Автоматизация добычи угля на шахте им. Костенко
Особенности вскрытия и подготовки шахтного поля. Общая характеристика шахтного транспорта, вентиляции, электроснабжения, водоотливных и подъемных установок. Описание принципа действия основных технических средств автоматической газовой защиты шахты.
Рубрика | Геология, гидрология и геодезия |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 24.09.2010 |
Размер файла | 91,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Комплекс аппаратуры «Метан» состоит из анализаторов метана AT 1-1 и AT 3-1. При этом анализатор метана AT 1-1 состоит из датчика метана ДМТ-4 и аппарата сигнализации АС-5, а анализатор AT 3-1 - из трех датчиков ДМТ-4 и аппарата сигнализации АС-6. Каждый из датчиков ДМТ-4 обеспечивает непрерывный автоматический контроль содержания метана в месте его установки, аварийную световую сигнализацию, передачу телеметрической информации и сигнала в аппарат АС-5 или АС-6 на отключение электроэнергии. Аппарат AC- J служит для питания датчика ДМТ-4, визуального контроля за содержанием метана, местной световой и звуковой аварийной сигнализации, автоматического отключения электроэнергии при достижении предельно допустимой концентрации метана. Аппарат АС-6 выполняет те же функции для трех датчиков ДМТ-4.
Стойка приема информации СПИ-1 предназначена для приема и регистрации телеметрической информации и аварийной сигнализации от анализаторов метана AT 1-1 и AT 3-1. В каркасе стойки рас----- положены выемные блоки измерения, регистрации и сигнализации. В блоке измерения и сигнализации расположены усилители с приемником сигналов на 14; 20; 26 кГц. На лицевой стороне стойки под блоками сигнализации расположена панель с гнездами для телефонной связи с аппаратами сигнализации и датчики., в нижней части находятся блоки питания.
Общий принцип действия комплекса «Метан» заключается в обработке электрических сигналов, поступающих от чувствительных элементов датчиков, передаче этих сигналов на аппараты сигнализации и далее на СПИ-1 диспетчеру. Количественное содержание метана в воздухе определяется беспламенным сжиганием его при температуре около 400 град. С в камере сгорания датчика ДМТ-4. При этом тепловой сигнал преобразуется в электрический, усиливается и поступает на указывающий прибор аппарата АС-5 или АС-6 и транзитом - на СПИ-- 1 диспетчерского пункта. При достижении установленной предельно -- допустимой концентрации метана датчик выдает релейный сигнал в аппарат на отключение напряжения контролируемого объекта (участка) и аварийный сигнал на СПИ-1 диспетчеру.
2.4 Описание принципа действия основных технических средств автоматической газовой защиты шахты
Работа схемы анализаторов AT 1-L
При включении анализатора напряжение с зажимов 12, 13 через блокировочный анализатор S1 поступает на трансформатор Т. Со вторичной обмотки 2 трансформатора напряжение 110 В обеспечивает питанием искробезопасный феррорезонансный стабилизатор Cm, выходное напряжение которого действует через зажимы 1, 2, в блок питания БП датчика ДМТ-4. Напряжение 24 В со вторичной обмотки 3 трансформатора поступает на блок питания сирены БПС, блок сигнализации БС, генератор частоты 6, в цепи сигнальных ламп HI, Н2 и реле К1. Связь датчика с аппаратом сигнализации осуществлятся четырехжилънъш кабелем. В цепи стабилизатора Cm и блока питания БП обеспечивается работа реле К блока БРКза счет разделения переменной и постоянной составляющих тока разделительными конденсаторам которые расположены в указанных элементах.---- Блок питания датчика выдает ряд напряжений для обеспечения работы мостовой схемы, блока резисторов БР, исполнительного блока БИ, телеметрического усилителя УТи цепей светодиодов Н1, H2, НЗ. Рабочий и сравнительный резисторы Rp u Rсp с резисторами R10, R11 образуют мост, который питается переменным напряжением 2 В и является первичным элементом по выработке сигнала в зависимости от концентрации метана. Блок резисторов в комплексе с резисторами Rr, Rн, Rс обеспечивает сопряжение по преобразованию сигнала мостовой схемы до необходимого значения и передаче его в исполнительный блок БИ. Исполнительный блок состоит из следующих устройств и элементов: фазоустановительных усилителей ФУУ1, ФУУ 2; реле времени РВ; диодных оптронов V4, V9 и цепей сопряжения.
При данном питании и нулевой концентрации метана, мост датчика неуравновешен (достигается настройкой резисторов Rr, Rн, Rс), переменное напряжение, действующее в определенной фазе в диагонали моста (токи 3, 4) поступает через блок резисторов на вход исполнительного блока. В этом блоке сигнал воспринимается фазочувствителъным элементом--усилителем ФУУ 1,сигналом которого включается светодиод оптрона V9. Диодной частью этого оптрона обеспечивается образование постоянной составляющей тока между блоками БП и Cm, что ведет к срабатыванию реле К в блоке БРК и включению реле К1.
Контактами реле К1 обеспечивается: снятие питания с блока БПС; включение генератора частоты 6; нормальное состояние фидерного автомата (зажимы 14, 15) или магистрального пускателя (зажимы 9, 11 ). При этом также в аппарате АС-5 и датчике ДМТ-4 горят зеленая сигнальная лампа H1 и светодиод Н3 на наличие питания и нормальную концентрацию метана.
При предельной концентрации метана на рабочем резисторе происходит беспламенное сгорание газа, сопротивление резистора Rr увеличивается, что ведет к установлению равновесия моста, а в дальнейшем к появлению напряжения в диагонали моста, изменившегося по фазе. Прекращает работать фазочувствителъный усилитель ФУУ 1, оптрон V4 и реле времени с выдержкой времени 20+/-5мин отключает оптрон V9. При этом отключаются реле К и К1.Отключившеесяреле К1 производит следующие переключения отключает автоматический Фидерный выключатель или магистральный пускатель; подаст питание на блок БПС, что ведет к включению сирены НА; включается замыкающим контактом мультивибратор блока БС, что обеспечивает пульсирующую работу генератора частоты G; включается красная сигнальная лампа Н2. В датчике ДМТ-4 горит светодиод HI предельной концентрации метана. При концентрации метана, превышающей 1,3 от установленного предела срабатывания, фазочувствительный усилитель ФУУ 2 снимает выдержку времени с реле РВ. При этом мгновенно отключается электроэнергия и включается светодиод Н2 второго уровня концентрации метана.
Телеметрический усилитель УТ, цепь приборов РА1, РА.2, контролирующие процентное содержание метана, и частотный генератор б обеспечивают необходимую местную информацию и на диспетчерскую стойку СПИ-1.
2.5 Монтаж, наладка и эксплуатация технических средств автоматической защиты
Исправность комплекса, надежность и длительность срока службы обеспечивается только при соблюдении Правил эксплуатации, ухода и своевременного устранения неисправностей.
Датчики метана устанавливают в местах, где Правилами безопасности предусмотрен непрерывный автоматический контроль содержания метана стационарной аппаратурой. В месте установки датчик крепят вертикально к крепи с помощью цепной подвески так, чтобы воздушный поток подходил к датчику со стороны, противоположной лицевой панели или сбоку.
Аппарат сигнализации устанавливают на распределительном пункте лавы или подземной подстанции в месте, удобном для наблюдения за прибором.
Сирену искробезопасную СИ-1 устанавливают на распределительном пункте или в месте, где вероятность нахождения людей наибольшая, например, на погрузочном пункте.
Стойку приемника информации СПИ-1 устанавливают в помещении горного диспетчера, в удобном для наблюдения месте.
Монтаж:, наладку и сдачу в эксплуатацию комплекса «Метан» ведет, как правило, специализированная организация «Углесервис».
Предварительно необходимо освободить аппараты от упаковки, очистить от пыли и выдержать в помещении в течение 15 часов при -- температуре 25 град. С и относительной влажности 80%.
Производят внешний осмотр, убеждаются в отсутствии механических повреждений, наличии пломб и соответствии заводских номеров аппаратов сигнализации и датчиков метана; в стойку приема информации СПИ-1 устанавливают самопишущие и показывающие приборы, транспортируемые в отдельных ящиках. Особое внимание обращают на щели взрывопроницаемых соединений оболочки, вводных кабельных устройств и место ввода валика блокировочного устройства. Ширина щели неподвижных плоских поверхностей между корпусом и крышкой релейной камеры -- не более 0,2 мм, между корпусом и крышкой камеры вводов -- не более 0,15 мм.
Погрешность срабатывания отключающего устройства и аварийной сигнализации и выдержку времени на срабатывание отключающего устройства комплекса «Метан» определяют на одной из установок 0,5; 0,7; 1,0; 1,5 или 2,Ооб%СН4. Погрешность срабатывания отключающего устройства и аварийной сигнализации не должна превышать +/-0,2об%СН4.
Систему отключения источника электрического питания проверяют нажатием кнопки «Контроль» на датчике ДМТ-4. При этом на датчике и аппарате сигнализации должны: появиться световые сигналы, сработать исполнительное реле в аппарате сигнализации и прекратиться подача электроэнергии на контролируемый участок.
Сопротивление изоляции относительно корпуса проверяют мегометром: зажим «Земля» присоединяют к корпусу, другой зажим -- к соединенным вместе токоведущим шпилькам. Сопротивление изоляции должно быть не менее 40 мОм.
После проверки и регулировки комплекс «Метан» выдерживают во включенном состоянии в течение суток при содержании метана в испытательный срок в камере от 1,5 до 2,0 % СН4.
Обмен смеси производить не реже, чем через 4часа, проветривают камеру в течение 10 мин. В конце суток проветрить камеру в течение 1 часа и проверить основную допускаемую погрешность, погрешность срабатывания исполнительного устройства и выдержку времени на срабатывание. При необходимости произвести корректировку переменными резисторами датчика.
Перед спуском в шахту все аппараты должны быть опломбированы навесными пломбами с оттисками клейма или скругленными и оплавленными угольным электродом концами проволоки. Аппараты АС пломбируются навесной пломбой только в шахте после подключения их в сеть.
В процессе эксплуатации необходимо производить внешний осмотр изделий. При этом следует обращать внимание па надежность подключения кабелей, наличие пломб, горение сигнальных ламп, правильность подвески датчиков. Один раз в сутки необходимо производить проверку правильности работы системы отключения питания контролируемого объекта нажатием кнопки «Контроль» на передней крышке датчика, при этом в датчике и аппарате должны включиться световой сигнал «Метан» и сирена, а также отключиться напряжение питания контролируемого объекта.
Один раз в неделю производят проверку правильности показаний и нуля. Если отклонения от нулевой отметки или показания отличаются от поверочной смеси более, чем на 0,2 % СН4, то следует сделать корректировку, для чего нужно открыть поворотную крышку на передней стенке датчика и резистором rh выполнить регулировку нуля, а резистором Rr выполнить регулировку показаний. Если не удается регулировка, то термогруппа датчика подлежит замене, которая проводится только на поверхности.
2.6 ПБ и ПТЭ при эксплуатации газовой защиты
Замер содержания газов в шахтах производится стационарными или переносными автоматическими приборами и переносными приборами эпизодического действия.
Все рабочие, ведущие работы в тупиковых очистных выработках таких шахт, должны обеспечиваться индивидуальными автоматическими сигнализаторами метана.
Автоматические стационарные и встроенные приборы контроля содержания метана должны обеспечивать автоматическое отключение электроэнергии при недопустимой концентрации метана.
Места установки автоматических переносных приборов и датчиков стационарных приборов контроля содержания метана определяется в соответствии с «Инструкцией по замеру концентрации газов в шахтах и применению автоматических приборов контроля содержания метана.
Непрерывность контроля содержания метана при сотрясательном взрывании и торпедировании пород кровли должна обеспечиваться таким включением датчиков, чтобы с них}во время проведения указанных работ, не снималось напряжение.
Переносные автоматические приборы контроля содержания метана должны располагаться в очистных выработках -- на пологих и наклонных пластах у корпуса комбайна или врубовой машины со стороны исходящей струи; на крутых пластах -- в месте нахождения машиниста; при дистанционном управлении комбайном--в вентиляционном штреке против выхода из очистной выработки у кровли штрека.
Переносные автоматические приборы контроля содержания метана должны подвешиваться так, чтобы воздушный поток подходил со стороны, противоположной лицевой панели прибора.
Стационарные автоматические приборы контроля содержания метана должны производить отключение электроэнергии при установке на концентрацию метана в исходящих струях очистных выработок и выемочных участков -- 1,3 %.
Для обеспечения надежности электроснабжения предприятий должны применяться средства автоматики: автоматическое включение резерва (АВР); автоматическое повторное включение (АПВ); автоматическое регулирование возбуждения (АРВ) и устройство форсирования возбуждения синхронных двигателей; автоматическая частотная разгрузка (АЧР) и другие.
При наличии быстродействующих основных защит, все операции контроля исправности или опробования электроавтоматики, где требуются по условиям эксплуатации (обмен сигналами В. Ч. защит, опробование устройств автоматических осциллографов),должны производиться дежурным персоналом по специальной инструкции с записью результатов в специальный или оперативный журнал или персоналом, обслуживающим устройства РЗАиТ.
2.7 Проверочный расчет электроснабжения очистного забоя
Выбор участковой подстанции. Определим мощность трансформатора для 1-группы:
где Руст - суммарная установленная мощность электродвигателей, - кВт
Кс -- коэффициент спроса, учитывающий степень загрузки и одновременности работы двигателей, а также КПД кабелей сети и двигателе
где Рн - номинальная мощность наиболее крупного токоприёмника
Cosф = 0,6 -- условный средневзвешенный коэффициент мощности по очистным участкам шахт
Smp.AOC-4B -- номинальная мощность осветительного трансформатора
По расчетной мощности трансформатора для I-группы принимаем ближайшую большую по мощности стандартную ПУПП-ТСШВП-630-6/1,2 с номинальной мощностью 630 кВ А.
Определим мощность трансформатора для II-группы.
Принимаем стандартную ПУПП- ТСШВП-630 - 6/1,2.
Определим коэффициент загрузки
где Smp. ном -- номинальная мощность ПУПП.
Таблица 2.1 Перечень электрооборудования участка
Установка |
Электродвигатели |
Мощность, кВт |
Ток статора, А |
КПД, % |
Cos |
Iпуск / Iном |
Мпуск / Мном |
Мтах / Мном |
|
1КШЭ СНТ-32 №2 ПТК-1 ДЗК ИТОГО СНТ32 №1 СП-301 Гварек №2 1 ЛТ-80 Гварек№1 ИТОГО |
экв-4-200 эдко-4-55 эдкофв-43/4-92-5 эдкофв-42/4-92-5 эдко-4-55 эдкофв-53/4-92-5 эдкофв-43/4-92-5 эдкофв-42/4-92-5 эдкофв-43/4-92-5 |
2002 55 55 45 555 55 1102 552 45 552 540 |
132,0 36,5 36,5 30,0 36,5 65,5 36,5 30,0 36,5 |
93,8 90,0 90,0 89,5 90,0 92,5 90,0 89,5 90,0 |
0,83 0,84 0,85 0,85 0,84 0,88 0,85 0,85 0,85 |
9,58 7,00 7,00 7,00 7,00 6,50 7,00 7,00 7,00 |
2,1 2,8 2,8 2,8 2,8 2,5 2,8 2,8 2,8 |
2,3 3,2 3,2 3,2 3,2 3,0 3,2 3,2 3,2 |
Расчет магистрального кабеля. Выбираем магистральный кабель по низкой стороне трансформаторной подстанции Iн.п=304А, принимаемы ЭВТ 3 95 + 1 10 + 4 4.
Таблица 2.2
Наименование потребителя |
Номинальный ток |
Сечение жил кабеля по |
Тип принятого кабеля |
||
Допустимому нагреву |
Механической прочности |
||||
1 КШЭ СНТ-32№2 ПТК-1 ДЗК |
1322 36,5 36,5 30,0 |
75 65 65 65 |
95 16 16 16 |
ГРШЭ-1140 395+110+44 ГРШЭ-1140 316+110 ГРШЭ-1140 316+110 ГРШЭ-1140 316+110 |
Производим проверку кабельной сети по нормальному режиму.
Потеря напряжения в типовом трансформаторе
где Ua - активная составляющая напряжения короткого замыкания трансформатора
Up - реактивная составляющая
Определим потерю напряжения в вольтах
Определим потерю напряжения в магистральном кабеле
где Ip -расчетный ток, А
L - длина кабеля, м
- проводимость проводника, для меди -53
S - сечение данного кабеля
Определим потерю напряжения в кабеле, питающем комбайн 1КШЭ
Определим суммарную потерю напряжения в сети, питающей комбайн 1 КШЭ
U=Ump+Um.к=34,8+5,8+18,6=59,2В,
что меньше допустимого значения, равного 117 В. Таким образом, по нормальному режиму кабельная сеть выбрана правильно.
Произведем проверку кабельной сети по пусковому режиму
Определяем пусковой ток трансформатора
Imp.n=Iмн тр-Iном dB+In.dB=0.92304-132+1265=1412,7А
Определяем потерю напряжения в трансформаторе при пуске наиболее мощного электродвигателя
Определим потерю напряжения в трансформаторе в вольтах.
Определим потерю напряжения в магистральном кабеле
Определим потерю напряжения в гибком кабеле комбайна
Определяем суммарную потерю напряжения в сети, питающей комбайн 1 КШЭ
U=Ump.n+Uм.к п++Uг.к п =179+24,3+58,5=261,8В,
что меньше допустимого значения, равного 188 В. Таким образом, по пусковому режиму кабельная сеть выбрана правильно.
Расчет и выбор кабеля напряжением на 6 кВ, питающего участок
Расчет производится:
- по нагреву рабочим током (длительно допустимой нагрузке)
- по экономической плотности
- по термической устойчивости и Т.К.З.
- по допустимой потере напряжения
Для расчета по нагреву рабочим током определяется расчетный рабочий ток в кабеле
Принимаем бронированный кабель сечением жилы 25кв.мм ЭВТ 325 + 110.
Проверим сечение кабеля на экономическую плотность тока.
Проверим минимальное сечение жилы кабеля по термической устойчивости
где С - коэффициент, при напряжении до 10,<В включительно,для медных шин С-165
tф -- фактическое время действия тока к.з.
I - действующее значение установившегося 3-х фазного тока короткого замыкания
где Sк.з. - мощность к.з. на шинах КРУ
Проверим сечение кабеля по допустимой потере напряжения
Принимаем кабель ЭВТ 325 + 110
Порядок расчета токов короткого замыкания в точке К1:
где R -- активное сопротивление трансформатора
В точке К 2:
Определим активное сопротивление в магистральном кабеле
Определим полное, активное и индуктивное, сопротивление в точке К2
Rк.2=Rm+Rм.к.=0,018+0,02=0,038 Ом
Хк.2=Хт+Хм.к.=0,08+0,016=0,096 Ом
Iк.з=0,876719=5846 А
В точке К3:
Определим активное сопротивление в кабеле комбайна
Определим индуктивное сопротивление в кабеле комбайна
Хк.к = 0,078 0,241 = 0,019 Ом
Определим полное, активное и индуктивное, сопротивление в точке КЗ
Rк.з = Rm + Rм.к + Rк.к = 0,018 + 0,02 + 0,048 = 0,086 Ом
Хк.з = Хт + Хм.к + Хк.к = 0,08 + 0,016 + 0,019 = 0,115 Ом
Iк.з=0,874800=4176 А
В точке К8:
Определим активное сопротивление в гибком кабеле маслостанции СНТ - 32 №2
Rг.к.п = 0,090,03 = 0,0027
Определим полное, активное и индуктивное, сопротивление в точке К8
Rк.8 = Rm +Rм.к +R2к.м =0,018 + 0,02 + 0,035 = 0,073 Ом
Хк8 =Хт+ Хм.к +Х2к.м = 0,08 + 0,016 + 0,0027 = 0,0987 Ом
В точке К7:
Определим активное сопротивление в гибком кабеле ПТК - 1
Определим индуктивное сопротивление в гибком кабеле ПТК-1
Хг.к.п = 0,090,05 = 0,0045 Ом
Определим полное сопротивление в гибком кабеле, индуктивное и активное, в точке К7
Rк.7 = 0,018 + 0,02 + 0,059 = 0,097 Ом
Хк.7 = 0,08 + 0,016 + 0,0045 = 0,1 Ом
Iк.з=0,875000=4350
В точке К 6:
Определим активное сопротивление в гибком кабеле ДЗК
Определим индуктивное сопротивление в гибком кабеле ДЗК
Хг.к.д = 0,090,092 = 0,008 Ом
Определим полное, активное и индуктивное, сопротивление в точе К6
Кк6 = Rm + Rм.к + Rг.к.д = 0,018 + 0,02 + 0,108 = 0,146 Ом
Хк6 =Хт+Хм.к+ Хг.к.д = 0,08 + 0,016 + 0,008 = 0,104 Ом
Iк.з=0,873871=3368 А
В точке К 4:
Активное и индуктивное сопротивление осветительной сети
Хо.с=0,1010,23=0,023 Ом
1к.з =0,8771 =62 А
В точке К 5:
Ток короткого замыкания на шинах ЦПП
Сопротивление электросистемы до шин ЦПП
От РПП-6 до ПУПП проложен бронированный кабель ЭВТ 325 + 110 длиной 800 м.
Определим активное и индуктивное сопротивление кабеля ЭВТ 325 + 110
Хк=0,0880,8=0,07 Ом
Полное сопротивление
Zк=Rк+Хк=0,6+0,07=0,6 Ом
Суммарное сопротивление до ввода 6 кВ ПУПП
R=Rc + Zк = 0,72 + 0,6 = 1,32 Ом
Установившийся ток короткого замыкания на шинах ввода ПУПП
Мощность короткого замыкания на вводе ПУПП
Порядок выбора пускозащитной аппаратуры.
Выбираем пускозащитную аппаратуру к электрооборудованию, принятому в предыдущих расчетах: напряжение сети НН-- 1140 В, освещения -- 127 В, сети ВН-- 6000 В.
Выбираем контактор для управления и защиты комбайна 1 КШЭ. Параметры двигателя:
Iн = 2132 = 264 А
Iп=Iн+Iп = 1265 +132 = 1397А
Рп = 2200 = 400 кВт
Iк.з =4176 А
Iк.з =4800 А
Выбираем контактор КT- 12P - 37 на Iн = 320 А.
Допустимая мощность подключения электродвигателя -- 400 кВт. Токовая установка 800-2400 А. Предельно-токовое отключение - 4800 А.
Выбираем ток установки 1у.
Согласно ПБ Iy In + Iн = 1397 А
Iу>1397А.
Принимаем ток установки Iу = 1400 А - защита ПМЗ, чтобы не происходило ложных срабатываний защиты.
Проверяем чувствительность токовой установки на срабатывании
1,5 Iк.з /Iу = 4176 /1400 = 2,98
Произведем отключение при максимально-возможном токе трехфазного короткого замыкания на зажимах электродвигателя с учетом 20 % запаса
Iк.з.1,2 In.o. 480011,2 = 5760>4800
Условия отключения не соблюдаются, отключение будет производить АВ.
Выберем контактор для отдельного включения двигателя на маслостанцию СНТ - 32 №2.
Параметры двигателя:
Iн = 36,5А
In = 250 А
Рн = 55 кВт
Iк.з = 4971А
Iк.з =5714 А
Выбираем контактор КТУ-- 2Е на Iном = 63 А, допустимую подключательную мощность двигателя 80 кВт с предельной токовой уcтавкой 750 А и предельным токовым отключением 1000 А.
Определяем ток у ставки Iу Iy In
Принимаем Iу = 250 А - защита ПMЗ Iy = In
Проверим чувствительность защиты на срабатывание
Iк.з / Iy 1,5 4971 / 250 = 19,9, что больше 1,5
Произведем отключение при максимально-возможном токе трехфазного короткого замыкания на зажимах электродвигателя с учетом 20% запаса
Iк.з 1,2 Iп.о 57141,2 = 6857 А > 1000 А
Условия отключения не соблюдаются, отключение будет производить автоматический выключатель.
Выбранный контактор КТУ -- 2Е подходит для ПТК и ДЗК.
Выбираем автоматический выключатель, установленный в СУВ-1140 по суммарному номинальному току потребителей Iном - 370,5 А. Выбираем АВ-А 3732УУ5 на ток 400 А, токовая у ставка 2500 А и предельным разрывным током 18000 А.
Определим токовую у ставку АВ
IуIпуск + (Iпм.тр - IпдВ) = 1397 + (370,5-132) = 1635,5 А
С учетом 25% запаса
Iy 1,25 1635,5 2044 А
Максимальный ток трехфазного короткого замыкания на выводах АВ с учетом 20 % запаса
Iк.з =1,26719 = 8063 А, что меньше 18000 А
Проверим чувствительность защиты АВ
Iк.з / Iу 1,5 4176/2500=1,7, что больше 1,5.
Окончательно принимаем к уставке автоматический выключатель типа А 3732УУ5.
Для питания, защиты и управления светильников лавы принимаем осветительный трансформатор со стабилизированным напряжением АОС-4В с Рн = 4кВА, Iн = 22 А, токовая установка защиты 32 А.
Iк.з = 62 А, Iк.з = 71А
Проверяем чувствительность защиты
Iк.з / Iу = 62/32 = 1,9, что больше 1,5
Расчет и выбор КРУ
Выбор ячейки КРУ, установленной в РПП-6, произведем по номинальному току трансформатора ТСВП 630/6-1,2 - 60,6А, выбираем КРУ типа КРУВ -- 6 на ток 200 А с предельным отключением 2400 А.
Токовую уставку КРУВ-6 определим по току трансформатора при пуске.
где 1,21,4 - коэффициент запаса
п = Uкм / Unм = 6000 /1200 = 5 -- коэффициент трансформации
На шкале уставок максимально - токовых реле в приводе ячейки имеются 6 делений, которые соответствуют 100, 140, 160, 200, 250 и 300 % номинального тока ячейки. УКРУВ-6 на 1ном эти цифры соответствуют 40, 56, 64, 80, 100, 120 (условные обозначения на шкале уставок) или действующему току 200, 280, 320, 400, 500 и 600 А.
Так что 372 > 320 и < 400 А, поставим у ставку на деление 80, что будет соответствовать 400 А. При пуске электродвигателей комбайна ложных срабатываний не произойдет.
Проверим выбранную уставку на требования ПБ:
что вполне удовлетворяет требованиям ПБ.
При возникновении к.з.защита надежно отключит силовой трансформатор от сети даже, если не сработает защита в сети 1140 В.
Сводные данные расчетов
Таблица 2.3 Спецификация электрооборудования
Наименование эл. оборудования |
Тип эдектро-оборудования |
Количество |
|
РПП-6 |
КРУВ-6 |
1 |
|
ПУПП |
ТСШВП-630-6/1,2 |
2 |
|
Магнитная станция |
СУВ-1140 |
1 |
|
Контактор |
КТ-12Р-37 |
1 |
|
Контактор |
КТУ-2Е |
3 |
|
Автоматический выключатель |
АВ 3732УУ5 |
1 |
|
Осветительный трансформатор |
АОС-4 |
1 |
Таблица 2.4 Кабельный журнал
Наименование токоприёмников |
Марка кабеля |
Напряжение, В |
Длина, м |
|
ТСШВП-630-6/1,2 |
ЭВТ 325+110 |
6000 |
800 |
|
СУВ-1140 |
ЭВТ 3956110+44 |
1140 |
200 |
|
1 КШЭ |
ГРШЭ-1140 395+110+44 |
1140 |
241 |
|
СНТ-32 №2 |
ГРШЭ-1140 395+110 |
1140 |
30 |
|
ПТК |
ГРШЭ-1140 395+110 |
1140 |
50 |
|
ДЗК |
ГРШЭ-1140 395+110 |
1140 |
92 |
|
Освещение |
ГРШЭ 34+12,5 |
127 |
230 |
2.8 Расчет техника - экономической эффективности оборудования автоматической газовой защиты шахты
Основными показателями экономической эффективности автоматизации производства в горной промышленности являются:
- уменьшение числа занятых рабочих и повышение производительности труда;
- повышение качества и снижение себестоимости;
- снижение трудоемкости;
- уменьшение сроков окупаемости капитальных затрат, связанных с автоматизацией.
Уровень или степень снижения трудоемкости работ при автоматизации составляет
где P1 - численность рабочих до автоматизации
Р2 - численность рабочих после автоматизации
Повышение производительности труда за счет автоматизации
Произведем подсчет эксплуатационных расходов при ручном и автоматическом контроле за состоянием атмосферы по изменяющимся статьям: «Зарплата» и «Амортизация», если известно, что средний заработок одного рабочего (электрослесаря) Vразряда составит 20000 тенге в месяц.
При ручном замере газа метана штат рабочих составит: 4 - электрослесари АГЗ - Vразряда и один ученик - IVразряда.
Один рабочий измеряет газ в течение смены у комбайна, остальные три и ученик находятся там, где располагаются датчики метана.
Определим зарплату четырех рабочих и ученика при ручном контроле за состоянием рудничной атмосферы за 12 месяцев.
Зр = (20000 - 18000) 12 = 1176000 тенге
Определим зарплату двух рабочих при автоматизированном контроле за состоянием рудничной атмосферы. Один электрослесаръ V разряда и помощник-электрослесарь IVразряда.
За = (20000 + 18000) 12=456000 тенге
Годовая экономическая эффективность по зарплате при автоматизации составит
Эгод = Зр-За = 1176000 - 456000 = 720000 тенге
Определяем сумму амортизационных отчислений по оборудованию газовой защиты в количестве трех комплектов за один год.
где П1 - первоначальная стоимость АТЗ-1, тенге
П2 - первоначальная стоимость ТА-11, тенге
Hr - годовая норма амортизации, %
Определим эксплуатационные расходы при автоматизированном контроле по статьям: «Зарплата» плюс «Амортизация».
Э = За Am = 720000 + 76400 = 796400 тенге
Затраты по зарплате на монтаж аппаратуры
P1 = (п5 Ст5 + п4 Ст4) д = (439,62 + 408,12) 5 = 4239 тенге
где п5 - количество электрослеспрей Vразряда, человек
п4 - количество электрослесарей IVразряда, человек
Ст5, Ст4 - тарифные ставки V-го и IV-го разрядов, тенге
д - количество дней, затраченных на монтаж.
Затраты по зарплате на ревизию и наладку
Р2 = п5 Ст5 д = 2 439,62 2 = 1758 тенге
Стоимость телефонного кабеля
Р3 = I Ск = 800 90 = 72000 тенге,
где I - длина кабеля, м
Ск -стоимость одного метра кабеля, тенге
Балансовая стоимость аппаратуры
Р=Э+Р1+Р2+ РЗ=796400+4239+1758+72000=874397тенге
Стоимость контроля метана по зарплате до автоматизации
где G - производительность лавы в месяц, тонн
Стоимость контроля метана по зарплате после автоматизации
Срок окупаемости аппаратуры комплекса «Метан»
Литература
1. Г.Д.Медведев «Электрооборудование и электроснабжение горных предприятий»
2. Л.П.Поспелов «Основы автоматизации производства.» М.; Недра, 1988
3. В.В.Демин «Лабораторный практикум по рудничной автоматике и телемеханике» М.; Недра, 1981
4. П.Д.Гаврилов, Л.Я.Гимелъшейн, А.Е.Медведев «Автоматизация производственных процессов»
5. В.А.Батицки.й, В.И.Куроедов, А.А.Рыжков «Автоматизация производственных процессов и АСУТП в горной промышленности»
6. Правила технической эксплуатации угольных и сланцевых шахт. М.; Недра, 1976
7. Правила, безопасности в угольных шахтах. Астана,2000
8. И.ИЛпратов, О.П.Шумовский, В.Ф.Ковалевский «Справочник механика шахты» М.; Недра, 1971
Подобные документы
Основные параметры шахты. Промышленные запасы шахтного поля. Проектная мощность шахты. Выбор схемы и способа вскрытия шахтного поля. Подготовка пласта к очистной выемке. Выбор и обоснование системы разработки. Выбор технических средств очистных работ.
курсовая работа [105,3 K], добавлен 23.06.2011Анализ выбора рациональных схем, способов вскрытия и подготовки шахтного поля для стабильной работы шахты. Стадии разработки угольного месторождения: вскрытие запасов шахтного поля, подготовка вскрытых запасов поля к очистным работам, очистные работы.
курсовая работа [66,9 K], добавлен 24.12.2011Характеристика района и месторождения: общие сведения, стратиграфия, тектоника, гидрогеология. Запасы шахтного поля, этапы его вскрытия и подготовки, экономическая оценка вариантов. Организация работ по руднику. Использование подземного транспорта.
дипломная работа [768,6 K], добавлен 05.10.2011Понятие шахтного поля, подсчет балансовых и промышленных запасов, обоснование величины потерь угля. Производственная мощность и срок службы шахты. Вскрытие шахтного поля. Определение основных параметров подготовительной выработки, выбор систем разработки.
курсовая работа [1,9 M], добавлен 13.12.2014Горно-геологическая характеристика месторождения и шахтного поля. Основные параметры шахты. Вскрытие и подготовка шахтного поля, параметры оборудования для проведения подготовительных и очистных работ. Технологический комплекс поверхности шахты.
отчет по практике [44,9 K], добавлен 25.03.2015Краткая характеристика территории Подмосковного бассейна. Анализ геологического строения шахтного поля. Расположение и размеры угольных пластов, способы оценки запасов полезного ископаемого. Оконтуривание угольных залежей и определение срока службы шахты.
курсовая работа [42,1 K], добавлен 27.08.2011Краткая горно-геологическая и горнотехническая характеристика месторождения. Расчет параметров подземного рудника, его годовая производительность. Выбор и обоснование схемы вскрытия шахтного поля, способа его подготовки, разработки месторождения.
курсовая работа [31,8 K], добавлен 05.02.2014Балансовые и промышленные запасы угля в шахтном поле. Структура комплексной механизации. Расчет нагрузки на очистной забой, проектной мощности шахты, потребной линии очистных забоев. Выбор способа подготовки шахтного поля. Способ подготовки пластов.
контрольная работа [160,9 K], добавлен 24.05.2015Характеристика района и месторождения, горно-геологические условия. Основные параметры шахты. Подготовка шахтного поля. Капитальные и подготовительные выработки. Удельные затраты на отработку горизонта. Транспортировка горной массы из забоя выработок.
дипломная работа [6,2 M], добавлен 23.08.2011Мощность шахты, режим работы. Механизация очистной выемки и нагрузка на забой. Главные способы подготовки шахтного поля и система разработки угольных пластов. Группирование пластов по очередности отработки и определение нагрузки. Вскрытие шахтного поля.
курсовая работа [1,5 M], добавлен 18.12.2015