Газонефтяное месторождение Узень

Сведения о конструкции нефтяных, газовых и нагнетательных скважин. Контрольно-измерительные приборы, аппаратура, средства автоматизации и телемеханики. Методы увеличения нефтеотдачи пластов и дебитов скважин. Ликвидация обрывов и отворотов штанг.

Рубрика Геология, гидрология и геодезия
Вид отчет по практике
Язык русский
Дата добавления 03.11.2014
Размер файла 171,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Содержание

1.1 Введение

1.2 Техника безопасности, производственная санитария и противопожарные мероприятия на нефтегазодобывающих предприятиях ?зенм?найгаз

1.3 Организационно-производственная структура нефтегазодобывающего предприятия

1.4 Технико-экономические показатели и их анализ

1.5 Сведения о конструкции нефтяных, газовых и нагнетательных скважин

1.6 Контрольно-измерительные приборы, аппаратура, средства автоматизации и телемеханики

1.7 Технологический процесс добычи нефти и газа

1.8 Технологический процесс сбора и транспортировки нефти, газа и газоконденсата

1.9 Методы увеличения нефтеотдачи пластов и дебитов скважин

2. Особенности нефтепромыслового оборудования и арматуры

2.1 Основы технологии капитального ремонта скважин

2.2 Назначение и правила эксплуатации оборудования, механизмов и контрольно измерительных приборов, применяемых в КРС

2.3 Сведения о применяемых тампонирующих смесях, химических реагентах, глинистых растворах и способах их приготовления

2.4 Типы и размеры элеваторов, подъемных крюков, талевых блоков, кронблоков, вертлюгов, канатов

2.5 Правила работы с химическими реагентами

2.6 Технология производства подземных ремонтов и освоение скважин

2.7 Назначение, устройство и правила эксплуатации подъемных сооружений

2.8 Ликвидация обрывов и отворотов штанг

2.9 Виды оборудований и инструментов, применяемых при ПРС и правила пользования ими

3. Основные правила техники безопасности при подземном ремонте скважин

Заключение

Список используемой литературы

нефтепромысловое оборудование скважина пласт

1.1 Введение

Место прохождения практики - газонефтяное месторождение Узень. Сроки прохождения практики 03.02.14-09.02.14г.

Цель практики - Углубленное знание на основе изучение работы конкретных нефтегазодобывающих предприятий. Практическое освоение современного оборудования и технологии, приобретения профессионального опыта. Газонефтяное месторождение Узень расположено в Мангистауской области, в 12 км к югу от г.Новый Узень в 150 км юго-восточнее г. Актау. Через месторождение проходит нефтепровод Узень-Атырау-Самара. Региональные геолого-геофизические работы проведены в 1953 -1956 гг. Глубокое бурение начато в 1960 г. Месторождение открыто в 1962 г. Первооткрывательница - скважина К-18. Залежи на глубине 0,9 -2,4 км. Дебит нефти 10 - 81 т/сут. Дебиты газа от 8,0 до 230 тыс.мі/сут. Плотность нефти 844--874 кг/мі, содержание серы 0,16-2 %, парафинов 16-22,6 %.

Запасы нефти 1,1 млрд. тонн. Оператором месторождение является казахская нефтяная компания «?зенм?найгаз».

Растительный и животный мир характерен для пустынь и полупустынь. Климаты района континентальный. Лето жаркое и продолжительное .В отдельные годы температура воздуха повышается до +45 С. Зима малоснежная с сильными ветрами, нередко буранами. Среднегодовая скорости, ветра 6 - 8м/сек. Наиболее холодные зимы морозы достигают -30 С. нефтепромысловое месторождение скважина пласт

Количество осадков не превышает 50-60 мм в за засушливые и 200-270 мм. в наиболее влажные годы.

На месторождении наземное оборудование УПШН представлено станками-качалками (СК): 6СК6, ПШГН, 7СК8, СКД8, СК12 (UR - 12 Румыния), Лафкин (США), грузоподъемностью 6, 8, 10, 12 тонн.

1.2 Техника безопасности, производственная санитария и противопожарные мероприятия на нефтегазодобывающих предприятиях

Нефтегазодобывающие предприятия оснащены оборудованием механизмами, приспособлениями и устройствами, позволяющими освободить рабочих от выполнения многих тяжелых операций, значительно повысить производительность и безопасность труда. Коренным образом меняют характер и условия труда. Внедрение комплексной газлифтной технологии, передвижных агрегатов для ремонта скважин с механизацией ручных работ, мощных, полностью автоматизированных насосных и газокомпрессорных станций, телемеханизация и диспетчеризация на нефтяных и газовых промыслах и т. д.

Для улучшения условий труда большое значение имеет внедрение комплекса механизмов для выполнения спуско-подъемных операций, широкое использование механизированных трубовозов, передвижных и прицепных грузоподьемных кранов и других механизмов.

Для создания здоровых и безопасных условий труда, предупреждения травматизма и аварийности многое делают общественные инспекторы - рабочие ведущих профессий, звеньевые, бригадиры, имеющие большой опыт работы, хорошо знающие специфику производства. Любая травма и профессиональное заболевание оборачиваются для предприятия значительными материальными издержками, поскольку пострадавший в какой-то период времени не участвует в производственной деятельности, но заработную плату или пособие ему выплачивают за счет предприятия. Следовательно, даже незначительная на первый взгляд травма касается экономической стороны производственного коллектива. Поэтому рабочие должны принимать активное участие в решении проблемы охраны труда, знать опасные моменты в своей работе, строго соблюдать требования безопасности, применять соответствующие средства защиты.

1.3 Организационно-производственная структура нефтегазодобывающего предприятия

В бурении к основному производству относят строительство и монтаж буровой, проходка и укрепление ствола скважины, ее испытание. В соответствии с этим к подразделениям основного производства бурового предприятия (УБР) относят вышкомонтажный цех, буровые бригады, тампонажный цех и цех освоения скважин. Вспомогательное производство в УБР представлено прокатно-ремонтным цехом бурового оборудования, прокатно-ремонтным цехом турбобуров (электробуров) и труб, прокатно-ремонтным цехом электрооборудования и электроснабжения, цехом промывочных жидкостей, цехом пароводоснабжения, цехом автоматизации производства.

В нефтегазодобыче основное производство включает процессы искусственного продвижения нефти и газа к забою скважины, подъем нефти и газа на поверхность, подготовку товарных нефти и газа. К подразделениям основного производства нефтегазодобывающего предприятия (НГДУ) относят цех поддержания пластмассового давления, цехи по добыче нефти и газа (промысел), цех комплексной подготовки и перекачки нефти, газокомпрессорный цех. Вспомогательное производство в НГДУ представлено цехом подземного и капитального ремонта скважин, прокатно-ремонтным цехом эксплуатационного оборудования, прокатно-ремонтный цехом электрооборудования и электроснабжения, цехом автоматизации производства, цехом научно-исследовательских и производственных работ, строительно - монтажным цехом и цехом пароводоснабжения. В НГДУ могут быть и другие структурные подразделения с учетом особенностей разработки месторождений в отдельных районах.

1.4 Технико-экономические показатели и их анализ

Технико-экономический анализ дает обобщенную оценку в денежном выражении разнообразных достоинств и недостатков СНК конкретного типа. Экономический эффект СНК является обобщающим показателем, характеризующим целесообразность всего комплекса мероприятий по их созданию и внедрению. Отдельные технические и эксплуатационные показатели, характеризующие эффективность использования того или иного устройства, могут быть противоречивы или могут не поддаваться количественной оценке. Экономические показатели едины и применимы ко всем случаям использования СНК.

1.5 Сведения о конструкции нефтяных, газовых и нагнетательных скважин

1 - обсадная колонна; 2 - фильтр-хвостовик, 3 - пакер; 4- цементное кольцо; 5 - перфорационные отверстия; 6 - продуктивный пласт; 7 - хвостовик

Скважину бурят до кровли продуктивного пласта, спускают эксплуатационную колонну и цементируют ее с подъемом цементного раствора через башмак. Разбуривают цементировочные пробки и углубляют скважину до подошвы пласта. Если пласт сложен устойчивыми породами, то ствол оставляют открытым , если же он сложен рыхлыми породами, то против продуктивного пласта устанавливают фильтр-хвостовик либо продуктивный пласт разбуривают долотом такого же диаметра, каким разбуривались вышележащие горизонты, а затем спускают эксплуатационную колонну с оборудованным внизу фильтром

Скважину бурят ниже подошвы продуктивного пласта, спускают эксплуатационную колонну, и после ее цементирования перфорируют стенку трубы и цементное кольцо. Конструкцию призабойной зоны выполняют либо без хвостовика, либо с фильтром, спущенным непосредственно на эксплуатационной колонне

Конструкция призабойной зоны с не закрепленным обсадной колонной забоем обеспечивает наиболее благоприятные условия для притока жидкости (газа) в скважину, так как имеет наибольшую поверхность сообщения с продуктивным пластом. Вместе с тем она не гарантирует надежное разобщение и изоляцию нефтегазоносных и водяных пластов. Поэтому такую конструкцию применяют только в скважинах, пробуренных на однородные продуктивные пласты, не имеющие отдельных пропластов и глинистых перемычек.

В большинстве же практических случаев распространена конструкция призабойной зоны со сплошной цементной заливкой низа скважины и перфорацией стенки обсадной колонны, хотя такая конструкция ухудшает условия притока. Для сохранения прочности обсадной колонны число перфорационных отверстий не может быть сколь угодно большим: обычно их делают не более 40-50 на 1 метр длины.

Иногда вместо металлических фильтров-хвостовиков забой скважин оборудуют металлокерамическими, песчано-пластмассовыми или гравийными фильтрами.

Оборудование устья. После окончания бурения скважины, спуска эксплуатационной колонны и ее цементирования верхние концы обсадных труб скрепляют колонной головкой, предназначенной для герметизации межтрубных пространств, подвески и закрепления обсадных колонн. На верхнем фланце колонной головки устанавливают то или иное оборудование (фонтанную арматуру, устьевой сальник и т. п.). Фланцевые соединения унифицированы и обеспечивают возможность установки на всех типах колонных головок.

Скважины, вскрывающие пласты с высоким давлением, оборудуют головками с клиновой подвеской труб, которые отличаются легкостью монтажа. Эксплуатационная колонна зажимается клиньями и проходит через пакер с уплотнительными кольцами. Верхний конец колонны после ее подвески на клиньях приваривают к катушке.

После обвязки устья скважины в обсадную колонну спускают желонку или пикообразное долото на бурильных трубах для установления местонахождения цементного раствора внутри обсадных труб. После уточнения местонахождения цементного раствора внутри обсадной колонны в случае необходимости приступают к разбуриванию заливочных пробок.

Если предполагается разбурить только заливочные пробки, упорное кольцо "стоп" и цементный стакан до обратного клапана, то можно не оборудовать устье скважины противовыбросовой арматурой. Если же будет разбурен и обратный клапан вскрыт фильтр или башмак зацементированной колонны, та устье необходимо оборудовать соответствующим образом.

Перед опрессовкой жидкость в колонне заменяют водой. При проверке герметичности давление опрессовки должно на 20% превышать максимальное устьевое давление, которое может возникнуть при эксплуатации данной колонны.

Что касается конструкции нагнетательной скважины, то в этом случае требования к техническому состоянию и надежности основных элементов безусловно повышаются. Прежде всего приемистость нагнетательной скважины в 2-3 раза, а иногда и более превосходит продуктивность эксплуатационной: давление и температура в стволе нагнетательной скважины превышают давление и температуру в стволе эксплуатационной.

1.6 Контрольно-измерительные приборы, аппаратура, средства автоматизации и телемеханики

Вискозиметр (от лат. viscosus -- вязкий) -- прибор для определения динамической или кинематической вязкости вещества. В системе единиц СГС и в СИ динамическая вязкость измеряется соответственно в пуазах (П) и паскаль-секундах (Па·с), кинематическая -- соответственно в стоксах (Ст) и квадратных метрах на секунду (мІ/с).

Разновидности вискозиметров

Вискозиметры бывают: капиллярными, ротационными, с падающим шариком и других типов.

Капиллярные вискозиметры

Принцип действия основан на подсчёте времени протекания заданного объёма жидкости через узкое отверстие или трубку, при заданной разнице давлений. Чаще всего жидкость из резервуара вытекает под действием собственного веса, в таком случае вязкость пропорциональна разнице давлений между жидкостью, вытекающей из капилляра и жидкостью на том же уровне, вытекающей из очень толстой трубки. Если течение жидкости в приборе осуществляется только под действием тяжести (например, в вискозиметре Уббелоде), то при работе капиллярного вискозиметра определяется кинематическая (не динамическая) вязкость. С помощью капиллярного вискозиметра измеряются вязкости от 10 мкПа•с(газы) до 10 кПа•с. Используют вискозиметры по ASTM D 445(ГОСТ 33).

Ротационные вискозиметры

Два тела вращения, одинаковых или разных, совмещаются по осям так, что одно из них прикасается изнутри к другому (примером может послужить сфера, вписанная в конус). Пространство между телами заполняют исследуемым веществом, и к одному из тел подаётся крутящий момент, тело начинает вращаться с угловой скоростью, зависящей от вязкости вещества (у вискозиметров, как правило, стабилизируется скорость вращения и измеряется крутящий момент). Диапазон работы стандартных вискозиметров простирается от 1 мПа·с до сотен тысяч Па·с[1]. Такой широкий диапазон измерений достижим за счёт изменения скорости вращения шпинделя от 0,01 оборота в минуту до 100, а также за счёт использования шпинделей разных размеров при разных диапазонах вязкости.

Вискозиметр с движущимся шариком

Вискозиметр основан на законе Стокса. Вязкость определяется по времени прохождения шариком некоего расстояния, чаще всего под воздействием его собственного веса. Наиболее известен вискозиметр Гепплера.

Вискозиметр с вибрирующим зондом

Основан на изменении резонансной частоты колебаний в жидкости различной вязкости. Так как частота будет зависеть и от плотности измеряемой жидкости, некоторые модели позволяют определять эту плотность независимо от вязкости, тогда как другие используют заданное известное значение плотности.

Вискозиметр пузырькового типа

Основан на определении параметров движения пузырька газа, свободно всплывающего в вязкой среде.

Методы измерения вязкости

Вискозиметры можно классифицировать по трем главным типам: 

1. Капиллярные вискозиметры измеряют расход фиксированного объема жидкости через малое отверстие при контролируемой температуре. Скорость сдвига можно измерить примерно от нуля до 106 с-1, заменяя капиллярный диаметр и приложенное давление. Типы капиллярных вискозиметров и их режимы работы: 

Стеклянный капиллярный вискозиметр (ASTM D 445) -- Жидкость проходит через отверстие устанавливаемого - диаметра под влиянием силы тяжести. Скорость сдвига - меньше чем 10 с-1. Кинематическая вязкость всех автомобильных масел измеряется капиллярными вискозиметрами.

Капиллярный вискозиметр высокого давления (ASTM D 4624 и D 5481) --Фиксированный объем жидкости выдавливается через стеклянный капилляр диаметра под действием приложенного давления газа. Скорость сдвига может быть изменена до 106 с-1. Эта методика обычно используется, чтобы моделировать вязкость моторных масел в рабочих коренных подшипниках. Эта вязкость называется, вязкостью при высокой температуре и высоком сдвиге (HTHS) и измеряется при 150 oC и 106 с-1. HTHS вязкость измеряется также имитатором конического подшипника, ASTM D 4683 (см. ниже).

2. Ротационные вискозиметры используют для измерения сопротивления жидкости течению вращающий момент на вращающемся вале. К ротационным вискозиметрам относятся имитатор холодной прокрутки двигателя (CCS), миниротационный вискозиметр (MRV), вискозиметр Брукфильда и имитатор конического подшипника (TBS). Скорость сдвига может быть изменена за счет изменения габаритов ротора, зазора между ротором и стенкой статора и частоты вращения.

Имитатор холодной прокрутки (ASTM D 5293) -- CCS измеряет кажущуюся вязкость в диапазоне от 500 до 200000 сПуаз. Скорость сдвига располагается между 104 и 105 c-1. Нормальный диапазон рабочей температуры - от 0 до -40 oC. CCS показал превосходную корреляцию с пуском двигателя при низких температурах. Классификация вязкости SAE J300 определяет низкотемпературную вязкостную эффективность моторных масел пределами по CCS и MRV.

Минироторный вискозиметр (ASTM D 4684) -- тест MRV, который связан с механизмом прокачиваемости масла, является измерением при низкой скорости сдвига. Главная особенность метода - медленная скорость охлаждения образца. Образец подготавливается так, чтобы иметь определенную тепловую предысторию, которая включает нагревание, медленно охлаждение, и циклы пропитки. MRV измеряет кажущееся остаточное напряжение, которое, если большее чем пороговое значение, указывает на потенциальную проблему отказа прокачивания, связанную с проникновением воздуха. Выше некоторой вязкости (в настоящее время определенной как 60000 сПуаз по SAE J 300), масло может быть вызвать отказ прокачиваемости по механизму, называемому "эффект ограниченного потока". Масло SAE 10W, например, должно иметь максимальную вязкость 60000 сПуаз при -30 oC без остаточного напряжения. С помощью этого метода измеряют также кажущуюся вязкость при скоростях сдвига от 1 до 50 c-1. 

Вискозиметр Брукфильда -- определяет вязкость в широких пределах (от 1 до 105 Пуаз) при низкой скорости сдвига (до 102 c-1).

ASTM D 2983 используется прежде всего для определения низкотемпературной вязкости автомобильных трансмиссионных масел, масел для автоматических трансмиссий гидравлических и тракторных масел. Температура - испытаний находится в диапазоне от -5 до -40oC.

ASTM D 5133, метод сканирования Брукфильда, измеряет вязкость образца по Брукфильду, при охлаждении с постоянной скоростью 1oC/час. Подобно MRV, метод ASTM D 5133 предназначен для определения прокачиваемости масла при низких температурах. С помощью этого испытания определяется точка структурообразования, определенная как температура, при которой образец достигает вязкости 30,000 сПуаз. Определяется также индекс(показатель) структурообразования как самая большая скорость увеличения вязкости от -5oC к самой низкой испытательной температуре. Этот метод находит применение для моторных масел, и требуется согласно ILSAC GF-2.

Имитатор конического подшипника (ASTM D 4683) -- эта методика также позволяет измерять вязкость моторных масел при высокой температуре и высокой скорости сдвига (см. Капиллярный Вискозиметр высокого давления). Очень высокие скорости сдвига получаются за счет чрезвычайно малого зазора между ротором и стенкой статора.

3. Разнообразные приборы используют множество других принципов; например, время падения стального шарика или иглы в жидкости, сопротивление вибрации зонда, и давления, прилагаемого к зонду текущей жидкостью.

Индекс вязкости

Индекс вязкости (ИВ) - эмпирическое число, указывающее степень изменения в вязкости масла в пределах данного диапазона температур. Высокий ИВ означает относительно небольшое изменение вязкости с температурой, а низкий ИВ означает большое изменение вязкости с температурой. Большинство минеральных основных масел имеет ИВ между 0 и 110, но ИВ полимерсодержащего масла (multigrage) часто превышает 110.

Для определения индекса вязкости требуется определить кинематическую вязкость при 40oC и 100oC. После этого ИВ определяют из таблиц по ASTM D 2270 или ASTM D 39B. Так как ИВ определяется из вязкости при 40oC и 100oC, он не связан с низкотемпературной или HTHS вязкостью. Эти значения получают с помощью CCS, MRV, низкотемпературного вискозиметра Брукфильда и вискозиметров высокой скорости сдвига.

SAE не использует ИВ, для классификации моторных масел начиная с 1967, потому что этот термин технически устарел. Однако, методика Американского нефтяного института API 1509 описывает систему классификации основных масел, используя ИВ как один из нескольких параметров, чтобы обеспечить принципы взаимозаменяемости масел и универсализацию шкалы вязкости.

Основные типы модификаторов вязкости

Химическая структура и размер молекул - наиболее важные элементы молекулярной архитектуры модификаторов вязкости. Имеется множество типов модификаторов вязкости, выбор зависит от специфических обстоятельств.

Все выпускаемые сегодня модификаторы вязкости, состоят из алифатических углеродных цепочек. Главные структурные различия находятся в боковых группах, которые отличаются и химически, и по размеру. Эти изменения в химической структуре обеспечивают различные свойства модификаторов вязкости типа масел, такие как способность к загустеванию, зависимость вязкости от температуры, окислительная стабильность и характеристики экономии топлива.

Полиизобутилен (PIB или полибутен) -- преобладающие модификаторы вязкости в конце 1950-ых, с тех пор PIB модификаторы были заменены модификаторами других типов, потому что они обычно не обеспечивают удовлетворительную работу при низких температурах и работу дизельных двигателей. Однако, низкмолекулярные PIB все еще широко используется в автомобильных трансмиссионных маслах.
Полиметилакрилат (PMA) -- PMA модификаторы вязкости содержат алкильные боковые цепочки, которые препятствуют образованию кристаллов воска в масле, таким образом обеспечивая превосходные свойства при низкой температуре.

Олефиновые сополимеры (OCP) -- OCP модификаторы вязкости широко используются для моторных масел благодаря их низкой стоимости и удовлетворительной моторной эффективности. Выпускаются различные OCP, отличные главным образом по молекулярному весу и отношению этилена к пропилену.

Сложные эфиры сополимера стирола и малеинового ангидрида (стироловые эфиры) -- стироловые эфиры - мультифункциональные модификаторы вязкости высокой эффективности. Комбинация различных алкильных групп придает маслам, содержащим такие добавки, превосходные свойства при низкой температуре. Стирольные модификаторы вязкости использовались в маслах для энергосберегающих двигателей и по-прежнему используются в трансмиссионных маслах для автоматических коробок передач.

Насыщенные стиролдиеновые сополимеры -- модификаторы на основе гидрогенизированныз сополимеров стирола с изопреном или бутадиеном способствуют экономии топлива, хорошими характеристиками вязкости при низких температурах и выскокотемпературными свойствами.

Насыщенные радиальные полистиролы (STAR) -- модификаторы на основе гидрогенизированных радиальных полистирольных модификаторов вязкости показывают хорошее сопротивление сдвигу при относительно низкой стоимости обработки, по сравнению с другими типами модификаторов вязкости. Их свойства при низкой температуре подобны свойствам модификаторов OCP. Классификация вискозиметров

- по температуре исследуемой среды различают высокотемпературные вискозиметры и вискозиметры, изготовленные из нетермостойких материалов;

- по свойствам исследуемой вязкой среды различают универсальные вискозиметры и специальные (т.е. предназначенные для измерения вязкости сред с определёнными заранее известными свойствами, например ньютоновских жидкостей);

- по методу вискозиметрии различают капиллярные, вибрационные, ультразвуковые, ротационные, пузырьковые, вискозиметры с падающим шариком;- по точности измерений различают высокоточные вискозиметры и даже т.н. образцовые вискозиметры;- по области применения различают промышленные, лабораторные, медицинские вискозиметры;

- есть и такой вид вискозиметра, как полевой вискозиметр, - вискозиметр примитивной конструкции.

Применение вискозиметров

Области применения вискозиметров чрезвычайно разнообразны.

В медицине используются капиллярные вискозиметры (вискозиметр ВПЖ, ВНЖ, ВК-4). Так, например, острую актуальность имеет измерение вязкости человеческой крови. При тяжелой физической работе увеличивается вязкость крови. Многие инфекционные заболевания увеличивают вязкость, другие, например, брюшной тиф и туберкулез - значительно уменьшают. Любое изменение вязкости крови сказывается на РОЭ. Определение вязкости крови во взаимосвязи с рядом других анализов позволяет объективно оценить состояние человеческого организма. Вязкость крови в лабораторных условиях может быть определена и при помощи метода падающего шарика вискозметрии.

В фармацевтических лабораториях вискозиметры используются при изготовлении лекарственных препаратов, патоки, мазей, линиментов.
В нефтянной промышленности используются как ротационные вискозиметры системы Brookfield, так и полевые чашечные капиллярные вискозиметры, позволяющие с достаточной степенью точности определить вязкие свойства нефти.В химической промышленности и металлургии широко распространены универсальные, высокотемпературные вискозиметры, позволяющие оперировать со средами в широком диапазоне температур от -60 °C до 2600 °

1.7 Технологический процесс добычи нефти и газа

Очень часто нефть и вода при интенсивном перемешивании образуют эмульсию - смесь, в которой мелко раздробленные капли воды находятся в нефтяной среде во взвешенном состоянии и поэтому не отстаиваются и не сливаются друг с другом. В продукции газовых скважин, кроме газа, может содержаться жидкая фаза в виде капелек и паров воды, а в газоконденсатных скважинах также и жидкие углеводороды. Кроме газа и жидкости, в продукции скважин содержатся механические примеси: частицы песка и глины, выносимые из пласта.

Для сбора нефти и газа, их транспортирования, отделения друг от друга и освобождения от посторонних примесей, а также для замеров добываемой продукции на территории нефтяных промыслов строится система трубопроводов, аппаратов и сооружений, в которых выполняются следующие операции:

1) сбор и замер продукции скважин;

2) отделение (сепарация) нефти от газа;

3) освобождение нефти и газа от воды и механических примесей;

4) транспорт нефти от сборных и замерных установок до промысловых резервуарных парков и газа до компрессорных станций или газораспределительных узлов;

5) обезвоживание (деэмульсация) нефти и в ряде случаев её обессоливание и стабилизация, т. е. удаление из неё лёгких углеводородов;

6) удаление из газа ненужных примесей и отбензинивание его;

7) учёт добычи нефти и газа и их сдача транспортным организациям.

 Примерная схема движения:

От каждой скважины на кусте идёт выкидной нефтепровод (труба, диаметром от 89 до 114мм., толщина стенки 5 мм.) до АГЗУ.

АГЗУ - автоматизированная групповая замерная установка; здесь происходит дегазация нефти, а также измерение количества поступаемой с каждой скважины продукции.

Далее, с АГЗУ идёт нефтепровод - коллектор на дожимную насосную станцию (ДНС), где продукция попадает в УБС (установка блочная сепарационная), выбрасывается грязь, отделяется газ, который по газопроводу идёт на газокомпрессорную станцию, остальное же по нефтепроводу поступает на установку по подготовке нефти (УПН).

1.8 Технологический процесс сбора и транспортировки нефти, газа и газоконденсата

Очень часто нефть и вода при интенсивном перемешивании образуют эмульсию - смесь, в которой мелко раздробленные капли воды находятся в нефтяной среде во взвешенном состоянии и поэтому не отстаиваются и не сливаются друг с другом. В продукции газовых скважин, кроме газа, может содержаться жидкая фаза в виде капелек и паров воды, а в газоконденсатных скважинах также и жидкие углеводороды. Кроме газа и жидкости, в продукции скважин содержатся механические примеси: частицы песка и глины, выносимые из пласта.

Для сбора нефти и газа, их транспортирования, отделения друг от друга и освобождения от посторонних примесей, а также для замеров добываемой продукции на территории нефтяных промыслов строится система трубопроводов, аппаратов и сооружений, в которых выполняются следующие операции:

1) сбор и замер продукции скважин;

2) отделение (сепарация) нефти от газа;

3) освобождение нефти и газа от воды и механических примесей;

4) транспорт нефти от сборных и замерных установок до промысловых резервуарных парков и газа до компрессорных станций или газораспределительных узлов;

5) обезвоживание (деэмульсация) нефти и в ряде случаев её обессоливание и стабилизация, т. е. удаление из неё лёгких углеводородов;

6) удаление из газа ненужных примесей и отбензинивание его;

7) учёт добычи нефти и газа и их сдача транспортным организациям.

Примерная схема движения:

От каждой скважины на кусте идёт выкидной нефтепровод (труба, диаметром от 89 до 114мм., толщина стенки 5 мм.) до АГЗУ.

АГЗУ - автоматизированная групповая замерная установка; здесь происходит дегазация нефти, а также измерение количества поступаемой с каждой скважины продукции.

Далее, с АГЗУ идёт нефтепровод - коллектор на дожимную насосную станцию (ДНС), где продукция попадает в УБС (установка блочная сепарационная), выбрасывается грязь, отделяется газ, который по газопроводу идёт на газокомпрессорную станцию, остальное же по нефтепроводу поступает на установку по подготовке нефти (УПН).

1.9 Методы увеличения нефтеотдачи пластов и дебитов скважин

Тепловые МУН - это методы интенсификации притока нефти и повышения продуктивности эксплуатационных скважин, основанные на искусственном увеличении температуры в их стволе и призабойной зоне. Применяются тепловые МУН в основном при добыче высоковязких парафинистых и смолистых нефтей. Прогрев приводит к разжижению нефти, расплавлению парафина и смолистых веществ, осевших в процессе эксплуатации скважин на стенках, подъемных трубах и в призабойной зоне.

Паротепловое воздействие на пласт. Вытеснение нефти паром - метод увеличения нефтеотдачи пластов, наиболее распространенный при вытеснении высоковязких нефтей. В этом процессе пар нагнетают с поверхности в пласты с низкой температурой и высокой вязкостью нефти через специальные паронагнетательные скважины, расположенные внутри контура нефтеносности. Пар, обладающий большой теплоемкостью, вносит в пласт значительное количество тепловой энергии, которая расходуется на нагрев пласта и снижение относительной проницаемости, вязкости и расширение всех насыщающих пласт агентов - нефти, воды, газа. В пласте образуются следующие три зоны, различающиеся по температуре, степени и характеру насыщения:

Внутрипластовое горение. Метод извлечения нефти с помощью внутрипластового горения основан на способности углеводородов (нефти) в пласте вступать с кислородом воздуха в окислительную реакцию, сопровождающуюся выделением большого количества теплоты. Он отличается от горения на поверхности. Генерирование теплоты непосредственно в пласте - основное преимущество данного метода.

Перемещение теплоты из области перед фронтом горения в область за фронтом горения возможно за счет улучшения теплопереноса в пласте добавлением к нагнетаемому воздуху агента с более высокой теплоемкостью - например, воды. В последние годы в мировой практике все большее применение получает метод влажного горения.

Процесс влажного внутрипластового горения заключается в том, что в пласт вместе с воздухом закачивается в определенных количествах вода, которая, соприкасаясь с нагретой движущимся фронтом горения породой, испаряется. Увлекаемый потоком газа пар переносит теплоту в область впереди фронта горения, где вследствие этого развиваются обширные зоны прогрева, выраженные в основном зонами насыщенного пара и сконденсированной горячей воды.

Пароциклические обработки скважин. Циклическое нагнетание пара в пласты, или пароциклические обработки добывающих скважин, осуществляют периодическим прямым нагнетанием пара в нефтяной пласт через добывающие скважины, некоторой выдержкой их в закрытом состоянии и последующей эксплуатацией тех же скважин для отбора из пласта нефти с пониженной вязкостью и сконденсированного пара. Цель этой технологии заключается в том, чтобы прогреть пласт и нефть в призабойных зонах добывающих скважин, снизить вязкость нефти, повысить давление, облегчить условия фильтрации и увеличить приток нефти к скважинам.

Газовые МУН. Закачка воздуха в пласт. Метод основан на закачке воздуха в пласт и его трансформации в эффективные вытесняющие агенты за счет низкотемпературных внутрипластовых окислительных процессов. В результате низкотемпературного окисления непосредственно в пласте вырабатывается высокоэффективный газовый агент, содержащий азот углекислый газ и ШФЛУ (широкие фракции легких углеводородов).

К преимуществам метода можно отнести:

- использование недорого агента - воздуха;

- использование природной энергетики пласта - повышенной пластовой температуры (свыше 60-70oС) для самопроизвольного инициирования внутрипластовых окислительных процессов и формирования высокоэффективного вытесняющего агента.

Воздействие на пласт двуокисью углерода. Двуокись углерода растворяется в воде гораздо лучше углеводородных газов. Растворимость двуокиси углерода в воде увеличивается с повышением давления и уменьшается с повышением температуры.

Двуокись углерода в воде способствует отмыву пленочной нефти, покрывающей зерна и породы, и уменьшает возможность разрыва водной пленки. Вследствие этого капли нефти при малом межфазном натяжении свободно перемещаются в поровых каналах и фазовая проницаемость нефти увеличивается.

При растворении в нефти СО2 вязкость нефти уменьшается, плотность повышается, а объем значительно увеличивается: нефть как бы набухает.

Вытеснение нефти водными растворами ПАВ. Заводнение водными растворами поверхностно-активных веществ (ПАВ) направлено на снижение поверхностного натяжения на границе «нефть - вода», увеличение подвижности нефти и улучшение вытеснения ее водой. За счет улучшения смачиваемости породы водой она впитывается в поры, занятые нефтью, равномернее движется по пласту и лучше вытесняет нефть.

2. Особенности нефтепромыслового оборудования и арматуры

Асфальто-смолистые и парафиновые отложения (АСПО) содержатся в составе нефтей почти во всех нефтедобывающих районах РФ. Химический состав АСПО зависит от свойств добываемой нефти, термо- и гидродинамических условий продуктивных пластов, геологических и физических особенностей, способа разработки и эксплуатации месторождений. Парафиновые отложения в нефтепромысловом оборудовании формируются в основном вследствие выпадения (кристаллизации) высокомолекулярных углеводородов при снижении температуры потока нефти. Состав парафиновых отложений зависит от состава нефти и термодинамических условий, при которых формируются отложения. В зависимости от условий кристаллизации состав парафиновых отложений даже в одной скважине весьма разнообразен. Различаются они по содержанию асфальтенов, смол и твердых углеводородов. Нередко парафиновые отложения содержат воду и механические примеси.

На интенсивность парафиновых отложений оказывает влияние обводненность продукции в скважинах. АСПО снижают производительность скважин, увеличивают износ оборудования, расходы электроэнергии и давление в выкидных линиях. Поэтому борьба с АСПО - актуальная задача при интенсификации добычи нефти. Методы борьбы с АСПО предусматривают проведение работ по предупреждению выпадения и удалению уже образовавшихся осадков. Предупреждение образования АСПО достигается нанесением защитных покрытий на поверхности труб и другого оборудования из гидрофильных материалов, а также введением в поток добываемой нефти различных ингибиторов. Удаление АСПО достигается путем чистки поверхности труб и оборудования механическими скребками, тепловой и химической обработкой продукции скважин.

В процессе эксплуатации в деталях оборудования возникают различного рода напряжения под действием статической, динамической и знакопеременной нагрузок. Многие детали находятся под воздействием абразивных и агрессивных сред, а также значительных постоянных или циклически изменяющихся температур.

Условия эксплуатации оборудования специфичны и тяжелы -- это стесненность рабочего пространства, пыльная, в некоторых случаях влажная и коррозионно-агрессивная среда, периодическое перемещение установок и оборудования, многократный монтаж и демонтаж оборудования, необходимость соблюдения особых требований техники безопасности и др. Климат влияет на тепловой режим агрегатов и оборудования, коррозионную активность окружающей среды, трудоемкость и качество, технического обслуживания и ремонта.

При эксплуатации в условиях низких температур возникает опасность разрушения металлоконструкций и деталей механизмов, вызванная повышением хрупкости материалов, выхода из строя устройств для осушения сжатого воздуха и удаления жидкого конденсата, систем управления. В результате преждевременного разрушения или изменения свойств материалов уплотнений, шлангов нарушается работа систем смазки, что вызывает интенсивный износ деталей и механизмов.

При эксплуатации в условиях высоких температур воздуха возможно преждевременное разрушение деталей, изготовляемых из резины и полимерных материалов. Может также возрастать износ трущихся поверхностей деталей в связи с повышением "запыленности" воздуха.

Спуск и подъем НКТ и насосных штанг составляют основную работу подъемного механизма установок. При этом нагрузки на крюке и продолжительность их действия изменяются. Нагрузка на крюке при наибольшем весе колонны, допустимом из условия обеспечения нормальной длительности работы номинальную грузоподъемность. А с учетом несистематических и случайных нагрузок, воспринимаемых установкой при подъеме и спуске колонн и ликвидации аварий, определяется другой важный параметр установки -- максимальная грузоподъемность.

В нефтедобыче используют тепловые, химические и механические методы удаления АСПО

В настоящее время используют технологии с применением:

-· горячей нефти или воды в качестве теплоносителя;

-· острого пара;

-· электропечей наземного и скважинного исполнения;

- электродепарафинизаторов (индукционных подогревателей), осуществляющих подогрев нефти в скважине;

- реагентов, при взаимодействии которых протекают экзотермические реакции.

. Многие детали скважинного оборудования и фонтанной арматуры изнашиваются под воздействием добываемой продукции скважины.

В процессе добычи кислородсодержащие компоненты нефтей интенсивно адсорбируются на металлических поверхностях деталей оборудования с образованием граничных слоев. В результате износ металлов в нефтяных и водонефтяных средах существенно зависит от их состава, в том числе от солей в пластовых водах. А в процессе эксплуатации скважин, пробуренных на пласты, сложенные песками или слабосцементированными песчаниками, при определенных скоростях движения нефти и газа износ деталей усугубляется абразивным воздействием песка, находящегося в продукции скважин.

Химические методы базируются на дозировании в добываемую продукцию химических соединений, уменьшающих, а иногда и полностью предотвращающих образование отложений. В основе действия ингибиторов парафиноотложений лежат адсорбционные процессы, происходящие на границе раздела между жидкой фазой и поверхностью металла трубы.

Химические реагенты подразделяются на смачивающие, модификаторы, депрессаторы и диспергаторы:

Смачивающие реагенты образуют на поверхности металла гидрофильную пленку, препятствующую адгезии кристаллов парафина к трубам, что создает условия для выноса их потоком жидкости. К ним относятся полиакриламид (ПАА), ИП-1;2;3, кислые органические фосфаты, силикаты щелочных металлов, водные растворы синтетических полимерных ПАВ.

2.1 Основы технологии капитального ремонта скважин

Капитальный ремонт: устранение негерметичности эксплуатационных

колонн, проведения обработок с использованием многокомпонентных килотных составов и вызов притока (свабирование или компрессирование скважин), проведения ремонтно-изоляционных работ, в том числе с использованием пакеров-ретейнеров, выравнивание профилей приемистости, ограничение водопритока, исследование скважин со спуском приборов под насос, спуск оборудования для борьбы с солеотложениями, консервация и ликвидация скважин, устранение аварий в нефтяных и газовых скважинах.

Капитальным ремонтом скважин (КРС)называется комплекс работ, связанных с восстановлением работоспособности обсадных колонн, цементного кольца, призабойной зоны, ликвидацией аварий, спуском и подъемом оборудования при раздельной эксплуатации и закачке.

Капитальный ремонт скважин предполагает обследование и исследование скважин.

Обследование скважины - это работы по определению глубины забоя, состояния эксплуатационной колонны, местонахождения и состояния аварийного подземного оборудования и др.

Исследование скважин - комплекс работ по: установлению интенсивности притока жидкости из пласта в скважину; определению места поступления воды, притока жидкостей и газов через нарушения в эксплуатационной колонне; отбору глубинных проб нефти; измерению давлений и температур по стволу скважины, глубины и колебаний уровней; контролю за техническим состоянием обсадной колонны и цементного кольца и др.

Обследование скважины с помощью печатей (плоских, конусных и универсальных) начинают с проверки состояния эксплуатационной колонны, оставшейся в скважине НКТ, насосов, штанг и других предметов.

Печать представляет собой металлический корпус, покрытый свинцовой оболочкой толщиной 8-10 мм, меньше диаметра колонны на 10-12 мм. Вместо свинцовой оболочки иногда используют сплав АС, состоящий из 98 % алюминия и 2 % сурьмы - для универсальной печати.

Печать спускают на трубах, НКТ или бурильных трубах и по отпечатку на печати судят о состоянии верхнего конца аварийного оборудования, а также о состоянии стенки эксплуатационной колонны на участке нарушений, смятий, трещин и т.п.

Однако наличие дефектов в резьбе, продольных трещин в колонне печатью обнаружить невозможно. Для этого необходимо провести опрессовку колонны, которая проводится после установки пакера.

К числу работ капитального ремонта относятся работы по созданию каналов связи ствола скважины с пластом. Для этого применяют перфорацию (кумулятивную, пулевую, торпедную) обсадных колонн, а также гидропескоструйную.

На капитальный ремонт скважин каждого вида имеется утвержденная инструкция, т.е. технология есть категория постоянная на определенный срок, составляющая основу производственного процесса, предусматривающая соблюдение технологической дисциплины, повышение качества ремонта скважин и успешное выполнение плановых заданий. Технология текущего и капитального ремонта скважин, являясь фундаментом нормирования транспорта и спецтехники, имеет прочное нормативное обеспечение - Единые нормы времени на капитальный ремонт скважин и Единые нормы времени на подземный ремонт скважин, утвержденные приказами Миннефтепрома СССР. Это нормативное обеспечение позволяет выполнять расчеты норм оснащенности транспортом и спецтехникой бригад текущего и капитального ремонта скважин расчетно-аналитическим методом. 

Поскольку капитальный ремонт скважин ( как и всякий капитальный ремонт) представляет собой одну из форм воспроизводства основ-ных фондов, он осуществляется за счет амортизационных отчислений. Отчисления на капитальный ремонт производятся до конца фактического срока жизни скважины 1 и идут на особый счет Госбанка в отличие от амортизационных отчислений, идущих на капитальное строительство и поступающих в Стройбанк. 

Кумулятивный перфоратор. Кумулятивный заряд представляет собой шашку взрывчатого вещества, имеющую выемку, расположенную со стороны, противоположной месту детонации взрыва. Газы, образующиеся при взрыве такого заряда, движутся от поверхности выемки и встречаются на оси заряда, образуя мощную струю. Встречая на своем пути какую-либо преграду, эта струя выбивает в ней лунку глубиной, приблизительно равной диаметру заряда. Если выемку в кумулятивном заряде облицевать тонким слоем металла и поместить заряд на некотором расстоянии от преграды, то пробивное действие кумулятивного заряда резко усилится

Образующаяся при взрыве кумулятивного заряда металлическая струя движется по оси заряда с большой скоростью, достигающей 8000 м/с. При встрече с преградой она создает давление до 30 000 МН/м2, чем и достигается ее большая пробивная сила.

Кумулятивные перфораторы применяются корпусные и бескорпусные. Корпусные перфораторы имеют герметически закрытый корпус, в котором помещаются группы зарядов. Такие перфораторы, так же как пулевые и снарядные, могут быть использованы многократно. В бескорпусных перфораторах каждый заряд закупоривается отдельно в индивидуальную герметическую оболочку, разрушающуюся при взрыве.

В кумулятивных перфораторах обеих конструкций заряды взрываются при помощи детонирующего шнура, а шнур в свою очередь взрывается от электродетонатора, присоединенного к кабелю, на котором перфоратор опускают в скважину.

Кумулятивный перфоратор собирается в гирлянду общей длиной до 10 м с числом зарядов до ста и более.

Пулевой перфоратор бывает селективный (выстрелы пулей проводятся поочередно) и залповый (одновременные выстрелы из группы стволов) Применяют пули диаметром 11-12,7 мм. Диаметр перфоратора 65, 80, 98 мм.

Торпедный перфоратор отличается от пулевого тем, что заряжается не пулями, а снарядами замедленного действия. Снаряд торпедного перфоратора, пробив колонну и цементное кольцо, проникает на некоторую глубину в пласт и здесь разрывается, в результате чего в призабойной зоне скважины создаются каверны и трещины. На промыслах применяются торпедные перфораторы Колодяжного ТПК-22 и ТПК-32 (с диаметром снарядов 22 и 32 мм).

К капитальным ремонтам скважин относят работы, представленные в следующей таблице. Данные работы выполняют бригады капитального ремонта скважин.

Шифр

Виды работ по КРС

КР1

Ремонтно-изоляционные работы

КР1-1

Отключение отдельных обводненных интервалов пласта

КР1-2

Отключение отдельных пластов

КР1-3

Исправление негерметичности цементного кольца

КР1-4

Наращивание цементного кольца за эксплуатационной, промежуточной
колоннами, кондуктором

КР2

Устранение негерметичности эксплуатационной колонны

КР2-1

Устранение негерметичности тампонированием

КР2-2

Устранение негерметичности установкой пластыря

КР2-3

Устранение негерметичности спуском дополниельной обсадной 
колонны меньшего диаметр

КР3

Устранение аварий, допущенных в процессе эксплуатации или ремонта

КР3-1

Извлечение оборудования из скважин после аварий, допущенных
в процессе эксплуатации

КР3-2

Ликвидация аварий с эксплуатационной колонной

КР3-3

Очистка забоя и ствола скважины от металлических предметов

КР3-4

Прочие работы по ликвидации аварий, допущенных при эксплуатации скважин

КР3-5

Ликвидация аварий, допущенных в процессе ремонта скважин

КР4

Переход на другие горизонты и разобщение пластов

КР4-1

Переход на другие горизонты

КР4-2

Разобщение пластов

КР5

Внедрение и ремонт установок ОРЭ, ОРЗ, пакеров-отсекателей

КР6

Комплекс подземных работ, связанных с бурением

КР6-1

Зарезка новых стволов скважин

КР6-2

Бурение цементного стакана

КР6-3

Фрезерирование башмака колонны с углублением ствола в гороной породе

КР6-4

Бурение и оборудование шурфов и артезианских скважин

КР7

Обработка ризабойной зоны

КР7-1

Проведение кислотной обработки

КР7-2

Проведение ГРП

КР7-3

Проведение ГПП

КР7-4

Виброобработка призабойной зоны

КР7-5

Термообработка призабойной зоны

КР7-6

Промывка призабойной зоны растворителями

КР7-7

Промывка призабойной зоны растворами ПАВ

КР7-8

Обработка термогазохимическими методами (ТГХВ, ПГД и т.д.)

КР7-9

Прочие виды обаботки призабойной зоны

КР7-10

Выравнивание профиля приемистости нагнетательных скважин

КР7-11

Дополнительная перфорация и торпедирование ранее простреленных интервалов

КР8

Исследование скважин

КР8-1

Исследование характера насыщенности и выработки продуктивных пластов,
утонение геологического разреза в скважинах

КР8-2

Оценка технического состояния (обследование скважины)

КР9

Перевод на использование по другому назначению

КР9-1

Освоение скважин под нагнетательные

КР9-2

Перевод скважин под отбор технической воды

КР9-3

Перевод скважины в наблюдательные, пьезометрические

КР9-4

Перевод скважин под нагнетание теплоносителя или воздуха

КР10

Ввод в эксплуатацию и ремонт нагнетательных скважин

КР10-1

Оснащение паро- и воздухонагнетательных скважин противопесочным 
оборудованием

КР10-2

Промывка в паро- и воздухонагнетательных скважинах песчанных пробок

КР11

Консервация и расконсервация скважин

КР12

Прочие виды работ

2.2 Назначение и правила эксплуатации оборудования, механизмов и контрольно измерительных приборов, применяемых в КРС

При капитальном ремонте скважин применяется следующее оборудование: установки подъёмные, установки насосные, установки смесительные, роторы, превенторы, манифольды, кронблоки, талевые блоки, крюки, штропы, вертлюги, элеваторы, спайдеры, ключи, метчики, колокола, труболовки, ловители, фрезеры, отклонители, печати, механизмы для свинчивания и развинчивания труб и штанг.

Капитальный ремонт скважин - комплекс работ по восстановлению работоспособности скважин и повышению нефте отдачи пластов, промышленной, экологической безопасности и охраны недр, в том числе: восстановление технических характеристик обсадных колонн, цементного кольца, призабойной зоны, интервала перфорации; восстановление работоспособности скважины, утраченной результате аварии или инцидента; спуск и подъем оборудования для раздельной эксплуатации и закачки различных агентов в пласт; воздействие на продуктивный пласт физическими, химическими, биохимическими и другими методами (гидроразрыв пласта, гидропескоструйная перфорация, гидромеханическая щелевая перфорация, соляно кислотная обработка пласта и др.); зарезка боковых стволов и проводка горизонтальных участков в продуктивном пласте (без полной замены обсадной колонны); изоляция одних и приобщение других горизонтов; перевод скважин по другому назначению; исследование скважин; ликвидация скважин.16. При обследовании в части, касающейся капитального ремонта скважин, проверяется: а) полнота и качество выполнения мероприятий по подготовке кбезопасному производству работ, в том числе: - наличие двусторонней радиотелефонной связи с базами ремонтных

цехов; - наличие утвержденного в установленном порядке плана работ(плана-заказа); - наличие первичных средств тушения пожара; - состояние подъездных путей к устью скважины;- состояние соседних скважин; - расстановка бригадного оборудования в соответствии сутвержденными схемами; - наличие и исправность противовыбросового оборудования, определенного планом работ; - наличие и состояние искрогасителей на двигателях внутреннего сгорания; - состояние освещенности рабочей зоны; - укомплектованность бригад оборудованием, инструментом, контрольно-измерительными приборами и средствами защиты согласно табелю технического оснащения бригад текущего и капитального ремонта скважин; - техническое состояние подъемной установки (испытание предохранительных устройств), другого оборудования, инструмента, контрольно-измерительных приборов и средств защиты; - наличие паспортов, актов испытания и поверки (при необходимости) на оборудование, инструмент, контрольно-измерительные приборы и средства защиты; - наличие и качество ведения вахтового (сменного) журнала; - наличие и качество ведения журнала ежесменного осмотра оборудования; - наличие и качество оформления документа о готовности организации к работам по капитальному ремонту скважины;


Подобные документы

  • Общая характеристика месторождения, химические и физические свойства нефти. Условия, причины и типы фонтанирования. Особенности эксплуатации скважин глубинными насосами. Методы увеличения нефтеотдачи пластов. Технология и оборудование для бурения скважин.

    отчет по практике [2,1 M], добавлен 28.10.2011

  • Батырбайское месторождение нефти и газа. Краткие сведения из истории геологического изучения района. Гидродинамические и термодинамические методы исследования скважин и пластов. Эксплуатация скважин штанговыми насосами. Условия приема на работу.

    отчет по практике [500,8 K], добавлен 08.08.2012

  • Общие сведения о промысловом объекте. Географо-экономические условия и геологическое строение месторождения. Организация и производство буровых работ. Методы увеличения производительности скважин. Текущий и капитальный ремонт нефтяных и газовых скважин.

    отчет по практике [1,0 M], добавлен 22.10.2012

  • Краткая история развития нефтегазового дела. Понятие и назначение скважин. Геолого-промысловая характеристика продуктивных пластов. Основы разработки нефтяных и газовых месторождений и их эксплуатация. Рассмотрение методов повышения нефтеотдачи.

    отчет по практике [1,6 M], добавлен 23.09.2014

  • Изучение технологических процессов бурения нефтяных и газовых скважин на примере НГДУ "Альметьевнефть". Геолого-физическая характеристика объектов, разработка нефтяных месторождений. Методы увеличения производительности скважин. Техника безопасности.

    отчет по практике [2,0 M], добавлен 20.03.2012

  • Ликвидация нефте-газо-водопроявлений при бурении скважин. Методы вскрытия продуктивного пласта. Оборудование скважин, эксплуатируемых ЭЦН. Сбор, подготовка и транспортировка скважинной продукции. Этапы подготовки воды для заводнения нефтяных пластов.

    курсовая работа [1,9 M], добавлен 07.07.2015

  • Цикл строительства скважин. Эксплуатация нефтяных и нагнетательных скважин. Схема скважинной штанговой установки. Методы увеличения производительности скважин. Основные проектные данные на строительство поисковых скважин № 1, 2 площади "Избаскент – Алаш".

    отчет по практике [2,1 M], добавлен 21.11.2014

  • Критерии выделения эксплуатационных объектов. Системы разработки нефтяных месторождений. Размещение скважин по площади залежи. Обзор методов увеличения производительности скважин. Текущий и капитальный ремонт скважин. Сбор и подготовка нефти, газа, воды.

    отчет по практике [2,1 M], добавлен 30.05.2013

  • Категории скважин, подлежащих ликвидации. Оборудование устьев и стволов нефтяных, газовых и других скважин при их ликвидации. Требования к ликвидации и консервации скважин на месторождениях с высоким содержанием сероводорода, оформление документов.

    реферат [27,1 K], добавлен 19.01.2013

  • Сведения о разработке месторождения, его геологическом строении и нефтеносности. Требования к буровому и энергетическому оборудованию. Вскрытие продуктивных пластов. Проекты на бурение скважин. Технико-экономические показатели бурового предприятия.

    отчет по практике [2,8 M], добавлен 11.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.