Гидравлический расчет затворов, отверстий, насадков и трубопроводов при установившемся и неустановившемся движении жидкости

Гидравлический расчет приборов для измерения давления в жидкости. Определение силы и центра давления на плоские затворы. Расчет коротких трубопроводов при установившемся движении без учета вязкости жидкости. Истечение из отверстий при переменном напоре.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 27.12.2012
Размер файла 613,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Кыргызско - Российский славянский университет

Факультет архитектуры, дизайна и строительства

Кафедра гидротехнического строительства и водных ресурсов

Курсовая работа

по гидравлике на тему: Гидравлический расчет затворов, отверстий, насадок и трубопроводов при установившемся и неустановившемся движении жидкости

Бишкек, 2010

Реферат

В основе инженерного проектирования гидротехнических сооружений ирригационного и энергетического назначения, сетей водоснабжения и обводнения лежат гидравлические расчеты.

Цель курсовой работы - закрепление и практическое использование теоретических знаний, полученных по курсу «Гидравлика».

Задачи курсовой работы состоят в выполнении базового комплекса гидравлических расчетов, необходимых для проектирования открытых и закрытых емкостей, резервуаров и затворов с покоящейся жидкостью и для проектирования закрытых (напорных) трубопроводов, отверстий, насадков при установившемся и неустановившемся движении жидкости.

Гидравлический расчет приборов для измерения давления в жидкости (задача 1)

На рис. 1.1 показан прибор для измерения давления. Плотность жидкости и высота столбов заданы.

Рис. 1.1

Требуется:

1. Определить абсолютное давление в Н/м2 и в кгс/см2 в точках А, В и С.

2. Определить манометрическое давление в точке А в паскалях и технических атмосферах, если давление в этой точке рА больше атмосферного, или вакуумметрическое давление в точке А, если рА< рат.

3. Выразить полученное в пункте 2 давление в метрах водяного столба.

Исходные данные для расчета:

-плотность жидкости с =920 кг/м3

-высота столба h1=0,80 м;

-высота столба h2=1,40 м;

Решение

1. Полное (или абсолютное) гидростатическое давление в данной точке определяется по формуле /1/:

Pабс0+сgh, (1.1)

где p0 - гидростатическое давление в данной точке на сводной поверхности (давление внешней среды);

сg - объемный вес жидкости;

h - глубина погружения точки под уровень свободной поверхности (поверхность давления p0).

Давление в точке А (рис.1.1) равно:

;

Давление в точке А справа:

;

Приравнивая полученные два уравнения, найдем значение Р :

;

Следовательно:

;

Найдем давление в точке В:

;

Подставляя числовые значения, получим:

;

Найдем давление в точке С:

2. Общая формула для определения манометрического давления имеет вид /1/:

(1.2)

Для точки А:

;

В метрах водяного столба

Определение силы и центра гидростатического давления на плоские затворы (задача 2)

Для поддержания необходимого уровня воды в верхнем бьефе (рис. 2.1) установлены плоские прямоугольные затворы.

Рис. 2.1

Требуется:

1. Определить аналитическим способом силы манометрического давления воды на затвор со стороны верхнего и нижнего бьефов, а также центры давления этих сил и равнодействующую силу.

2. Построить в масштабе эпюры манометрического давления и проверить графоаналитическим способом (с помощью эпюр) вычисленные в пункте 1 центры давления и силы манометрического давления.

3. Определить начальное усилие Т, необходимое для подъёма плоского затвора, учитывая трение в пазах (коэффициент трения f = 0,40).

Исходные данные для расчета:

o глубина воды h1 = 2 м.(ВБ), h2 = 1,2 м.(НБ);

o ширина затвора b = 2,5 м.;

o вес затвора G = 7,2 кН.

Решение

1. Аналитический способ решения

Силу манометрического давления определим по формуле /1/:

Р = сghц.т.щ, (2.1)

где сg - объемный вес жидкости;

hц.т - глубина погружения центра тяжести фигуры;

щ - смоченная площадь.

Атмосферное давление не учитываем, так как оно действует на затвор слева и справа, и, следовательно, взаимно уравновешивается.

Сила давления слева:

Сила давления справа:

Равнодействующая равна разности давлений с левой и справой стороны, т.е.:

Р = Р1 - Р2 = 57 - 20,5 = 36,5 кН

Координаты центра давления для плоских наклонных затворов найдём по формуле /1/:

(2.2)

Расстояние от свободной поверхности в верхнем бьефе до точки приложения силы Р1 (по наклону затвора):

Расстояние от свободной поверхности в нижнем бьефе до точки приложения силы Р2 (так же по наклону затвора):

Для определения расстояния (по наклону затвора, от свободной поверхности) до точки приложения равнодействующей силы давления Р используем теорему о том, что

момент равнодействующей силы относительно какой-либо оси равен сумме моментов относительно той же оси сил составляющих.

Составим уравнение моментов относительно точки В и найдем расстояние от свободной поверхности верхнего бьефа до центра давления равнодействующей, т.е:

Выражая из этого уравнения и подставляя значения, получим:

2. Графоаналитический способ решения

Построим эпюры давления воды на затвор слева и справа (рис. 2.2).

Эпюра гидростатического давления с левой стороны изображается треугольником АСD, а справа - треугольником FHD.

Эпюра равнодействующей равна разности эпюр DBH и EFH и изобразится трапецией ABED.

Определим силу давления с левой стороны с помощью эпюры (рис. 2.2):

,

где - площадь эпюры ACD; b - ширина затвора.

Сила давления справа:

Равнодействующая сила:

Для нахождения центра давления равнодействующей необходимо найти центр тяжести трапеции ABED. Воспользуемся известным графическим приёмом, ясным из рис. (2.3). Через центр тяжести проводим силу P перпендикулярно к затвору. Измерив, расстояние от свободной поверхности верхнего бьефа до точки пересечения силы P со щитом (точка O), получим .

Для определения начального усилия Т, необходимого для подъема плоского затвора, спроектируем все силы на ось X (рис. 2.4) и сумму проекций всех сил приравняем нулю:

Рис. 2.4

Определение силы и центра гидростатического давления на цилиндрические затворы и поверхности (задача 3)

На рис. 3.1 показан сегментный затвор, установленный в шлюзовой камере (при подъеме вращается вокруг шарнира О).

Рис. 3.1

Требуется:

1. Показать эпюры горизонтальной составляющей силы давления воды на криволинейную поверхность АВС и тело давления.

2. Определить в кН горизонтальную и вертикальную составляющие силы манометрического давления воды на поверхность АВС, а также их равнодействующую.

3. Найти координаты центра давления равнодействующей силы аналитическим способом относительно осей, показанных на рисунке, показать их равнодействующую силу на чертеже, выполненном в масштабе.

4. Определить натяжение цепи Т при трогании затвора с места. Вес затвора задан, трением в шарнире и в боковых уплотнениях пренебречь.

Исходные данные для расчета:

o глубина воды h = 8 м;

o радиус r = 5,5 м.;

o длина затвора b = 20 м.;

o вес затвора G = 270 кН.

Решение

1. Покажем эпюры горизонтальной силы давления воды на криволинейную поверхность АВС и тела давления (рис. 3.2):

Рис 3.2

2. Равнодействующая силы давления жидкости на цилиндрическую поверхность определяется по формуле / /:

, (3.1)

где Рх - горизонтальная составляющая силы давления Р ; Рz - вертикальная составляющая.

Горизонтальная составляющая силы манометрического давления находится по формуле / /:

, (3.2)

где - площадь проекции криволинейной поверхности на плоскость (рис. 3.2); - глубина погружения центра тяжести этой проекции.

Найдем горизонтальную составляющую силы манометрического давления согласно (3.2):

;

Вертикальная составляющая силы манометрического давления вычисляется по формуле:

, (3.3)

где W - так называемое «тело давления», т.е. объем, заключенный между криволинейной поверхностью, ее проекцией на свободную поверхность и вертикальными проектирующими плоскостями (рис. 3.2).

В нашем случае:

, (3.4)

где - площадь фигуры ADNECB (рис.3.3);

Рис. 3.3

Площадь равна сумме площадей , , (рис. 3.3). Для нахождения этих площадей найдем вспомогательные величины:

, ;

,

, откуда ;

;

, откуда:

;

, откуда ;

KF=AF , KF = KO - FO = 5,48 - 4,16 = 1,32;

Вычисляем площади , , :

;

;

;

Площадь фигуры равна:

;

Согласно формуле (3.4) находим тело давления:

;

Искомая вертикальная составляющая по (3.3) будет равна:

;

Равнодействующая сил по формуле (3.1) рана:

Угол наклона равнодействующей Р определяется как:

, .

3. Для определения координат центра давления равнодействующей, т.е. силы Р, используем тот факт, что сила проходит через точку пересечения линии действия сил РX и РZ и через точку О.

Тогда имеем:

,

откуда .

Подставляем найденное значение для z в уравнение , т.е. , откуда

, .

Строим эпюры давления воды в масштабе 1:100 (рис. 3.4):

Рис. 3.4

Центр вертикальной составляющей лежит на вертикальной линии, проходящей через центр тяжести (точка L) эпюры ABCND, который определяется по методу, описанному на стр. 64 /2/.

4. Составим уравнение моментов относительно точки О (рис. 3.4):

,

Откуда найдем силу Т:

Гидравлический расчет коротких трубопроводов при установившемся движении без учета вязкости жидкости (задача 4)

Для подачи воды из резервуара, в котором поддерживается постоянный уровень, предусмотрено устройство трубопровода, состоящего из труб разного диаметра, соединенных последовательно. Длина каждой трубы =20 м. (рис. 4.1). На первой трубе на расстоянии расположен кран. Угол открытия крана .

Рис. 4.1

Требуется:

1. Определить расход воды Q при следующих исходных данных: напор Н = 6 м., диаметр d1 = 100 мм., d2 = 150 мм., коэффициенты сопротивления трения по длине и .

2. Вычислить манометрическое давление в сечениях d-d и e-e.

3. Построить в масштабе линию удельной энергии и пьезометрическую линию, вычислив предварительно каждую потерю напора и скоростные напоры.

Решение

1. Для потока реальной жидкости уравнение Бернулли имеет вид /3/:

, (4.1)

где - геометрическая высота, т.е. расстояние от произвольной горизонтальной поверхности до рассматриваемой точки в сечении;

- пьезометрическая высота, соответствующая полному или манометрическому давлению;

- скоростной напор;

?- потери напора на преодоление гидравлических сопротивлений между сечениями; -коэффициент Кориолиса.

Составим уравнение Бернулли для сечений I-I и II-II, приняв за плоскость сравнения сечение 0-0 (рис. 5.1):

;

Сумма двух слагаемых Н1 + z1 дает величину напора Н. Пренебрегая скоростным напором в резервуаре получим окончательно:

,

Общие потери напора условно считаются равными сумме потерь напора, вызываемых каждым сопротивлением в отдельности, т.е. применяют так называемый принцип наложения потерь напора /1/:

, (4.2)

где - сумма потерь напора по длине отдельных участков трубы; - сумма всех местных сопротивлений на участке.

Для определения потерь по длине для круглых труб удобно применять формулу Вейсбаха-Дарси /3/:

, (4.3)

где - коэффициент гидравлического трения по длине; - длина трубы; - диаметр трубы; V - средняя скорость течения.

Сумма потерь напора по длине участков трубы с диаметрами d1 и d2 равна:

;

Местные потери напора вычисляются по формуле Вейсбаха, которая в общем виде имеет вид:

, (4.4)

где - коэффициент потерь.

В случае внезапного расширения трубопровода местные потери напора определяются по теоретической формуле Борда /4/:

, (4.5.)

где . Тогда в нашем случае потери при внезапном расширении трубы:

.

Потери напора на вход в трубу, согласно формуле (4.4):

,

где /1, стр.215, табл. П.4/.

Потери напора на кране, по (4.4):

,

где = 1,56 при /4/.

Подставляем потери напора в уравнение Бернулли для сечений I-I и II-II:

гидравлический прибор давление напор

;

Так как в этом уравнении две неизвестных, то выразим скорость V1 через V2 в соответствии с уравнением неразрывности /4/:

т.е. средние скорости обратно пропорциональны площадям соответствующих поперечных сечений.

Отсюда:

.

Подставляя, получим:

;

;

Приняв =1 /1, стр.97/, находим среднюю скорость во второй трубе:

.

Тогда средняя скорость в первой трубе .

Для определения расхода воспользуемся формулой /4/:

Тогда в нашем случае:

.

Значение скоростных напоров и . Тогда потери удельной энергии (потери напора):

потери на вход

потери на кране

потери по длине первой трубы

потери на внезапное расширение

потери по длине второй трубы .

Проверка показывает, что

Для построения напорной линии (линии удельной энергии) составляем уравнение Бернулли для сечений I-I и произвольного сечения х-х (рис. 4.2), относительно выбранной плоскости сравнения 0-0:

,

откуда найдем удельную энергию в сечении х-х:

,

где - потери напора на участке потока от сечения I-I до рассматриваемого сечения х-х; - пьезометрическая высота, соответствующая избыточному давлению.

Таким образом, для определения значения удельной энергии в заданном сечении х-х необходимо вычесть из Н сумму потерь напора на участке потока I-x. Определяем значение удельной энергии в шести расчетных сечениях: a-a,b-b,c-c,d-d, e-e, II-II (рис.4.2):

Сечение а-а: ;

Сечение b-b:

Сечение с-с: ;

Сечение d-d: ;

Сечение е-е: ;

Сечение II-II: .

Для определения координаты пьезометрической линии необходимо из значения из значения удельной энергии в каждом сечении х-х вычесть значение скоростного напора :

Сечение а-а: ;

Сечение b-b: ;

Сечение с-с: ;

Сечение d-d: ;

Сечение е-е: ;

Сечение II-II: .

Построим в масштабе вертикальный М 1:100 и горизонтальный М 1:500.

Рис. 4.2

Манометрическое давление в сечениях d-d и е-е будет определяться по формуле /3/:

, (4.6)

Тогда манометрическое давление в сечении d-d равно:

.

Аналогично давление в сечении е-е:

.

Гидравлический расчет коротких трубопроводов при установившемся движении жидкости с учетом решения движения (задача 5)

На рис. 5.1 показано, что вода подается из верхнего бьефа в нижний с помощью сифона (сетка без обратного клапана).

Рис. 5.1

Требуется:

1. Определить режим движения при температуре .

2. Вычислить зону (область) гидравлического сопротивления, если высота выступов шероховатости стенок труб мм (n = 0,012), и в зависимости от зоны сопротивления вычислить коэффициент .

3. Определить напор Н, необходимый для пропуска заданного расхода Q.

4. Вычислить в Н/м2 и кгс/см2 манометрическое давление в точке А, если рАат или вакуумметрическое давление, если рАат.

Исходные данные для расчета:

расход воды Q = 40 л/с.;

Длина сифона м.;

диаметр трубы d = 200 мм.;

высота подъема а = 2 м.

Решение

Для выполнения режима движения необходимо вычислить безразмерное число Рейнольдса Re и сравнить его с величиной так называемого критического числа Рейнольдса Reкр.

При движении жидкости в напорной круглой трубе число Рейнольдса определяется по формуле /3/:

, (5.1)

где - кинематический коэффициент вязкости, зависящий от температуры, принят при /2, стр. 211, табл. П.1/;

V1 - скорость в трубе, определяемая по формуле /3/:

;

Вычисляем число Рейнольдса по (5.1):

.

Так как , то режим движение турбулентный. Число Рейнольдса получилось сравнительно большим, поэтому предполагаем, что движение происходит в квадратичной области сопротивления.

Если число Рейнольдса, вычемленное по уравнению (5.1), удовлетворяет условию /2/:

(5.2)

то область сопротивления будет квадратичной.

В формуле (5.2): С - коэффициент Шези, который определяем по формуле Агроскина /2/:

(5.3)

где к - параметр гладкости, значение которого 4,04 для чугунных труб,

/2, стр. 214, табл. П.3/;

R - гидравлический радиус, в нашем случае равный:

;

Тогда по формуле (5.3) находим коэффициент Шези:

Вычисляем число Рейнольдса, при превышении которого начинается квадратичная область, по условию (5.2) имеем:

,

Имеем, что , следовательно, движение будет происходить в квадратичной зоне. Тогда коэффициент можно определить через коэффициент Шези по формуле /2/:

; (5.4)

По формуле (5.4) определим

.

3. Для определения напора Н составим уравнение Бернулли (4.1) для сечений I-I и II-II, расположенных на свободной поверхности, приняв за плоскость сравнения сечение II-II (плоскость 0-0, рис. 5.1):

;

Пренебрегая скоростными напорами, и после сокращения, получим , т.е. весь напор затрачивается на преодоление сопротивлений.

будет состоять из:

,

где hсет - потери от сетки без обратного клапана, определяется по формуле /3/:

,

где - коэффициент потери сетки без обратного клапана, равный 5,5 /2, стр.217, табл. П.4/; V1 - скорость воды в трубе.

Подставляя значения, имеем:

;

hпов - потери на повороте, определяются по формуле /3/:

,

где = 0,291, при согласно /3, стр. 216, табл. П.4/.

Подставляя значения, получим:

;

hвых - потери при выходе, определяются по формуле /3/:

,

, согласно /3/. Находим:

.

Находим потери по длине /3/:

.

Находим :

.

Следовательно напор Н равен:

.

4. Найдем давление в точке А (рис. 5.1). Для этого, расположим сечение Х-Х в точке А и составим уравнение Бернулли для сечений I-I и Х-Х, приняв за плоскость сравнения сечение I-I:

, (5.5)

где /3, стр. 27/; - потери напора до сечения Х-Х, равные:

,

где , следовательно:

;

Из уравнения (5.5) находим давление в точке А:

,

или

Т.е. в точке А - вакуумметрическое давление, так как .

Истечение из отверстий и насадок при постоянном напоре (задача 6)

В оболочке резервуара сделаны квадратное отверстие со стороной а = 4 см. и круглое отверстие диаметром d = 6 см., к которому присоединен цилиндрический насадок (рис. 6.1).

Рис. 6.1

Определить:

1. Суммарный расход Q л/с из резервуара.

2. Длину стороны a1 квадратного отверстия, чтобы при заданных отметках расход

квадратного отверстия равнялся расходу из насадка.

3. Расход Q1 из резервуара через трубу диаметром d2 м и длиной ? с краном посередине, присоединенную вместо насадка.

Указание. При определении мсист принять коэффициент л=0,02.

Исходные данные для расчета:

o Отметки, м (рис. 6.1).

Труба:

o диаметр d2 = 90 мм.;

o длина l = 15 м.;

o угол открытия крана б = 30.

Решение

1. Определим суммарный расход Qсум из резервуара:

, (6.1)

где Qнас - расход из насадка; Qотв - расход из отверстия.

Расход из насадка определим по формуле /2/:

, (6.2)

где м - коэффициент расхода (м = 0,82 /2, стр. 133, табл. 3.1/); щ - площадь отверстия; Н0 - напор с учетом скорости V0 подхода жидкости к отверстию.

Напор над центром насадка Н1 = 3,7 - 2,4 = 1,3 м. Пренебрегая скоростью примем Н10.

Площадь насадка

.

По формуле (6.2) имеем, что:

.

Расход из отверстия определим по формуле /2/:

, (6.3)

где мнеп - коэффициент расхода с учетом неполноты сжатия отверстия к одной или двум направляющим стенкам резервуара:

, (6.4)

где с - эмпирический коэффициент, равный 0,15 для прямоугольных отверстий;

n - периметр отверстия, по которому устранено сжатие; р - полный периметр отверстия;

м = 0,62 /2, стр. 133, табл. 3.1/.

По (6.4) определим:

;

Расход через отверстия, соответствует напору H2=3,7 - 0,02=3,68 м. Скоростью подхода также пренебрегаем, тогда по формуле (6.3) определяем расход из отверстия:

;

По формуле (6.1) определяем суммарный расход:

.

2. Для определения длины стороны a1 квадратного отверстия приравняем или:

,

где , подставляя получим . Выражая a получаем:

, или .

3. Для определения расхода Q1 из резервуара через трубу воспользуемся формулой (6.2), вычислив предварительно коэффициент расхода :

;

При истечении в атмосферу через незатопленное выходное отверстие следует в формулу (6.2) подставлять коэффициент расхода системы /2/:

(6.5)

Здесь коэффициент кинетической энергии б относится к выходному сечению, и в данном случаи принят б=1,0 /1, стр. 24/

ж - местных потерь для участка трубопровода.

Рис. 6.2

Вычислим сумму потерь:

где жвх - коэффициент потерь на вход, жвх = 0,5 /2, стр.215, табл. П.4/;

жкр зависит от угла поворота б в данном случаи угол б=30° следовательно жкр=5,47 /2, с.217, табл. П.4/;

ждл - потери напора по длине, который найдем по формуле:

;

Подставляя числовые данные, определим сумму потерь:

;

По формуле (6.5) определяем . Расход:

.

Истечение из отверстий и насадок при переменном напоре (задача 7)

На рис. 7.1 схематический продольный разрез двухкамерного шлюза. Размеры камер l = 80 м., ширина b = 12 м. (по нормали к плоскости чертежа), площадь отверстий , коэффициенты расхода отверстий , площадь донных галерей , коэффициенты расхода галерей .

Отметки уровня воды, м.: УВБ = 48,0; УНБ = 32,0; в верхней камере = 45,0 м.

Определить время шлюзования парохода из верхнего бьефа в нижний, при этом время на открытие ворот и передвижку парохода не учитывать.

Рис. 7.1

Решение

Время шлюзования будет состоять из четырех периодов, определяемых из уравнений, которые отражают закономерности изменения напора в данном периоде.

1. Наполнение верхней камеры от отметки 45,0 м. до уровня верхнего бьефа (отметка 48,0 м.) будет происходить при переменном напоре от Н1 = 48 - 45 =3 м. до Н2=0

Время наполнения верхней камеры находим по формуле /1/:

, (7.1)

где - площадь свободной поверхности, определяемая по формуле /4/:

Н - начальный напор воды; - коэффициент расхода; - площадь донных галерей.

По формуле (7.1) определяем:

Время выравнивания уровней воды в камерах будет состоять из двух частей .

2. Время , в течение которого уровень в первой камере опустится настолько, чтобы при этом уровень во второй камере поднялся до центра среднего отверстия , т.е. на 38,5 - 32,0 = 6,5м.

При этом напор над центром отверстия будет изменяться от Н2 = 48 -38,5 = 9,5м. до Н3 = 9,5 - 6,5 = 3м. (так как размеры камер одинаковы).

Время определяется по формуле /1/:

, (7.2)

где Н2 - начальный напор; Н3 - конечный напор (напор над центром среднего отверстия).

Подставляя числовые данные в (7.2), находим:

3. Время выравнивание уровней воды в камерах.

В начале этого периода напор над центром отверстия Н3 = 3м., в конце Н4 = 0.

Выровненный уровень воды установится на отметке (ввиду равенства камер).

При одинаковых площадях резервуаров время изменения напора определяется формулой /1/:

; (7.3)

Тогда в нашем случае:

4. Время понижение уровня воды во второй камере от отметки 40,0 м. до отметки нижнего бьефа 32,0 м. определится по формуле (7.1). Напор при этом будет уменьшаться от Н5 = 40,0 - 32,0 = 8 м. до Н = 0.

Время шлюзования равно сумме:

Гидравлический расчет длинного трубопровода (задача 8)

Из напорного бака в пункты В и С (рис. 8.1) по новым чугунным трубам подается вода. Определить отметку уровня воды в напорном баке.

Исходные данные для расчета:

o диаметр d1 = 150 мм., d2 = 125 мм.;

o длина l1 = 530 м., l2 = 320 м.;

o расход Q1 = 10 л/с., Q2 = 11 л/с.

o

Рис. 8.1

Решение

Отметку уровня воды в напорном баке можно найти по формуле /4/:

, (8.1)

где - поправочный коэффициент для расчетов труб в переходной области сопротивления; Q - расход воды; l - длина трубы диаметром d; К - расходная характеристика.

Найдем средние скорости V1 и V2 течения воды в трубопроводе по формуле /4/:

,

.

Согласно /3, табл. П. 7.5/ для диаметров труб d1 и d2 найдем скорость при повышении которой наступает квадратичная область при d1 = 150 мм. , соответственно для d2 = 125 мм. .

Так как и , то область сопротивления не квадратичная. В этом случае необходимо табличное значение расходной характеристики ,

по /1, табл. П.5/ на поправочный коэффициент и /1, табл. П.6/.

По формуле (8.1) определяем:

Относительно нулевой отметки отметка в напорном баке будет составлять .

Гидравлический удар в трубопроводе (Задача 9)

Из напорного бассейна по трубопроводу, показанному на рис. 9.1, поступает вода расходом Q. Перед затвором при нормальной работе трубопровода (при полностью открытом затворе и расходе Q) избыточное давление р0 = 1,2 атм.

Рис. 9.1

Определить:

1. Какое напряжение возникает в стенках трубопровода, если быстро закрыть кран?

2. Длительность фазы .

Исходные данные для расчета:

o материал трубы - полиэтилен;

o диаметр d = 500 мм.;

o толщина стенок ;

o длина l = 880 м.;

o расход Q = 220 л/сек.

Решение

1. Напряжение, возникающее в стенках трубопровода, определяется по формуле /3/:

, (9.1)

где - толщина стенок; р - давление в трубопроводе; d - диаметр трубопровода.

При мгновенном закрытии затвора повышение давления в трубе определяется /1/:

, (9.2)

где - плотность жидкости; V0 - средняя скорость движения жидкости в трубопроводе до закрытия крана

;

с - скорость распространения ударной волны, определяемая по формуле /1/:

, (9.3)

где К - модуль упругости жидкости; Е - модуль упругости материала стенок трубопровода;

Для воды, в нормальных условиях плотность , модуль упругости и . Отношение согласно /1, стр.180, табл. 5.1/

Определим скорость распространения ударной волны по (9.3):

.

По формуле (9.2) найдем значение :

.

Тогда напряжение в стенках трубопровода по (9.1):

.

2. Длительность фазы находится по формуле /4/:

(9.4)

Подставляя известные числовые данные, получим:

Заключение

Гидравлика как прикладная инженерная наука необходима для расчетов при проектировании сетей и сооружений систем водоснабжения, гидротехнических сооружений, плотин и т.д.

Описываемые в данной курсовой работе девять задач являются составной частью курса "Гидравлика" для студентов строительных специальностей. Их выполнение позволит студентам усвоить физическую сущность изучаемых гидравлических явлений, обобщения полученных результатов и приобрести некоторые навыки применения теории в строительной практике.

Список использованных источников

1. Штеренлихт Д.В. Гидравлика. Учеб. для вузов. - М.: Энергоиздат, 1991. -351 с.

2. А.В. Андреевская, М.В. Панова, Н.П. Лавров. Практикум по гидравлике. -

Бишкек: Изд-во КРСУ, 2006. - 221 с.

3. Справочник по гидравлическим расчетам / под ред. П.Г. Киселева - М.: Энергия, 1974. - 312с.

4. Чугаев Р.Р. Гидравлика: Учеб. для вузов. -Л.: Энергия, 1975. -600 с.

Размещено на Allbest.ru


Подобные документы

  • Расчет изменения уровня нефти в резервуарах при перепаде температур. Расчет сил давления, действующих на плоские и криволинейные стенки. Гидравлический расчет трубопроводов. Выбор расположения насосных станций. Безнапорный приток жидкости к скважине.

    курсовая работа [1,7 M], добавлен 09.04.2011

  • Механические методы воздействия в твердых породах. Проведение оценки давления гидроразрыва пласта. Расчет потерь давления на трение в лифтовой колонне при движении рабочей жидкости. Расчет скорости закачивания рабочей жидкости при проведении ГРП.

    курсовая работа [248,2 K], добавлен 11.11.2013

  • Сущность и особенности определения истечения жидкости из резервуара через отверстия и насадки. Понятие и виды степени сжатия струи. Основные характеристики насадков при турбулентных режимах течения. Описание экспериментальной установки напорного бака.

    реферат [747,1 K], добавлен 18.05.2010

  • Гидравлический расчет линии нагнетания водопровода. Сумма коэффициентов местного сопротивления. Критерий Рейнольдса. Определение зависимости падения давления на участке 5 от расхода. Зависимость потери напора от расхода жидкости для подогревателя.

    курсовая работа [215,7 K], добавлен 13.02.2016

  • Распределение давления в газовой части. Уравнение Бернулли для потока вязкой жидкости. Графики зависимости дебита скважины и затрубного давления от проницаемости внутренней кольцевой зоны. Формула Дюпюи для установившейся фильтрации в однородном пласте.

    курсовая работа [398,4 K], добавлен 10.01.2015

  • Скорость перемещения штока гидроцилиндра. Определение внутреннего диаметра гидролиний, скоростей движения жидкости. Выбор гидроаппаратуры, кондиционеров рабочей жидкости. Расчёт потерь давления в гидролиниях. Тепловой расчёт объемного гидропривода.

    курсовая работа [849,3 K], добавлен 06.05.2015

  • Расчет магистрального канала гидротехнического сооружения, определение равномерного движения жидкости по формуле Шези. Определение канала гидравлически наивыгоднейшего сечения, глубин для заданных расходов. Вычисление многоступенчатого перепада.

    курсовая работа [193,2 K], добавлен 12.07.2009

  • Анализ используемых на данном месторождении буровых растворов, требования к ним. Обоснование выбора промывочной жидкости по интервалам. Гидравлический расчет промывки скважин в режиме вскрытия продуктивного пласта. Управление свойствами растворов.

    курсовая работа [294,2 K], добавлен 07.10.2015

  • Разработка и проектирование системы водоснабжения внутренних сетей. Определение расчетных расходов воды. Расчет внутренней канализации жилого дома, скорости движения сточной жидкости и наполнение для гидравлического расчета канализационных трубопроводов.

    реферат [321,7 K], добавлен 18.07.2011

  • Исследование системы сбора и сепарации нефти до и после реконструкции месторождения. Способы добычи нефти и условия эксплуатации нефтяного месторождения. Гидравлический расчет трубопроводов. Определение затрат на капитальный ремонт нефтяных скважин.

    курсовая работа [1,8 M], добавлен 03.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.