопровода (de + 2ti) ? 70 мм включительно по СНиП 2.01.07-85* как нормативное значение линейной гололедной нагрузки;

- при de + 2ti > 70 мм по формуле

где i' - нормативное значение поверхностной гололедной нагрузки, определяемое по СНиП 2.01.07-85*.

Нормативную ветровую нагрузку на единицу длины надземного трубопровода wn действующую перпендикулярно его осевой вертикальной плоскости, следует определять по формуле

где статическую wstc и динамическую wdyn составляющие ветровой нагрузки следует определять по СНиП 2.01.07-85*, при этом значение wdyn необходимо определять как для сооружения с равномерно распределенной массой и постоянной жесткостью.

Нормативные значения нагрузок и воздействий, возникающих при транспортировании отдельных секций, при сооружении трубопровода, испытании и пропуске очистных устройств, следует устанавливать проектом в зависимости от способов производства этих работ и проведения испытаний.

Сейсмические воздействия на надземные и подземные трубопроводы надлежит принимать согласно СНиП II-7-81*.

Нагрузки и воздействия, вызываемые резким нарушением процесса эксплуатации, временной неисправностью и поломкой оборудования, следует устанавливать проектом в зависимости от особенностей технологического режима эксплуатации.

Нагрузки и воздействия от неравномерных деформаций грунта (осадок, пучения, селевых потоков, оползней, воздействий горных выработок, карстов, замачивания просадочных грунтов, оттаивания вечномерзлых грунтов и т. д.) надлежит определять на основании анализа грунтовых условий и их возможного изменения в процессе строительства и эксплуатации трубопроводов.

Нормативные нагрузки и коэффициенты надежности по нагрузке от подвижного состава железных и автомобильных дорог следует определять согласно СНиП 2.05.03-84.

Расчетные характеристики материалов труб и соединительных деталей

Расчетные сопротивления материала труб и соединительных деталей по временному сопротивлению Ru пределу текучести Ry при расчетной температуре следует определять по формулам:

Нормативные сопротивления Run и Ryn следует принимать равными минимальным значениям соответственно временного сопротивления и предела текучести материала труб и соединительных деталей по государственным стандартам или техническим условиям на трубы и соединительные детали, определяемым при нормальной температуре (20 С).

Значения коэффициентов надежности по материалу mu и my труб и соединительных деталей надлежит принимать по таблицам 2 и 3.

Таблица 2

Характеристика труб и соединительных деталей

Коэффициент надежности по материалу mu

Сварные из малоперлитной и бейнитной стали контролируемой прокатки и термически упрочненные трубы, изготовленные двусторонней электродуговой сваркой под флюсом по сплошному технологическому шву, с минусовым допуском по толщине стенки не более 5 % и прошедшие 100 %-ный контроль на сплошность основного металла и сварных соединений неразрушающими методами

1,34

Сварные из нормализованной, термически упрочненной стали и стали контролируемой прокатки, изготовленные двусторонней электродуговой сваркой под флюсом по сплошному технологическому шву и прошедшие 100 %-ный контроль сварных соединений неразрушающими методами

1,40

Сварные из нормализованной и горячекатаной низколегированной или углеродистой стали, изготовленные двусторонней электродуговой сваркой и прошедшие 100 %-ный контроль сварных соединений неразрушающими методами; бесшовные холодно- и теплодеформированные

1,47

Сварные из горячекатаной низколегированной или углеродистой стали, изготовленные двусторонней электродуговой сваркой или токами высокой частоты; штампованные и штампосварные соединительные детали; остальные бесшовные трубы и соединительные детали

1,55

Примечание - Допускается применять коэффициенты 1,34 вместо 1,40, 1,40 вместо 1,47 и 1,47 вместо 1,55 для труб, изготовленных двусторонней сваркой под флюсом или электросваркой токами высокой частоты, со стенкой толщиной не более 12 мм при использовании специальной технологии производства, позволяющей получать качество труб, соответствующее данному коэффициенту mu.

Таблица 3

Характеристика труб и соединительных деталей

Коэффициент надежности по материалу my

Бесшовные из малоуглеродистых сталей

1,10

Сварные из стали с отношением

1,15

Сварные из стали с отношением

1,20

Значения поправочных коэффициентов надежности по материалу труб и соединительных деталей tu и ty при расчетной температуре эксплуатации трубопровода следует принимать по таблице 4.

Таблица 4

Трубы и соединительные детали из сталей

Поправочные коэффициенты надежности по материалу по временному сопротивлению tu и по пределу текучести ty при температуре эксплуатации трубопровода С

минус 70

минус 40 - плюс 20

100

200

300

400

450

Углеродистых:

tu

-

1,0

1,0

1,0

1,0

-

-

ty

-

1,0

1,05

1,15

1,40

-

-

Низколегированных:

tu

1,0

1,0

1,05

1,05

1,10

1,40

1,90

ty

1,0

1,0

1,10

1,15

1,25

1,60

2,20

Легированных:

tu

1,0

1,0

1,05

1,15

1,25

1,35

1,45

ty

1,0

1,0

1,05

1,15

1,25

1,35

1,45

Примечания

1 Для промежуточных значений расчетных температур величины tu и ty следует определять линейной интерполяцией двух ближайших значений, приведенных в таблице 4.

2 Знак "-" означает, что при таких температурах эксплуатации трубопровода углеродистые стали не применяются.

Значения коэффициента надежности по назначению n трубопровода следует принимать по таблице 5.

Значения коэффициента условий работы c трубопровода необходимо принимать по таблице 6.

Таблица 5

Транспортируемая среда и номинальный диаметр трубопровода (DN)

Коэффициент надежности по ответственности n трубопровода при нормативном давлении транспортируемой среды, МПа

0 < рn ? 2,5

2,5 < рn ? 6,3

6,3 <рn ? 10

Горючие газы, DN DN 500; трудногорючие и негорючие (инертные) газы, DN DN 1000; легковоспламеняющиеся и горючие жидкости, DN DN 1000; трудногорючие и негорючие жидкости, DN DN 1200

1,0

1,0

1,0

Горючие газы, DN 500 DN DN 1000; трудногорючие и негорючие (инертные) газы, DN = DN 1200; легко-воспламеняющиеся и горючие жидкости, DN = DN 1200; трудно-горючие и негорючие жидкости, DN = DN 1400

1,0

1,0

1,05

Горючие газы, DN = DN 1200; трудногорючие и негорючие (инертные) газы, DN = DN 1400; легковоспламеняющиеся и горючие жидкости, DN = DN 1400

1,0

1,05

1,10

Горючие газы, DN = DN 1400

1,05

1,10

1,15

Таблица 6

Характеристика транспортируемой среды

Коэффициент условий работы трубопровода с

Вредные (классов опасности 1 и 2), горючие газы, в том числе сжиженные

0,55

Легковоспламеняющиеся и горючие жидкости; вредные (класса опасности 3) и трудногорючие и негорючие (инертные) газы

0,70

Трудногорючие и негорючие жидкости

0.85

Примечание - Класс опасности вредных веществ следует определять по ГОСТ 12.1.007.

Расчетные сопротивления сварных швов, соединяющих между собой трубы и соединительные детали, выполненных любым видом сварки и прошедших контроль качества неразрушающими методами, следует принимать равными меньшим значениям соответствующих расчетных сопротивлений соединяемых элементов.

При отсутствии этого контроля расчетные сопротивления сварных швов, соединяющих между собой трубы и соединительные детали, следует принимать с понижающим коэффициентом 0,85.

трубопровод грунтовый соединительный

3. Прочность и устойчивость подземных и надземных трубопроводов

Подземные трубопроводы следует проверять на прочность, деформативность и общую устойчивость в продольном направлении и против всплытия.

Проверку на прочность подземных трубопроводов в продольном направлении следует производить из условия

где 1 - коэффициент, учитывающий двухосное напряженное состояние металла труб, при растягивающих осевых продольных напряжениях (пр.N 0) принимаемый равным единице, при сжимающих (пр.N < 0) определяемый по формуле

,

Продольные осевые напряжения пр.N определяются от расчетных нагрузок и воздействий с учетом упругопластической работы металла. Расчетная схема должна отражать условия работы трубопровода и взаимодействие его с грунтом.

Для предотвращения недопустимых пластических деформаций подземных трубопроводов проверку необходимо производить по условию:

где 2 -коэффициент, учитывающий двухосное напряженное состояние металла труб; при растягивающих продольных напряжениях () принимаемый равным единице, при сжимающих () - определяемый по формуле

,

.

Максимальные (фибровые) суммарные продольные напряжения определяются от всех (с учетом их сочетания) нормативных нагрузок и воздействий с учетом поперечных и продольных перемещений трубопровода в соответствии с правилами строительной механики. При определении жесткости и напряженного состояния отвода следует учитывать условия его сопряжения с трубой и влияние внутреннего давления.

Проверку общей устойчивости трубопровода в продольном направлении в плоскости наименьшей жесткости системы следует производить из условия

Эквивалентное продольное осевое усилие в сечении трубопровода S следует определять от расчетных нагрузок и воздействий с учетом продольных и поперечных перемещений трубопровода в соответствии с правилами строительной механики.

Продольное критическое усилие, Nкр, при котором наступает потеря продольной устойчивости трубопровода. Nкр следует определять согласно правилам строительной механики с учетом принятого конструктивного решения и начального искривления трубопровода в зависимости от глубины его заложения, физико-механических характеристик грунта, наличия балласта, закрепляющих устройств с учетом их податливости. На обводненных участках следует учитывать гидростатическое воздействие воды.

Продольную устойчивость следует проверять для криволинейных участков в плоскости изгиба трубопровода. Продольную устойчивость на прямолинейных участках подземных участков следует проверять в вертикальной плоскости с радиусом начальной кривизны 5000 м.

Устойчивость положения (балластировка) трубопроводов, прокладываемых на обводненных участках трассы, следует проверять для отдельных (в зависимости от условий строительства) участков по условию

,

где Qакт - суммарная расчетная нагрузка на трубопровод, действующая вверх, включая упругий отпор при прокладке свободным изгибом;

Qпас - суммарная расчетная нагрузка, действующая вниз (включая массу - собственный вес);

Коэффициент надежности устойчивости положения трубопровода против всплытия, kн.в - принимается равным для участков перехода

через болота, пойма, водоемы при отсутствия течения, обводненные и заливаемые участки в пределах ГВВ 1- обеспеченности

- 1,05

русловых через реки шириной до 200 м по среднему меженному уровню, включая прибрежные участки в границах производства подводно-технических работ

- 1,10

через реки и водохранилища шириной свыше 200 м, а также горные реки

- 1,15

нефтепроводов и нефтепродуктопроводов, для которых возможно их опорожнение и замещение продукта воздухом

- 1,03

Вес засыпки трубопроводов на русловых участках переходов через реки и водохранилища не учитывается. При расчете на устойчивость положения нефтепровода и нефтепродуктопроводов, прокладываемых на обводненных участках, удерживающая способность грунта учитывается.

Расчетная несущая способность анкерного устройства, Банк определяется по формуле

где z - количество анкеров в одном анкерном устройстве;

mанк - коэффициент условий работы анкерного устройства, принимаемый равным 1,0 при z = 1 или при z 2 и dн / dанк 3; а при z 2 и 1 dн / dанк 3

Pанк - расчетная несущая способность анкера из условия несущей способности грунта основания, определяемая из условия

dанк - максимальный линейный размер габарита проекции одного анкера на горизонтальную плоскость;

Фанк - несущая способность анкера, определяемая расчетом или по результатам полевых испытаний согласно СНиП 2.02.03-85;

kа - коэффициент надежности анкера, принимаемый равным 1,4 (если несущая способность анкера определена расчетом) или 1,25 (если несущая способность анкера определена по результатам полевых испытаний статической нагрузкой).

Проверка прочности и устойчивости надземных трубопроводов

Надземные (открытые) трубопроводы следует проверять на прочность, продольную устойчивость и выносливость (колебания в ветровом потоке).

Проверку на прочность надземных трубопроводов следует производить из условия

где 3 - коэффициент, учитывающий двухосное напряженное состояние металла труб; при растягивающих продольных напряжениях (пр 0) принимаемый равным единице, при сжимающих (пр < 0) - определяемый по формуле (с учетом примечания к п. 5.8.31)

При расчете на выносливость (динамическое воздействие ветра) величина Ry понижается умножением на коэффициент определяемый согласно СНиП II-23-81*.

Максимальные фибровые суммарные продольные напряжения от расчетных нагрузок и воздействий в балочных, шпренгельных, висячих и арочных надземных трубопроводах следует определять в соответствии с общими правилами строительной механики. При этом трубопровод рассматривается как стержневая система.

При наличии изгибающих моментов в вертикальной и горизонтальной плоскостях расчет следует производить по их равнодействующей. В расчетах необходимо учитывать геометрическую нелинейность системы.

При определении продольных усилий и изгибающих моментов в надземных трубопроводах следует учитывать изменения расчетной схемы в зависимости от метода монтажа трубопровода. Изгибающие моменты в бескомпенсаторных переходах трубопроводов необходимо определять с учетом продольно-поперечного изгиба. Расчет надземных трубопроводов должен производиться с учетом перемещений трубопровода на примыкающих подземных участках трубопроводов.

Балочные системы надземных трубопроводов должны рассчитываться с учетом трения на опорах, при этом принимается меньшее или большее из возможных значений коэффициента трения в зависимости от того, что опаснее для данного расчетного случая.

Трубопроводы балочных, шпренгельных, арочных и висячих систем с воспринимаемым трубопроводом распором должны быть рассчитаны на продольную устойчивость в плоскости наименьшей жесткости системы.

При скоростях ветра, вызывающих колебание трубопровода с частотой, равной частоте собственных колебаний, необходимо производить поверочный расчет трубопроводов на резонанс.

Расчетные усилия и перемещения трубопровода при резонансе следует определять как геометрическую сумму резонансных усилий и перемещений, а также усилий и перемещений от других видов нагрузок и воздействий, включая расчетную ветровую нагрузку, соответствующую критическому скоростному напору.

Расчет оснований, фундаментов и самих опор следует производить по потере несущей способности (прочности и устойчивости положения) или непригодности к нормальной эксплуатации, связанной с разрушением их элементов или недопустимо большими деформациями опор, опорных частей, элементов пролетных строений или трубопровода.

Опоры (включая основания и фундаменты) и опорные части следует рассчитывать на передаваемые трубопроводом и вспомогательными конструкциями вертикальные и горизонтальные (продольные и поперечные) усилия и изгибающие моменты, определяемые от расчетных нагрузок и воздействий в наиболее невыгодных их сочетаниях с учетом возможных смещений опор и опорных частей в процессе эксплуатации.

При расчете опор следует учитывать глубину промерзания или оттаивания грунта, деформации грунта (пучение и просадка), а также возможные изменения свойств грунта (в пределах восприятия нагрузок) в зависимости от времени года, температурного режима, осушения или обводнения участков, прилегающих к трассе, и других условий.

Нагрузки на опоры, возникающие от воздействия ветра и от изменений длины трубопроводов под влиянием внутреннего давления и изменения температуры стенок труб, должны определяться в зависимости от принятой системы прокладки и компенсации продольных деформаций трубопроводов с учетом сопротивлений перемещениям трубопровода на опорах.

На уклонах местности и на участках со слабонесущими грунтами следует применять системы прокладок надземных трубопроводов с неподвижными опорами, испытывающими минимальные нагрузки, например, прокладку змейкой с неподвижными опорами, расположенными в вершинах звеньев по одну сторону от воздушной оси трассы.

Нагрузки на неподвижные (мертвые) опоры надземных балочных систем трубопроводов следует принимать равными сумме усилий, передающихся на опору от примыкающих участков трубопровода, если эти усилия направлены в одну сторону, и разности усилий, если эти усилия направлены в разные стороны. В последнем случае меньшая из нагрузок принимается с коэффициентом, равным 0,8.

Продольно-подвижные и свободноподвижные опоры балочных надземных систем трубопроводов следует рассчитывать на совместное действие вертикальной нагрузки и горизонтальных сил или расчетных перемещений (при неподвижном закреплении трубопроводов к опоре, когда его перемещение происходит за счет изгиба стойки). При определении горизонтальных усилий на подвижные опоры необходимо принимать максимальное значение коэффициента трения.

В прямолинейных балочных системах без компенсации продольных деформаций необходимо учитывать возможное отклонение трубопровода от прямой. Возникающее в результате этого расчетное горизонтальное усилие от воздействия температуры и внутреннего давления, действующее на промежуточную опору перпендикулярно оси трубопровода, следует принимать равным 0,01 величины максимального эквивалентного продольного усилия в трубопроводе.

4. Компенсаторы

Компенсаторами трубопроводов называют гибкие и способные к растяжению в пределах своих деформаций устройства, которые устанавливаются в трубопроводы и берут на себя основную долю компенсации. Соединяя собой два конца трубопровода, задача компенсаторов кроме основной своей функции гашения возможных деформаций системы, обеспечивать высокую герметичность.

Трубные компенсаторы

Данный вид компенсаторов - самый простой вид использования свойств самокомпенсации. П-образные компенсаторы используются при большом диапазоне температур и давлений. Они производятся целиком изогнутыми из одной трубы. Или же с помощью сварки с использованием сварных, крутоизогнутых или гнутых отводов. Существуют трубные компенсаторы с присоединительными концами на фланцах. Они производятся для трубопроводов, которым необходима разборка для очищения. У данного видакомпенсаторов есть несколько минусов. Основными из них являются довольно большой расход труб, крупные размеры. И, последнее, для них обязательно нужны опорные конструкции. Для трубопроводов больших диаметров использование п-образных компенсаторов очень нерационально, так как строительство резко подорожает и увеличится расход труб.

Линзовые компенсаторы

Линза - это элемент сварной конструкции, состоящий из двух металлических, точнее стальных,тонкостенных полу линз. Исходя из этого, ясно, что такая конструкция легко сжимается. Линзовые компенсаторы - это ряд из последовательно включенных в трубопровод линз. Каждая такая линза имеет сравнительно небольшие компенсирующие свойства. И именно, исходя из требуемой компенсирующей способности, выбирается количество линз компенсатора. Внутри компенсатора встроены стаканы для ослабления сопротивления движению теплоносителя. А для выпуска конденсата в нижние части каждой линзы ввариваются дренажные штуцера.

Сальниковые компенсаторы

Сальниковые компенсаторы - это два вставленных друг в друга патрубка. Для герметизации пространства между патрубками применяется сальниковое уплотнение с грундбуксой. Данный вид компенсаторов обладает хорошим компенсирующим свойством и довольно небольшими размерами. Но их очень редко используют в технологических трубопроводах, из-за трудности герметизации сальниковых уплотнений. Также их совершенно не рекомендуется применять для трубопроводов токсичных, горючих и сжиженных газов. Сальниковые компенсаторы имеют ряд значительных недостатков. Таких, как: они требуют постоянный уход в процессе работы, сальниковое уплотнение очень быстро изнашивается, то есть нарушается герметизация.

Сильфонные компенсаторы

Компенсаторы данного вида имеют небольшие размеры. Их можно применять на любом участке трубопровода и при любом варианте его прокладки. Сильфонные компенсаторы не нуждаются в особом уходе и создании специальных камер. Срок эксплуатации таких компенсаторов равен сроку эксплуатации труб. Сильфонные компенсаторы отлично защищают трубы от динамических и статических нагрузок, которые могут возникнуть из-за гидроудара, вибрации или деформации. При производстве сильфонных компенсаторов применяют только высококачественные, нержавеющие стали. Поэтому они легко работаю в самых различных условиях, даже очень жестких (например, при температуре рабочей среды от 0 до 1000 градусов Цельсия и давлении от вакуума до 100атм). Конечно, исходя из внешних условий и конструкции компенсатора.

Расчет компенсаторов на воздействие продольных перемещений трубопроводов, возникающих от изменения температуры стенок труб, внутреннего давления и других нагрузок и воздействий, следует производить по условию

,

где у комп - расчетные продольные напряжения в компенсаторе от изменения длины трубопровода под действием внутреннего давления продукта и от изменения температуры стенок труб, МПа;

у м - дополнительные продольные напряжения в компенсаторе от изгиба под действием поперечных и продольных нагрузок (усилий) в расчетном сечении компенсатора, МПа, определяемые согласно общим правилам строительной механики;

Величина расчетных продольных напряжений в компенсаторе у комп определяется в соответствии с общими правилами строительной механики с учетом коэффициента уменьшения жесткости отвода kж и коэффициента увеличения продольных напряжений mk.

В частности, для П-, Z- и Г-образных компенсаторов расчет производится по следующим формулам:

для П-образных

;

;

для Z-образных

;

;

для Г-образных

lk - вылет компенсатора, см;

Дk - суммарное продольное перемещение трубопровода в месте примыкания его к компенсатору от воздействия температуры и внутреннего давления, см;

pk - радиус изгиба оси отвода, см;

lп - ширина полки компенсатора, см.

Коэффициенты уменьшения жесткости кж и увеличения напряжений mk для гнутых и сварных отводов компенсаторов при Дk < 0,3 определяются по формулам

;

;

.

rc - средний радиус отвода, см.

Реакция отпора Hk компенсаторов, Н, при продольных перемещениях надземного трубопровода определяется по формулам: для П- и Z-образных компенсаторов

для Г-образных компенсаторов

где Нk - момент сопротивления сечения трубы, см3;

Расчетные величины продольных перемещений надземных участков трубопровода следует определять от максимального повышения температуры стенок труб (положительного расчетного температурного перепада) и внутреннего давления (удлинение трубопровода) , а также от наибольшего понижения температуры стенок труб (отрицательного температурного перепада) при отсутствии внутреннего давления в трубопроводе (укорочение трубопровода).

С целью уменьшения размеров компенсаторов следует применять предварительную их растяжку или сжатие, при этом на чертежах должны указываться величины растяжки или сжатия в зависимости от температуры, при которой производится сварка замыкающих стыков.

Заключение

Согласно СНиП, магистральные трубопроводы следует прокладывать подземно. В качестве исключения при необходимости (переходы через естественные и искусственные препятствия) допускается прокладка трубопроводов по поверхности земли в насыпи или на опорах. Допускается совместная прокладка нефтепроводов (нефтепродуктопроводов) и газопроводов в одном техническом коридоре.

Выбор трассы трубопроводов должен производиться по критериям оптимальности, при этом в качестве таких критериев принимают затраты на сооружение, техобслуживание и ремонт трубопровода при эксплуатации, учитывая и затраты по обеспечению охраны окружающей среды. Кроме того, учитывается металлоемкость, безопасность, заданное время строительства и наличие дорог.

Список литературы

1. Тугунов П.И., Новоселов В.Ф., Коршак А.А. и др. Типовые расчеты при проектировании и эксплуатации нефтебаз и нефтепроводов: Учеб. пособие для вузов.- Уфа: Дизайн Полиграф Сервис, 2002.

2. Нефтегазовое строительство: учебное пособие / Беляева В. Я. [и др.] ; под общей ред. проф. И. И. Мазура и проф. В. Д. Шапиро. - М. : ОМЕГА-Л, 2005

3. Мустафин, Ф. М. Промышленные трубопроводы и оборудование учебное пособие для вузов / Ф. М. Мустафин, Л. И. Быков, А. Г. Гумеров [и др.] - М. : Недра, 2004

Размещено на Allbest.ru


Подобные документы

  • Методы контроля напряженно-деформированного состояния технологических трубопроводов нефтеперекачивающей станции. Организация систем диагностического мониторинга на объектах нефтегазового комплекса. Способы оценки состояния технологических трубопроводов.

    отчет по практике [956,8 K], добавлен 19.03.2015

  • Инженерные решения по обеспечению надежности эксплуатируемых подводных переходов. Методы прокладки подводных переходов трубопроводов. Определение параметров укладки подводного трубопровода на дно траншеи протаскиванием на первой и четвертой стадиях.

    курсовая работа [1,3 M], добавлен 21.01.2013

  • Химический состав и свойства пластовых вод и дегазированных нефтей месторождения. Технологические процессы, применяемые в системах сбора и подготовки продукции скважин. Осложнения, возникающие при их эксплуатации. Гидравлический расчет трубопроводов.

    дипломная работа [2,4 M], добавлен 16.04.2013

  • Гидравлический расчет приборов для измерения давления в жидкости. Определение силы и центра давления на плоские затворы. Расчет коротких трубопроводов при установившемся движении без учета вязкости жидкости. Истечение из отверстий при переменном напоре.

    курсовая работа [613,6 K], добавлен 27.12.2012

  • Расчет изменения уровня нефти в резервуарах при перепаде температур. Расчет сил давления, действующих на плоские и криволинейные стенки. Гидравлический расчет трубопроводов. Выбор расположения насосных станций. Безнапорный приток жидкости к скважине.

    курсовая работа [1,7 M], добавлен 09.04.2011

  • Анализ способов оценки инженерно-геологических и гидрогеологических условий площадки строительства. Рассмотрение особенностей определения классификационных показателей и физико-механических свойств грунтов. Анализ грунтовых условий строительной площадки.

    контрольная работа [620,4 K], добавлен 15.05.2014

  • Особенности инженерно-геологических изысканий при проектировании и строительстве магистральных трубопроводов на территории Северо-Западного Кавказа. Физико-географические условия трассы нефтепроводов Тенгиз - Астрахань - Чёрное море и Тихорецк - Туапсе.

    дипломная работа [2,8 M], добавлен 09.10.2013

  • Сущность и основные технологические процессы гидромеханизации. Сооружение ирригационного канала способом гидромеханизаци. Схема разработки грунта гидромонитором. Безэстакадный и эстакадный способы намыва. Схемы закрытых способов прокладки трубопроводов.

    контрольная работа [473,7 K], добавлен 15.06.2012

  • Исследование системы сбора и сепарации нефти до и после реконструкции месторождения. Способы добычи нефти и условия эксплуатации нефтяного месторождения. Гидравлический расчет трубопроводов. Определение затрат на капитальный ремонт нефтяных скважин.

    курсовая работа [1,8 M], добавлен 03.04.2015

  • Построение кривой свободной поверхности. Напорное и безнапорное движение грунтовых вод. Взаимосвязь скорости фильтрации и гидравлического уклона. Построение депрессионной кривой движения грунтовых вод. Определение параметров водопропускного сооружения.

    контрольная работа [804,3 K], добавлен 23.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.