Борьба с парафином в условиях НГДУ "Лениногорскнефть"

Общая характеристика Западно–Лениногорской площади, коллекторские свойства тектонических пластов. Физико-химические свойства нефти, газа и пластовой воды. Конструкция скважин и методика ее разработки. Состав и условия образования АСПО на оборудовании.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 28.06.2010
Размер файла 566,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

Асфальто-смолистые и парафиновые отложения (АСПО) содержатся в составе нефтей почти во всех нефтедобывающих районах РФ. Химический состав АСПО зависит от свойств добываемой нефти, термо- и гидродинамических условий продуктивных пластов, геологических и физических особенностей, способа разработки и эксплуатации месторождений.

Парафиновые отложения в нефтепромысловом оборудовании формируются в основном вследствие выпадения (кристаллизации) высокомолекулярных углеводородов при снижении температуры потока нефти.

Состав парафиновых отложений зависит от состава нефти и термодинамических условий, при которых формируются отложения. В зависимости от условий кристаллизации состав парафиновых отложений даже в одной скважине весьма разнообразен. Различаются они по содержанию асфальтенов, смол и твердых углеводородов. Нередко парафиновые отложения содержат воду и механические примеси.

На интенсивность парафиновых отложений оказывает влияние обводненность продукции в скважинах.

АСПО снижают производительность скважин, увеличивают износ оборудования, расходы электроэнергии и давление в выкидных линиях. Поэтому борьба с АСПО - актуальная задача при интенсификации добычи нефти.

Методы борьбы с АСПО предусматривают проведение работ по предупреждению выпадения и удалению уже образовавшихся осадков.

Предупреждение образования АСПО достигается нанесением защитных покрытий на поверхности труб и другого оборудования из гидрофильных материалов, а также введением в поток добываемой нефти различных ингибиторов.

Удаление АСПО достигается путем чистки поверхности труб и оборудования механическими скребками, тепловой и химической обработкой продукции скважин.

Многие глубиннонасосные установки эксплуатируемые в условиях НГДУ «Лениногорскнефть» (далее НГДУ «ЛН»), эксплуатируются в высокопарафинящихся скважинах, где в насосе и трубах откладывается парафин. В НГДУ «ЛН» применяются различные методы дапарафинизации скважин, но наиболее эффективным является химический метод предотвращения отложений парафина с применением ингибиторов. Часто химический метод применяют в сочетании с тепловыми и механическими методами.

2. Исходные данные

2.1 Орогидрография

Западно - Лениногорская площадь является частью нефтяного месторождения платформенного типа с углами падения 0°09 -017, в тектоническом отношении приурочена к структурному элементу второго порядка. Самые высокие абсолютные отметки залегания кровли пашийского горизонта отмечаются в северной части площади 1441,6 м. В южном направлении наблюдается пологое погружение слоев. Минимальные абсолютные отметки кровли горизонта Д1 составляют 1482 м. В географическом отношении площадь расположена на пересеченной балками и оврагами местности. Климат резко континентальный. Суровая холодная зима с сильными ветрами, буранами и жаркое лето.

Средняя январская температура колеблется от-13 °С до -14,5С. Минимальная температура иногда -45 °С, максимальная температура достигает +38 С. Средняя июльская температура колеблется от +18,5 С до +19,5 С.

2.2 Стратиграфия

Наиболее возвышенная часть купола Ромашкинская вершина, являющаяся крупной структурой блокового строения и оконтуривается изогипсой 1500 м и имеет высоту около 50 м. Восточная часть вершины характеризуется наличием наиболее возвышенных участков.

Сложным строением отличается юго-восточный склон купола. Для западного склона преобладающим является меридиональное простирание структурных форм. Меньшей расчлененностью отличаются северный и северо - восточный склоны.

Анализ структурных поверхностей маркирующих горизонтов палеозоя дал

возможность выделить по разрезу до 6 структурно-тектонических комплексов или этажей СТЭ. Первый этаж отложения Эйфельского и Живетского ярусов среднего и нижнефранского подъяруса верхнего девона.

Верхняя граница второго этажа проводится по кровле тульского горизонта. Третий этаж - Верейского горизонта. Четвертый этаж - Верхнего карбона. Пятый этаж - отложения нижнего отдела перми. Шестой этаж - отложения верхнего, с проведением границ соответственно по кровле уфимских и татарских отложений. В тектоническом строении структурных этажей присутствует закономерное изменение и усложнение вверх по разрезу строения отложений и рельефа их структурных поверхностей.

Основным эксплуатационным объектом Западно-Лениногорской площади являются отложения пашийского горизонта франкского яруса верхнего девона. Продуктивные отложения пашийского горизонта Д1 являются основными промышленными объектами Ромашкинского месторождения. Пашийский горизонт является многопластовым объектом. Пашийский горизонт индексируется как Д1. Он сложен в основном мелкозернистыми песчаниками и крупнозернистыми алевролитами с переслаиванием аргиллитами и глинистыми алевролитами. Песчаники кварцевые, алевритистые, светло-серые или буровато-серые до темно-коричневых в зависимости от нефтенасыщения. Алевролиты серые, песчаные, слоистые, что связано с сортировкой обломочного материала по величине зерен. Толщина горизонта достигает 42,5 м, нефтенасыщенная - 8,2 м.

В разрезе горизонта Д1 выделяются (сверху вниз) пласты «а», б, б, в, г, г+д, Эти пласты распространены по площадям и представлены в разрезах скважин далеко неравномерно. Статистический анализ видов разрезов показывает, с одной стороны многообразие сочетаний пластов, с другой стороны - преобладание в разрезе определенных устойчивых сочетаний на площади преобладают разрезы скважин с 4-мя, 5-ю и 6-ю пластами, которые составляют 67% их сочетаний.

Пласт «а» имеет основное развитие в центральной части площади. В интервале пласта «а» прослеживаются 3 прослоя пород-коллекторов, из которых наиболее развиты нижний и средний. По распределению алевролиты занимают 38,9% всей нефтеносной площади. Пласт «а маломощный толщина достигает 5-6 м. Доля коллекторов с толщиной менее 3 м. составляет 67,7%. Пласт «а» содержит 6,7% извлекаемых запасов горизонта Д.

Пласт б - маломощный, средняя толщина прослоев пласта пачкиб в основном равна 2-3 м. Доля толщины менее 3 м. составляет 63,3%. Пласт содержит 11,5% извлекаемых запасов горизонта Д.

Пласт «б« - 71,6% площади занято коллекторами, средняя толщина пласта 2-3 м. Пласт «б3» развит в основном в виде линзообразных зон меридионального направления в центральной части месторождения, а на западе в виде разрозненных участков. Пласты толщиной менее 3 м. составляют 62,15%. Пласт «б« содержит 15,3% извлекаемых запасов горизонта Д.

Пласт «в» средняя толщина пластов 3,3 м. Уверенно выделяется в разрезах большей частью до 3 м. Составляет 51,7%. Пласт почти полностью находится в нефтяной зоне. Пласт содержит 18,3% извлекаемых запасов горизонта Д.

Пласт «г " в основном состоит из песчанников. По своим коллекторским свойствам это лучший из пластов горизонта Д. Средняя толщина пласта 4-6 м. Пласт содержит 19,3% извлекаемых запасов.

Пласт «г+д» представлен песчанно-алевролитовыми породами с хорошими коллекторскими свойствами.

Пласт «д» сливается с пластом «г«. На участках слияния пластов толщина коллекторов может достигать 20 м. Пласт содержит 28,9% извлекаемых запасов.

2.3 Тектоника

Ромашкинское месторождение, по поверхности кристаллического фундамента представляет собой, ассиметричное поднятие широтного простирания с относительно слабым расчленением на возвышенности и углубления различной амплитуды. Оно структурно приурочено к сводовой части южного купола, представляющего собой крупное платообразное поднятие изометричной формы размером около 100 * 100 км, которое ограничено с запада Алтунино-Шунакским, с востока - Уральским прогибами и структурными уступами: Сакловским на севере и Бугульминским - на юге.

2.4. Коллекторские свойства пластов

Благоприятными условиями для накопления и сохранения нефти и газа в горных породах является наличие пустот в породе, которые могут занимать нефть и газ, и залегание пород в виде геологических структур, препятствующих рассеиванию нефти и газа. Если горная порода обладает свойствами, которые обеспечивают, подвижность нефти и газа в ее пустотном пространстве, следовательно возможность их извлечения, то она является коллектором. Все горные породы могут быть коллекторами нефти и газа, но лишь 1% запасов нефти и газа приурочен к магматическим и метаморфическим породам. В основном скопления нефти и газа приурочены к осадочным породам. 85-95% осадочного комплекса земной коры представляют терригенные породы, состоящие из обломочного материала (пески, песчаники, известняки, алевриты, глины, аргелиты и др.). Коллекторские свойства горных пород обуславливаются наличием в них пустот (пор, трещин и каверн). Литолого-петрографическая характеристика коллектора представлена в Таблице 1.

Таблица 1 Литолого-петрографическая характеристика коллектора

Наименование

Тип песчанника

Породы алевролиты

1. терригенные коллекторы фракции по отношению ко всей породе, в т.ч.

нерастворимый остаток

растворимых солей (карбонаты), %

99,4

0,69

99,2

0,98

2. процентное содержание фракции в нерастворимом остатке по отношению ко всей породе, в т.ч.

0,25 мм.

0,25-0,1 мм.

0,1-0,05 мм.

0,05-0,01 мм.

0,01 мм.

3,46

68,47

19,25

4,88

4,03

3,75

25,98

48,35

17,47

4,48

3. Минеральный состав части породы, в т.ч.

Кварц

Полевые шпаты

Мономинерал

Не опред

Кварцевые

-

4. Коэффициент сортировки

2,12

2,04

5. Количество анализов

33

20

6. Размер пор в минералах (мкм)

33

20,9

7. Количество определений

15

27

Среди физических параметров, характеризующих свойства горных пород - коллекторов, главное значение имеют те, которые определяют емкость пустот, способность породы пропускать через себя жидкости и газы, полноту извлечения из них нефти и газа.

Основными физическими параметрами горных пород складывающих нефтяные месторождения являются пористость, проницаемость, нефтенасыщенность. (Таблица 2).

Таблица 2 Характеристика пластов горизонта Д

Пласты

Тип коллектора

Толщи на, м

Порис тость,

%

Проницаемость,

мкм?

Нач.нефтена сыщенность, доли ед.

А

П

3,4

20,4

0,348

0,824

А

2,1

14,0

0,111

0,684

б

П

3,7

20,4

0,373

0,814

А

1,8

14,1

0,094

0,722

б

П

4,1

20,4

0,340

0,799

А

2,0

14,1

0,100

0,700

в

П

3,6

20,6

0,360

0,824

А

1,9

14,2

0,089

0,719

г

П

3,8

21,6

0,369

0,838

А

2,5

13,7

0,097

0,732

г +д

П

3,3

21,6

0,271

0,826

А

3,2

14,0

-

-

2.5 Физико-химические свойства нефти, газа и пластовой воды

Состав нефти чрезвычайно сложен и разнообразен. Однако все физико-химические свойства нефти и в первую очередь ее товарные качества определяются ее составом.

Основными элементами входящими в состав нефти являются углеводород и водород. В большинстве нефтей углерод колеблется от 83-87%, количество же водорода редко превышает 12-14%. Кроме углерода и водорода в нефти и газе содержатся кислород, азот, сера и в ничтожных количествах другие химические элементы, главным образом металлы: ванадий, хром, никель, железо, кобальт, магний, титан, натрий, кальций, фосфор и кремний.

Компоненты нефти представляющие смесь высокомолекулярных соединений, в состав которых входят азот, сера, кислород и металлы называют асфальтосмолистыми веществами. Нефть Ромашкинского месторождения относится к сернистым (0,51 - 2% вес.), парафинистым (1,5 - 6% вес.), высоковязким (30-100 мПа.с). Среднее арифметрическое содержание парафина по горизонтам девона - 4,4% весовых.

Горючие газы нефтяных месторождений по своей химической природе сходны с нефтью, и являются смесью различных углеводородов: метана, этана, пропана, бутана, пентана. Часто с состав газов входят азот, углекислота, сероводород и редкие газы. (Таблица 3).

Пластовые воды оказывают непосредственное влияние на процессы извлечения нефти и газа. Они представляют собой сложные растворы, в составе которых неорганические соли, газы, растворимые в воде органические вещества.

Таблица 3. Компонентный состав нефтяного газа, разгазированной и пластовой нефти (% - мольные)

Наименование

Газ, выделившийся из нефти при однократном разгазировании в стандартных условиях

Нефть разгазиро - ванная однократно в стандартных условиях

Пластовая нефть

У. Сероводород

0,0

0,0

0,0

2. Углекислый газ

0,65

-

0,11

3. Азот + редкие

9,14

-

0,56

4, Метан

32,43

0,0

1,3

5, Этан

22,58

0,13

1,56

6. Пропан

22,27

0,56

2,65

7. Изобутан

2,65

0,22

0,53

8. Н - бутан

6.68

0,84

1,78

9. Изопентан

1.52

0,89

1,0

10. Н - пентан

1.28

1,12

1,16

11. Остаток (С + выше)

0.8

96,24

89,34

12. Молекулярная масса

32,76

-

-

13. Плотность при стандартных условиях нефти, кг/м

-

857,8

804,8

14. Газа

1,3621

-

-

Соли диссоциируют в воде с образованием соответствующих ионов. Количественные соотношения между содержанием главных ионов: К+, Nа+, Са 2+, Мg2+, Сl?, SО??4, НСО?3, СО??3, положены в основу принятой у нас в стране химической квалификации вод по Сулину.

Общее содержание солей в пластовой воде принято называть минерализацией, величина которой колеблется в широких пределах. В зависимости от общей минерализации пластовые воды подразделяются на три класса: пресные воды с содержанием солей менее 0,1%,

Минерализованные от 0,1 до 0,5%, рассолы более 5%.Содержание растворенных газов в пластовой воде обычно не превышает 1,5- 2 м. В составе растворенного газа преобладают метан, азот и углекислый газ.

Плотность пластовой воды растет с увеличением минерализации. Вязкость пластовых вод зависит в первую очередь от температуры и минерализации, и в меньшей степени от газосодержания и давления. В большинстве случаев вязкость пластовых вод составляет 0,2 -1,5 мПас.

2.6 Режим залежи

На Западно-Лениногорской площади основным режимом работы залежи является водонапорный режим.

Водонапорный режим предполагает возникновение таких условий в залежи, когда нефть находится под постоянным воздействием контурных вод, в свою очередь имеющих постоянный источник питания. При этом происходит непрерывное замещение переместившегося в скважине объема нефти таким же объемом воды.

При учете объемов поступающей в пласт воды, можно добиться такого режима работы залежи, при котором скважины будут работать фонтанным способом в длительное время.

Учитывая, что характеристика нефтяных пластов, на которые воздействует вода неоднородно, то может возникнуть неравномерный характер продвижения воды и нефти на отдельных участках и нарушение режима работы залежи. В частности, величина давления ниже давления насыщения (предельная величина давления, при котором весь газ растворен в жидкости) и начнется интенсивное выделение газа в пласт. Это в свою очередь приведет к изменению режима работы залежи. Условиями, благоприпятствующими осуществлению водонапорного режима является: а) хорошая сообщаемость нефтяной залежи с водяным резервуаром; б) небольшая вязкость нефти; в) однородность пласта по проницаемости; г) соответствие темпов отбора нефти и продвижения воды. Естественный водонапорный рексим обеспечивает разработку месторождения медленными темпами и требует значительного притока подстилающих вод. Кроме того, он трудно регулируем. Наиболее эффективный искусственный водонапорный режим, разработанной заранее схеме и контролируя ее объемы, удается более эффективно вести разработку месторождения.

2.7 Конструкция скважин

Разбуривание продуктивного пласта может осуществляться либо совместно с вышележащими пластами, либо после крепления скважин (спуска и цементирования обсадной эксплуатационной колонны) до ее кровли. В обоих случаях забой скважины может быть представлен открытым стволом, фильтром или перфорированной колонной.

В первом случае скважину бурят несколько ниже подошвы продуктивного пласта, спускают эксплуатационную колонну и цементируют ее одно или двухступенчатым методом посте затвердевания цементного раствора против продуктивного пласта перфорируют стенку колонны и цементное кольцо с целью создания каналов для поступления нефти и газа в скважину.

Во втором случае скважину бурят сначала только до кровли продуктивного пласта, спускают эксплуатационную колонну и цементируют ее. Затем разбуривают долотом меньшего диаметра цементировочные пробки, упорное кольцо и продуктивный пласт.

В целом конструкция ствола скважины представлена в зависимости от геологических и технологических факторов несколькими концетрически спущенными на различную глубину колоннами обсадных труб: кондуктором, одной, двумя или тремя техническими и эксплуатационной колоннами. Эксплуатационная колонна окончательно образует ствол скважины. Внутренний ее диаметр при толщине стенки труб 6 - 14 мм изменяется от 96,3 до 140,3 мм, составляя в большинстве 114 -140,3 мм.

Для обеспечения нормальных условий заканчивания и эксплуатации скважин, а также защиты обсадных колонн от наружной коррозии, выполнений охраны недр, тампонажный материал (раствор) за направлением и кондуктором поднимают до устья, а за эксплуатационной колонной как минимум с перекрытием башмака кондуктора. Качество цементирования определяется акустическим и радиоактивным цементаторами. Для притока нефтяных флюидов в скважину колонну перфорируют напротив продуктивных пластов. Зумпф делается для накопления в нем песка поступающего из пласта вместе с нефтью. Основание скважины называется башмаком, ствол по всей длине выработки, верхняя часть называется устьем.

Основными параметрами конструкции скважины являются количества и диаметр долот, которые необходимы при бурении под каждую обсадную колонну, а также высота подъема тампонажного раствора.

Разработка конструкции скважины базируется из следующих основных геологических и технико-экономических факторов.

1. Геологических особенностей залегания горных пород, их литология, величины пластового давления;

2. Назначение и цели бурения;

3. Уровня организации техники, технологии бурения и геологической изученности района работ;

4. Экономической обоснованности;

5. Задачи охраны природы.

В процессе бурения скважин для закрепления их стенок разобщения нефтеносных, газоносных пластов для разобщения в нихспускают стальные трубы, называемые обсадной трубой с цементированным заколонного пространства. Самая первая труба, опускаемая на 30-40 метров называется направлением, цементируется до устья, предназначается для направления промывочной жидкости в желобную систему и для предохранения от размыва. Под кондуктор скважину бурят долотом меньшего диаметра до глубины 200-400 м. Эта колонна необходима для разобщения водоносных горизонтов, которые питают родники, а также для закрепления неустойчивых пород, залегающих на данной глубине. Долотом еще меньшего диаметра скважина пробуривается до проектной, в нее опускается последняя колонна - эксплуатационная. Она необходима для разобщения разнородных пластов и для подъема нефти и газа. Дополнительные данные предоставлены в таблице 4.

Таблица 4 Основные параметры конструкции скважины

Наименование

колонны

Диаметр

долота

(мм)

Обсадная труба

Высота подъема цемента

Условный диаметр (мм)

Глубина спуска (м)

Толщина

Направление

393,7

377

40

до устья

Кондуктор

295,3

245

320

до устья

Эксплуат.

колонна

215,3

168

1700-2000

до устья

3. Технологический раздел

3.1 Основные сведения о составе АСПО и условия их образования на нефтепромысловом оборудовании

Основные исследования механизма образования отложений парафина были выполнены в 50 - 60 годах, когда на крупнейших отечественных месторождениях нефти добывалась в основном безводная продукция и проблема образования парафиновых отложений стояла очень остро. Межочистной период эксплуатации некоторых скважин Ромашкинского месторождения составлял всего лишь 3 - 4 часа.

На поздней стадии разработки нефтяных месторождений изменились геолого-технические условия добычи нефти, и расширилась область возможного формирования отложений.

Асфальто-смолопарафиновые отложения (АСПО) в условиях высокой обводненности скважин при низких забойных давлениях образуются в соответствии со следующей теоретической моделью.

Единственным источником возникновения асфальто-смолопарафиновых отложений являются молекулы парафина растворенные в нефти и выстраивающие кристаллическую решетку твердой фазы.

Кристаллы парафина, образующие плотные отложения на поверхности при снижении температуры на ней ниже температуры кристаллизации.

На поздней стадии разработки увеличивается глубина формирования АСПО, что обусловлено интенсивным снижением пластовой температуры за счет большого количества холодной воды, а, следовательно, общем снижении теплового потока.

Например: пластовая температура в начале разработки Ромашкинского месторождения составляла 410С, а максимальное её значение, зафиксированное в 1997 году, равно 330С.

Появление газовой фазы в потоке, с одной стороны увеличивает удельный объём контактирующего со стенками нефтепромыслового оборудования носителя парафина (нефти), улучшая условия для формирования отложений парафина за счет более интенсивной подпитки материалом растущих кристаллов, с другой, повышает турбулизацию потока. Теплоотдача потока при этом резко возрастает, что уменьшает температуру поднимающейся нефти.

В процессе разработки залежей при заводнении состав пластовой нефти значительно изменяется. При контактировании с водой такие компоненты растворенного в нефти газа, как азот и метан, переходят в вытесняющую воду. В результате снижается давление насыщения нефти газом, повышаются плотность и вязкость, а так же относительное содержание высокомолекулярных компонентов в нефти. Наличие асфальто-смолистых веществ в нефти значительно влияет на процесс кристаллизации. В присутствии смол и асфальтенов происходит глубокое изменение формы и структуры кристаллов. Адсорбция асфальто-смолистых веществ на поверхности кристалла приводит к возникновению дендритных структур большого объёма и низкой плотности, свободные полости которых заполнены нефтью. Таким образом, увеличение содержания смолистых веществ в составе нефти изменяет форму и структуру образующихся АСПО. Присутствие воды в добываемой продукции обуславливает проявление факторов, влияющих на формирование данных отложений.

В АСПО содержатся значительные количества механических примесей и воды. Так, по данным ТатНИПИнефти, в 2000-2002 гг. массовое содержание связанной воды в отложениях составило 4-49%, механических примесей до 15%. Это свидетельствует о значительной несплошности растущих отложений и их замуровывании надстраивающими друзами парафина.

Таким образом, на поздней стадии разработки нефтяных месторождений, характеризуемой высокой обводненностью скважин, значительно изменяются условия и механизм доставки носителя парафина (нефти) в область формирования отложений, а механизм формирования самих отложений не меняется.

3.2 Основные методы борьбы с АСПО, используемые в НГДУ «ЛН» и анализ их эффективности

В НГДУ «Лениногорскнефть» на 621 скважине, оборудованной УШГН, что составляет 95,2% осложненного фонда. Применяются механические, химические, тепловые и физические методы борьбы с АСПО, а также их комбинации, причем комбинациями различных методов охвачено более 75% фонда скважин. Применение методов борьбы с АСПО на скважинах представлено в таблице 5.

Таблица 5. Применение методов борьбы с АСПО на скважинах, оборудованных УШГН

Методы борьбы с АСПО

Фонд скважин с УГШН, осложненный формированием АСПО

Ремонты по причине

АСПО

Всего

% от осложненного фонда с УГШН

Всего

Отношен. ремонт.

к соответс.

фонду

Фонд скважин с УГШН, осложненный формированием АСПО

621

100

81

0,130

1. Применение штанг с наплавленными центраторами,

в т.ч. - с промывками

242

143

39,5

23,0

29

-

0,120

-

- с центраторами - депарафинизаторами НГДУ «ЛН» в комбинации со скребками - центраторами завода «Радиоприбор»,

в т.ч. - с промывками;

- со скребками - центраторами НГДУ

«ИрН»

14

8

26

2,3

1,3

4,2

1

-

3

0,071

-

0,115

2. Применение футерованных НКТ

в т.ч. - с полимерным покрытием БМЗ,

в т. ч - с центраторами - депарафинизаторами НГДУ «ЛН»

- с промывками;

326

4

1

2

52,5

0,6

0,2

0,3

45

-

-

-

0,138

-

-

-

3.2.1 Механический метод, применяемый в НГДУ «ЛН» для борьбы с отложениями АСПО

Применение скребков центраторов депарафинизаторов

При эксплуатации скважин ШГНУ основным способом борьбы с АСПО в НГДУ «Лениногорскнефть» является механический, т.е. использование штанг с наплавленными центраторами - депарафинизаторами производства НГДУ «ЛН» (рис 2), наплавленными скребками - центраторами производства НГДУ «ИрН» (рис 3), плавающими скребками-центраторами завода «Радиоприбор», использование стеклопластиковых штанг и различных покрытий НКТ. Фонд скважин, обеспеченный защитой такого типа, составляет 91,5% от осложненного формированием АСПО фонда скважин, оборудованных УШГН.

Использование штанг со скребками центраторами депарафинизаторами основан на создании критических скоростей движения нефтяных эмульсий в НКТ (центраторами, создающими скорости выше критической при которой не происходит отложения парафина на стенках НКТ и теле штанг). Критические скорости потока создаются за счет заданного кольцевого сечения между стенками НКТ и центратором цилиндрической формы (рис. 2) неподвижно наплавленного на тело штанги.

В последнее время начали применять новые виды скребков центраторов депарафинизаторов из полиамидной смолы (рис 3). Очистка от парафина металлических поверхностей НКТ и штанг достигается при определенном и строго заданном угле наклона режущих кромок скребка, при его возвратно - поступательных и вращающихся движениях. Косые пазы, выполнены по периметру рабочей поверхности скребка обеспечивают достаточный проток жидкости. В зависимости от размеров труб и штанг меняется размер скребков центраторов-депарафинизаторов.

Срок службы скребков центраторов-депарафинизаторов (по паспорту) составляет 5-7 лет. Оснащение колонн штанг скребками центраторами депарафинизаторами в больших объемах дает возможность сократить объем дорогостоящих обработок химическими реагентами, число текущих ремонтов скважин из - за запарафинивания глубинно-насосного оборудования, средний МРП эксплуатации скважин оборудоваемые УШГН, превысил 700 суток. Штанги с наплавленными центраторами - депарафинизаторами используются в комплекте с остеклованными НКТ, ими оснащены 226 скважин, или 36,4% осложненного фонда скважин, эксплуатируемых УШГН. Причем на 14 скважинах дополнительно внедрены плавающие скребки - центраторы завода «Радиоприбор». Кроме того, 151 скважина, на которых применяется данный метод защиты от формирования АСПО, 1-2 раза в год промываются дистилятом или дистиллятом в композиции с нефтью. Штанги с наплавленными скребками - центраторами НГДУ «ИрН» внедрены на 26 скважинах (4,2%). Штанги с центраторами - депарафинизаторами и наплавленными скребками - центраторами спускаются на глубину от 240 до 1200 метров. Скважины, оборудованные наплавленными скребками-центраторами эксплуатируется со штанговращателями.

3.2.2 Применение покрытий для борьбы с АСПО

Покрытия труб эпоксидными смолами

Преимущество такого покрытия состоит в том, что увеличивается межочистной период работы скважин, оборудованных трубами с покрытиями за счет того, что кристаллы асфальто-смолопарафиновых отложений имеют плохую адгезию с покрытием. Внутренняя поверхность НКТ защищается покрытием от воздействия коррозии при добыче высокообводненной нефти.

Недостатками покрытия являются: истирание покрытия штанговой колонной, отслоение покрытия при пропарке труб, засорение скважин отслоившимся покрытием, засорение клапанов насосов покрытием, истирание покрытия центраторами.

Покрытие труб стеклогранулянтом

Ранее в качестве основного вида защитного покрытия НКТ в НГДУ «ЛН» применяется стекло. Остеклование внутренней поверхности НКТ проводится в цеху антикоррозионного покрытия труб. С 1993 года НКТ стали покрывать гранулированным стеклом, что позволило заметно улучшить прочностные качества покрытия, увеличить срок службы НКТ, уменьшить количество подземных ремонтов по причине засорения насосов осыпающимся стеклом.

Адгезия стекла к стенке НКТ при Т = 8500С хорошая, что позволяет эксплуатировать НКТ, как в вертикальных, так и в горизонтальных скважинах, а также позволяет производить пропарку НКТ без последствий для покрытия. Однако, НКТ с данным видом покрытия не подтвердил свою эффективность на практике.

В 1998 - 99 годах на 4 скважинах были внедрены НКТ с полимерным покрытием БМЗ. На одной скважине НКТ с данным типом спущены в комбинации со штангами наплавленными центраторами - депарафинизаторами. На двух скважинах проводятся разовые дистилятные промывки.

Применение стеклопластиковых штанг

С декабря 1995 года в НГДУ «ЛН» начали внедрять стеклопластиковые штанги. В течение 1995-1996 года они были внедрены на 14 скважинах, как девонских, так и сернистых скважинах с различной обводненности, добываемой продукции.

Опыт в эксплуатации стеклопластиковых штанг показал их хорошие прочностные и эксплуатационные характеристики, по сравнению со стальными штангами, нагрузка на головку балансира снизилась на 25%. Положительными факторами в работе стеклопластиковых штанг является то, что центраторы хорошо армируются на теле штанг, а так же не подвержены коррозии в скважинах с большим содержанием сероводорода и высокой обводненностью добываемой продукции.

Недостатками стеклопластиковых штанг является слабое соединение узла стеклопластика с металлической головкой, а так же они менее работоспособны в скважинах со значительным отложением парафина, так в скважинах 9288 А, 24356, 9232, 12446 стеклопластиковые штанги были извлечены из-за обрывов штанг по причине больших дополнительных нагрузок при запарафинивании колонны НКТ.

В качестве эксперимента НГДУ «ЛН» была закуплена партия стеклопластиковых штанг. СПНШ изготавливаются из сплетенных жгутов стеклонитей, пропитанных эпоксидной смолой.

Штанги состоят из двух головок и стеклопластикового стержня, которые крепятся между собой с помощью эпоксидной смолы.

Таблица. 6 Техническая характеристика СПНШ

Номинальный диаметр по телу

Длина

Плотность

Разрушающее напряжение при растяжении

Усталостная прочность (количество циклов до разрушения)

Эксплуатация и хранение при Т

19 мм

8000-8500 м

2,00г/см3

760 Мпа

1,2·1012(у стальных) 1,05·108

от -50° до +90 °C

3.2.3 Физические методы, применяемые в НГДУ «ЛН» для борьбы с отложениями АСПО

В НГДУ «ЛН» магнитные депарафинизаторы типа МОЖ-22Ш были внедрены на 17 скважинах (в 2000 году - на 7 скважинах, в 2002 году - на 10 скважинах) В качестве основного метода борьбы с АСПО магнитные депарафинизаторы были использованы на трех скважинах (108, 6551А, 12518А), на 4 скважинах - в комбинации с остеклованными НКТ и на 10 скважинах - в комбинации со штангами центраторами - депарафинизаторами.

За период с октября 2000 года, когда началось внедрение магнитных депарафинизаторов, по октябрь 2002 года на данной категории скважин было проведено 16 подземных ремонтов по причине АСПО, причем на 3 скважинах (108, 4030, 12946) по два ремонта. На скважинах, где магнитные депарафинизаторы были использованы в качестве основного метода борьбы с АСПО без применения других методов, межочистной период составил 50-110 суток и при подземных ремонтах по причине АСПО они были извлечены. На остальных скважинах межочистной период составил от 80 до 360 суток.

Анализ применения магнитных депарафинизаторов в качестве самостоятельного метода борьбы с АСПО и в комбинации с другими методами показал неэффективность данного метода и отказ от его применения в дальнейшем.

3.2.4 Химические методы, применяемые в НГДУ «ЛН» для борьбы с отложениями АСПО

3.2.4.1 Применение промывок различного типа

В качестве дополнительного метода борьбы с АСПО, в НГДУ «ЛН» на 77,9% осложненного фонда скважин, эксплуатируемых УШГН, используются промывки различного типа (дистиллятом в комбинации с нефтью, МЛ-80Б).

Динамика проведения промывок представлена в таблице 7

Таблица 7. Динамика проведения промывок

Виды промывок

Годы

1997

1998

1999

10 месяцев

2000

2001

Всего промывок,

- дистиллят + нефть

1516

745

1684

1174

1289

625

1128

546

938

551

В качестве растворителя используется нефтяной дистиллят, как собственного производства, так и получаемый в ОЭ НГДУ «Татнефтебитум».

Более 58% всех проведенных в 2004 году обработок составили промывки дистиллятом в комбинации с нефтью. Содержание нефти в растворе при этом составляет от 20 до 50%. Выбор концентрации осуществляется технологическими службами нефтепромыслов с учетом скважинных условий.

Всего промывками охвачено 484 скважины с периодичностью промывок 2-3 раза в год. Объем разовой нефтедистиллятной обработки составляет в среднем 8 м3.

3.2.4.2 Гидравлический расчет промывки скважины нефтедистиллятной смесью

Исходные данные:

Скважина 1828А,

Н забой = 1620 м - искусственный забой,

Диаметр эксплуатационной колонны Dэкс. к =146 мм,

Диаметр НКТ dHKT = 73 мм,

Диаметр штанг ШТ. = 22 мм,

НН2Б - 44,

Плотность дистиллята ?Д = 707 кг/м3,

Q = 8 м3, В=0%.

Техника для промывки:

ЦА - 320; поршня = 100 мм; = 180 л

Производительность агрегата:

1 скорость - 1,4 л 2 скорость - 2,55 л

3 скорость - 4,8 л 4 скорость - 8,65 л

1. Расчет гидравлического сопротивления при движении дистиллята в кольцевом пространстве.

P1 = ?? (HHKT ? ?Д)/(Dэкс.к - dHKT) х (vн2/2), ?a (1)

где: - коэффициент трения, = 0,035;

ННКТ - длина колонны НКТ, м;

v н - скорость нисходящего потока жидкости, м/с;

?Д - удельный вес дистиллята, кг/м3;

Dэкс. к - диаметр эксплуатационной колонны, м;

dHKT - диаметр НКТ, м;

При работе на 1 скорости:

Р1 = 0,035·(1450·707)/(0,146 - 0,073) х (0,172/2) = 0,0071?106 Па;

на 2 скорости:

Р1 = 0,035·(1450·707)/(0,146 - 0,073) х (0,372/2) = 0,0339?106 Па;

на скорости 3:

Р1 = 0,035·(1450·707)/(0,146 - 0,073) х (0,532/2) = 0,0696?106 Па;

на скорости 4:

Р1 = 0,035·(1450·707)/(0,146 - 0,073) х (1,032/2) = 0,263?106 Па.

2. Гидравлическое сопротивление по уравновешиванию столбов жидкости в НКТ и колонне:

P2 = (?н - ?Д)?g ?ННКТ, (2)

где: ?н - плотность нефти.

С достаточной точностью для расчетов

P2 = (820 -707)?9,81?1450 = 1,607 ?106 Па

3. Гидравлическое сопротивление в трубах НКТ:

Р3 = ?НКТ? ННКТ??Д ? v 2в/[2 (ВН - ШТ.)] (3)

где: - коэффициент, учитывающий потери на местных сопротивлениях при движении дистиллята в НКТ,

=1,1;

НКТ - коэффициент трения в НКТ, НКТ = 0,04;

ВН - внутренний диаметр НКТ, м;

ШТ. - диаметр штанг, м;

v в-скорость восходящего потока, м/с;

на 1 скорости:

Р3 = 1,1·0,04·1450·707·0,4 2/[2·(0,062 - 0,022)] = 0,09·10 6 Па

на 2 скорости

Р3 = 1,1·0,04·1450·707·0,8 2/[2·(0,062 - 0,022)] = 0,361·10 6 Па

на скорости 3

Р3 = 1,1·0,04·1450·707·1,6 2/[2·(0,062 - 0,022)] = 1,443·10 6 Па

на скорости 4

Р3 = 1,1·0,04·1450·707·2,91 2/[2·(0,062 - 0,022)] = 4,775·10 6 Па

Гидравлические сопротивления на выходе агрегата ЦА-320 при обратной промывке ничтожно малы, при расчете их не используют.

5. Давление на выкиде насоса:

Рв = Р1+ Р2+ Р3; (4)

На 1 скорости:

Рв = 0,0071?10 6 + 1,607?10 6 + 0,09·10 6 = 1,704·10 6 Па;

На 2 скорости:

Рв = 0,0339?10 6 + 1,607?10 6 + 0,361·10 6 =2,002·10 6 Па;

На 3 скорости:

Рв = 0,0696?10 6 + 1,607?10 6 + 1,443·10 6 =3,120·10 6 Па;

На 4 скорости:

Рв = 0,263?10 6 + 1,607?10 6 + 4,775·10 6 =6,645·10 6 Па.

6. Рассчитываем мощность насоса:

N = Pв· Q/?, (5)

где ? - К.П.Д насоса, ? = 0,65;

на 1 скорости:

N =1,704·10 6 Па?1,4/0,65 = 3,67 кВт;

на 2 скорости:

N =1,704·10 6 Па?2,55/0,65 = 6,68 кВт;

на 3 скорости:

N =1,704·10 6 Па?4,8/0,65 = 12,58 кВт;

на 4 скорости:

N =1,704·10 6 Па?8,65/0,65 = 22,68 кВт.

7. Использование максимальной мощности:

К = (6),

где максимальная мощность насоса mах = 130 кВт;

на 1 скорости:

К = 3,67·100/130 = 2,82%;

на 2 скорости:

К = 6,68·100/130 = 5,14%;

на 3 скорости:

К = 12,58·100/130 = 9,68%;

на 4 скорости:

К = 22,68·100/130 = 17,45%.

8. Скорость подъёма дистиллята в Н.К.Т.

v п =v в (7),

на 1 скорости v п = 0,4 м/с

на 2 скорости v п = 0,8 м

на 3 скорости v п = 1,6 м

на 4 скорости v п = 2,91 м

9. Продолжительность подъёма дистиллята в НКТ с разрыхлением парафина и его выносом:

t =HHKT/ v п (8),

на 1 скорости:

t =1450/0,4 = 3625 сек. = 60,42 мин.;

на 2 скорости:

t =1450/0,8 = 1812,5 сек. = 30,21 мин.;

на 3 скорости:

t =1450/1,6 = 902,25 сек. = 15,10 мин.;

на 4 скорости:

t =1450/2,91 = 498,28 сек. = 8,30 мин.

В НГДУ «ЛН» применяется для промывки скважин нефтедистиллятной смесью комплекты из агрегата ЦА-320 на базе КрАЗ-257 и автоцистерны на базе КамАЗ - 5220 емкостью 8 м3.

Из гидравлического расчета промывки скважины видно, что оптимальный режим работы агрегата осуществляется на 3 скорости, тк. при этом режиме происходит наилучшее вымывание парафина с НКТ и соблюдаются технические условия безопасности работы с горючим материалом - давление выкида насоса меньше или равно 7 МПа.

Из условий наименьших гидравлических сопротивлений промывку желательно начинать на 1 скорости, производительностью 1,4 л/с, с постепенным наращиванием расхода (т.е. переходом на 2-3 скорости)

Продолжительность промывки на 3 скорости (объём 8 м3) составит 15,10 минут. При окончании промывки в обратной последовательности опускаемся до 1 скорости и заканчиваем промывку.

3.2.4.3 Применение ингибиторов различного типа

Наиболее эффективным методом борьбы с парафином является химический метод, который основан на добавке в поток жидкости при помощи агрегатов ЦА 320 М и АКПП -500, ДРС и ДРП-1, а также УДЭ и УДС, химических реагентов способных гидрофилизации стенок труб, увеличению числа центров кристаллизации парафина в потоке, повышению дисперсности частиц парафина в нефти.

Такими растворителями могут быть водо- и нефтерастворимые ПАВ.

Существует множество типов отечественных и импортных ингибиторов для предотвращения и удаления отложений парафина. Большинство реагентов способствует так же предупреждению образования или разрушению водонефтяных эмульсий. Наиболее эффективные реагенты СНПХ - 7202, 7204, 7400. На месторождениях АО «Татнефть» широко применяется ингибитор для предотвращения и удаления отложений парафина СНПХ-7215, который закачивается в затрубное пространство скважины при помощи агрегатов УЭД и УДС.

Наибольшее распространение на промыслах НГДУ «ЛН» получил ингибитор СНПХ-7212 М, который закачивается в затрубное пространство скважин при помощи устьевых дозаторов УЭД и УДС из расчета 100-200 г./т нефти.

Ингибиторы парафиноотложений можно дозировать в скважины при помощи глубинных дозаторов ДСИ-107. Скважинный дозатор ДСИ-107, разработан ТатНИПИнефти, предназначен для подачи водо-нерастворимых ингибиторов на приём штангового насоса. Дозатор может, применятся в скважинах с обводненностью продукции не менее 10% при температуре рабочей среды от 283 до 373 К (10 - 1000С). Плотность применяемого ингибитора должна быть ниже плотности воды не менее чем на 50 кг/м3, а кинематическая вязкость - не более 450 м2/с. Дозатор обеспечивает непрерывную подачу химреагента в пределах от 0,1 до 40 л/сут.

Эксплуатация дозатора состоит в следующем: определяются необходимый объём химреагента, длина колонны НКТ для размещения ингибитора и диаметр втулки дозатора для установления режима его работы. На скважину завозят расчетное количество ингибитора и НКТ. Из скважины извлекается насосное оборудование.

Спускается в скважину колонна НКТ расчетной длины, нижний конец которой снабжен заглушкой и пробкой.

Определяется плотность ингибитора (денсиметром) и вязкость его (вискозиметром) при температуре среды на глубине подвески дозатора в скважине, содержание воды в продукции скважины по данным предыдущей эксплуатации скважины.

При условии соответствия параметров раствора ингибитора расчетным, химреагент заливается в колонну НКТ.

Помещается втулка в камеру и заворачивается корпус в корпус. Присоединяют дозатор к колонне НКТ, предварительно ввернув трубку в нижний конец гидролинии, и устанавливают фильтр на нижнем конце нагнетательной гидролинии. Присоединяют насос к дозатору.

Спуск штангового насоса с дозатором в скважину производится в обычном порядке на необходимую глубину.

Подъём оборудования, и извлечение его из скважины производится в порядке, обратном спуску. При этом для подъёма труб без жидкости необходимо слить их содержимое, сбив полую пробку сбрасыванием металлического лома в колонну НКТ после отсоединения от нее дозатора.

Работу дозатора в скважине следует контролировать по изменению дебита скважины, величине нагрузки на головку балансира СК, химическими анализами устьевых проб добываемой жидкости.

Длину колонны НКТ для заливки раствора ингибитора целесообразно подобрать с таким расчетом, чтобы повторная заправка химреагентом производилась при очередном текущем ремонте скважины.

В зимнее время на ряде удаленных скважин применяются обработки ингибитором парафиноотложения ТНПХ - 1А в объеме 20-30 литров на скважину с периодичностью 1 раз в месяц.

3.2.5 Тепловые методы, применяемые в НГДУ «ЛН» для борьбы с отложениями АСПО

Если интенсивность отложения парафина невелика, то при каждом подземном ремонте поднимают трубы на поверхность и удаляют из них парафин пропариванием с помощью ППУ.

Очистка скважин, оборудованных ШГН от парафина производится за счет тепловой энергии пара, закачиваемое в затрубное пространство скважин. При этом происходит расплавление парафина находящегося в НКТ и вынос его из скважины. Настоящая технология предусматривает соблюдение следующих требований:

периодичность очистки и количество ППУ корректируется старшим технологом промысла;

очистка скважины от парафина при работающем СГН, при остановленном из-за отложений парафина;

закачка пара в затрубное пространство производится после предварительного прогрева манифольда до температуры 100-150 0С;

при очистке от парафина заклиненных скважин полированный шток устанавливается в верхнее положение, а головка балансира в нижнее положение. После того, как шток уйдет вниз, начинается попытки расхаживания штанговой колонны.


Подобные документы

  • Сведения о Западно-Коммунарском месторождении. Коллекторские свойства пласта. Физико-химические свойства нефти, газа и воды. Подсчет запасов нефти и газа. Характеристика системы воздействия на пласт. Определение эффективности разработки нефтяных залежей.

    курсовая работа [273,2 K], добавлен 23.10.2013

  • Характеристика Ромашкинского месторождения: орогидрография, стратиграфия, тектоника. Коллекторские свойства продуктивных горизонтов. Физико-химические свойства нефти, газа и пластовой воды. Причины низкой продуктивности скважин и пути их разрешения.

    дипломная работа [76,5 K], добавлен 25.06.2010

  • Характеристика геологического строения нефтяного месторождения. Коллекторские свойства продуктивных пластов и их неоднородность. Физико-химические свойства пластовых флюидов, нефти, газа и воды. Основы разработки низкопродуктивных глинистых коллекторов.

    отчет по практике [293,0 K], добавлен 30.09.2014

  • Орогидрография Самотлорского нефтяного месторождения. Тектоника и стратиграфия. Коллекторские свойства продуктивных пластов. Свойства нефти, газа и воды в пластовых условиях. Технология добычи нефти. Методы борьбы с осложнениями, применяемые в ОАО "СНГ".

    курсовая работа [1,2 M], добавлен 25.09.2013

  • Общие сведения об Уршакском месторождении. Стратиграфия и тектоника. Характеристика нефтегазоносных пластов и пластовых флюидов. Физико-химические свойства нефти девонских отложений. Свойства пластовой нефти и воды. Состояние разработки месторождения.

    курсовая работа [3,4 M], добавлен 30.01.2016

  • Условия залегания продуктивных пластов. Состав и физико-химические свойства пластовых жидкостей и газа месторождения. Характеристика запасов нефти. Режим разработки залежи, применение системы поддержания пластового давления, расположение скважин.

    курсовая работа [323,6 K], добавлен 13.04.2015

  • Коллекторские свойства продуктивных горизонтов. Физико-химические свойства пластовых флюидов. Краткая технико-эксплуатационная характеристика фонда скважин. Классификация современных методов повышения нефтеотдачи пластов. Расчет промывки забоя скважины.

    курсовая работа [1,4 M], добавлен 19.05.2011

  • Физико-химические свойства и состав пластовой жидкости и газа. Методы увеличения проницаемости призабойной зоны пласта. Технология проведения кислотной обработки. Требования безопасности при повышении нефтегазоотдачи пластов и производительности скважин.

    дипломная работа [3,3 M], добавлен 18.01.2016

  • Коллекторские свойства продуктивных горизонтов. Особенности конструкции скважины. Физико-химические свойства нефти, газа и пластовой воды. Определение места притока вод в скважину. Требования, предъявляемые к подготовке скважины перед закачкой СНПХ-9633.

    дипломная работа [287,2 K], добавлен 25.06.2010

  • Геолого-физическая характеристика Ромашкинского месторождения НГДУ "ЛН". Коллекторские свойства продуктивных пластов, пластовых флюидов. Анализ фонда скважин, текущих дебитов и обводненности. Применяемые горизонтальные технологии на объекте разработки.

    дипломная работа [1,3 M], добавлен 02.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.