English language for technical colleges
Degrees of comparison of adjectives and adverbs, тhe generala word order in the English offer. Impersonal and indefinite-personal offers. Correct and irregular verbs. Modal verbs and their substitutes. Concord of tenses in the main and additional offers.
Рубрика | Иностранные языки и языкознание |
Вид | учебное пособие |
Язык | английский |
Дата добавления | 26.10.2009 |
Размер файла | 208,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Gas Welding
Gas welding is a non-pressure process using heat from a gas flame. The flame is applied directly to the metal edges to be joined and simultaneously to a filler metal in the form of wire or rod, called the welding rod, which is melted to the joint. Gas welding has the advantage of using equipment that is portable and does not require an electric power source. The surfaces to be welded and the welding rod are coated with flux, a fusible material that shields the material from air, which would result in a defective weld.
Arc Welding
Arc-welding is the most important welding process for joining steels. It requires a continuous supply of either direct or alternating electrical current. This current is used to create an electric arc, which generates enough heat to melt metal and create a weld.
Arc welding has several advantages over other welding methods. Arc welding is faster because the concentration of heat is high. Also, fluxes are not necessary in certain methods of arc welding. The most widely used arc-welding processes are shielded metal arc, gas-tungsten arc, gas-metal arc, and submerged arc.
Shielded Metal Arc
In shielded metal-arc welding, a metallic electrode, which conducts electricity, is coated with flux and connected to a source of electric current. The metal to be welded is connected to the other end of the same source of current. An electric arc is formed by touching the tip of the electrode to the metal and then drawing it away. The intense heat of the arc melts both parts to be welded and the point of the metal electrode, which supplies filler metal for the weld. This process is used mainly for welding steels.
Vocabulary:
to join -- соединять
pressure welding -- сварка давлением
heat welding -- сварка нагреванием
instead -- вместо, взамен
bolting -- скрепление болтами
riveting -- клепка
basic -- основной
to manufacture -- изготовлять
to depend -- зависеть от
purpose -- цель
available -- имеющийся в наличии
equipment -- оборудование
source -- источник
gas welding -- газосварка
arc welding -- электродуговая сварка
resistance welding -- контактная сварка
laser welding -- лазерная сварка
electron-beam welding -- электронно-лучевая сварка
flame -- пламя
edge -- край
simultaneously -- одновременно
filler -- наполнитель
wire -- проволока
rod -- прут, стержень
to melt -- плавить(ся)
joint -- соединение, стык
advantage -- преимущество
to require -- требовать нуждаться
surface -- поверхность
coated -- покрытый
flux -- флюс
fusible -- плавкий
to shield -- заслонять, защищать
touching -- касание
tip -- кончик
General understanding:
1. How can a process of welding be defined?
2. What are the two main groups of processes of welding?
3. How can we join metal parts together?
4. What is welding used for nowadays?
5. Where is welding necessary?
6. What do the welding processes of today include?
7. What are the principles of gas welding?
8. What kinds of welding can be used for joining steels?
9. What does arc welding require? 10. What is the difference between the arc welding and shielded-metal welding?
Exercise 6.1. Find the following words and word combinations in the text:
1. сварка давлением
2. тепловая сварка
3. болтовое (клепаное) соединение
4. процесс сварки
5. зависеть от свойств металлов
6. имеющееся оборудование
7. сварочный электрод
8. плавкий материал
9. дефектный сварной шов
10. непрерывная подача электрического тока
11. электрическая дуга
12. источник электрического тока
Text В: «OTHER TYPES OF WELDING»
Non-consumable Electrode Arc welding
As a non-consumable electrodes tungsten or carbon electrodes can be used. In gas-tungsten arc welding a tungsten electrode is used in place of the metal electrode used in shielded metal-arc welding. A chemically inert gas, such as argon, helium, or carbon dioxide is used to shield the metal from oxidation. The heat from the arc formed between the electrode and the metal melts the edges of the metal. Metal for the weld may be added by placing a bare wire in the arc or the point of the weld. This process can be used with nearly all metals and produces a high-quality weld. However, the rate of welding is considerably slower than in other processes.
Gas-Metal Arc
In gas-metal welding, a bare electrode is shielded from the air by surrounding it with argon or carbon dioxide gas and sometimes by coating the electrode with flux. The electrode is fed into the electric arc, and melts off in droplets that enter the liquid metal of the weld seam. Most metals can be joined by this process.
Submerged Arc
Submerged-arc welding is similar to gas-metal arc welding, but in this process no gas is used to shield the weld. Instead of that, the arc and tip of the wire are submerged beneath a layer of granular, fusible material that covers the weld seam. This process is also called electroslag welding. It is very efficient but can be used only with steels.
Resistance Welding
In resistance welding, heat is obtained from the resistance of metal to the flow of an electric current. Electrodes are clamped on each side of the parts to be welded, the parts are subjected to great pressure, and a heavy current is applied for a short period of time. The point where the two metals touch creates resistance to the flow of current. This resistance causes heat, which melts the metals and creates the weld. Resistance welding is widely employed in many fields of sheet metal or wire manufacturing and is often used for welds made by automatic or semi-automatic machines especially in automobile industry.
Vocabulary
gas-tungsten -- сварка оплавлением вольфрамовым электродом в среде инертного газа
inert -- инертный
edge -- край
bare -- голый
rate -- зд. скорость
gas-metal arc -- аргонодуговая сварка
considerably -- значительно, гораздо
surrounding -- окружающий
carbon dioxide -- углекислый газ
droplet -- капелька
liquid -- жидкость, жидкий
beneath -- под, ниже, внизу
layer -- слой
weld seam -- сварной шов
resistance -- сопротивление
clamp -- зажим, зажимать
sheet -- лист
fusible -- плавкий
granular -- плавкий
semi-automatic -- полуавтоматическая
to create -- создавать
to submerge -- погружать
General understanding:
1. What is the difference between the arc-welding and non-consumable electrode arc welding?
2. What are the disadvantages of the non-consumable electrode arc welding?
3. How is electrode protected from the air in gas-metal arc welding?
4. What is submerged arc welding?
5. What is the principle of resistance welding?
6. Where is semi-automatic welding employed?
Exercise 6.2. Translate into English:
1. вольфрамовый электрод
2. инертный газ
3. окисление
4. высококачественный сварочный шов
5. скорость сварки
6. аргон, гелий, углекислый газ
7. жидкий металл
8. слой плавкого материала в виде гранул
9. листовой металл
10. полувтоматические сварочные станки
Exercise 6.3. Translate into Russian:
1. In resistance welding, heat is obtained from the resistance of metal to the flow of an electric current.
2. The heat from the arc melts the edges of the metal.
3. A bare electrode is shielded from the air by surrounding it with argon or carbon dioxide gas.
4. Submerged-arc welding is similar to gas-metal arc welding.
5. Electrodes are clamped on each side of the parts to be welded.
6. Resistance causes heat which melts the metals and creates the weld.
FAMOUS PEOPLE OF SCIENCE AND TECHNOLOGY
James Prescott Joule, famous British physicist, was born in 1818 in Salford, England.
Joule was one of the most outstanding physicists of his time. He is best known for his research in electricity and thermodynamics. In the course of his investigations of the heat emitted in an electrical circuit, he formulated the law, now known as Joule's law of electric heating. This law states that the amount of heat produced each second in a conductor by electric current is proportional to the resistance of the conductor and to the square of the current. Joule experimentally verified the law of conservation of energy in his study of the conversion of mechanical energy into heat energy.
Joule determined the numerical relation between heat and mechanical energy, or the mechanical equivalent of heat, using many independent methods. The unit of energy, called the joule, is named after him. It is equal to 1 watt-second. Together with the physicist William Thomson (Baron Kelvin), Joule found that the temperature of a gas falls when it expands without doing any work. This phenomenon, which became known as the Joule-Thomson effect, lies in the operation of modern refrigeration and air-conditioning systems.
UNIT 7
AUTOMATION AND ROBOTICS
I. Text A: «Automation», Text B: «Types of automation»,
Text C: «Robots In manufacturing»
II. Famous people of science and technology: James Watt.
Text A: «AUTOMATION»
Automation is the system of manufacture performing certain tasks, previously done by people, by machines only. The sequences of operations are controlled automatically. The most familiar example of a highly automated system is an assembly plant for automobiles or other complex products.
The term automation is also used to describe non-manufacturing systems in which automatic devices can operate independently of human control. Such devices as automatic pilots, automatic telephone equipment and automated control systems are used to perform various operations much faster and better than could be done by people.
Automated manufacturing had several steps in its development. Mechanization was the first step necessary in the development of automation. The simplification of work made it possible to design and build machines that resembled the motions of the worker. These specialized machines were motorized and they had better production efficiency.
Industrial robots, originally designed only to perform simple tasks in environments dangerous to human workers, are now widely used to transfer, manipulate, and position both light and heavy workpieces performing all the functions of a transfer machine.
In the 1920s the automobile industry for the first time used an integrated system of production. This method of production was adopted by most car manufacturers and became known as Detroit automation.
The feedback principle is used in all automatic-control mechanisms when machines have ability to correct themselves. The feedback principle has been used for centuries. An outstanding early example is the flyball governor, invented in 1788 by James Watt to control the speed of the steam engine. The common household thermostat is another example of a feedback device.
Using feedback devices, machines can start, stop, speed up, slow down, count, inspect, test, compare, and measure. These operations are commonly applied to a wide variety of production operations.
Computers have greatly facilitated the use of feedback in manufacturing processes. Computers gave rise to the development of numerically controlled machines. The motions of these machines are controlled by punched paper or magnetic tapes. In numerically controlled machining centres machine tools can perform several different machining operations.
More recently, the introduction of microprocessors and computers have made possible the development of computer-aided design and computer-aided manufacture (CAD and CAM) technologies. When using these systems a designer draws a part and indicates its dimensions with the help of a mouse, light pen, or other input device. After the drawing has been completed the computer automatically gives the instructions that direct a machining centre to machine the part.
Another development using automation are the flexible manufacturing systems (FMS). A computer in FMS can be used to monitor and control the operation of the whole factory.
Automation has also had an influence on the areas of the economy other than manufacturing. Small computers are used in systems called word processors, which are rapidly becoming a standard part of the modern office. They are used to edit texts, to type letters and so on.
Automation in Industry
Many industries are highly automated or use automation technology in some part of their operation. In communications and especially in the telephone industry dialing and transmission are all done automatically. Railways are also controlled by automatic signaling devices, which have sensors that detect carriages passing a particular point. In this way the movement and location of trains can be monitored.
Not all industries require the same degree of automation. Sales, agriculture, and some service industries are difficult to automate, though agriculture industry may become more mechanized, especially in the processing and packaging of foods.
The automation technology in manufacturing and assembly is widely used in car and other consumer product industries.
Nevertheless, each industry has its own concept of automation that answers its particular production needs.
Vocabulary:
automation -- автоматизация
previously -- ранее
sequence -- последовательность
assembly plant -- сборочный завод
non-manufacturing -- непроизводственный
device -- устройство, прибор
resemble -- походить
efficiency -- эффективность
flyball governor -- центробежный регулятор
steam engine -- паровоз
household thermostat -- бытовой термостат
facilitate -- способствовать
punched -- перфорированный
aid -- помощь
dimension -- измерение, размеры
General understanding:
1. How is the term automation defined in the text?
2. What is the most «familiar example» of automation given in the text?
3. What was the first step in the development of automaton?
4. What were the first robots originally designed for?
5. What was the first industry to adopt the new integrated system of production?
6. What is feedback principle?
7. What do the abbreviations CAM and CAD stand for?
8. What is FMS?
9. What industries use automation technologies?
Exercise 7.1. Find the following words and word combinations in the text:
1. автоматические устройства
2. автоматизированное производство
3. выполнять простые задачи
4. как легкие, так и тяжелые детали
5. интегрированная система производства
6. принцип обратной связи
7. механизм может разгоняться и тормозить
8. компьютер автоматически посылает команды
9. высокоавтоматизированная система
10. непроизводственная система
Text В: «TYPES OF AUTOMATION»
Applications of Automation and Robotics in Industry
Manufacturing is one of the most important application area for automation technology. There are several types of automation in manufacturing. The examples of automated systems used in manufacturing are described below.
1. Fixed automation, sometimes called «hard automation» refers to automated machines in which the equipment configuration allows fixed sequence of processing operations. These machines are programmed by their design to make only certain processing operations. They are not easily changed over from one product style to another. This form of automation needs high initial investments and high production rates. That is why it is suitable for products that are made in large volumes. Examples of fixed automation are machining transfer lines found in the automobile industry, automatic assembly machines and certain chemical processes.
2. Programmable automation is a form of automation for producing products in large quantities, ranging from several dozen to several thousand units at a time. For each new product the production equipment must be reprogrammed and changed over. This reprogramming and changeover take a period of non-productive time. Production rates in programmable automation are generally lower than in fixed automation, because the equipment is designed to facilitate product changeover rather than for product specialization. A numerical-control machine-tool is a good example of programmable automation. The program is coded in computer memory for each different product style and the machine-tool is controlled by the computer programme.
3. Flexible automation is a kind of programmable automation. Programmable automation requires time to re-program and change over the production equipment for each series of new product. This is lost production time, which is expensive. In flexible automation the number of products is limited so that the changeover of the equipment can be done very quickly and automatically. The reprogramming of the equipment in flexible automation is done at a computer terminal without using the production equipment itself. Flexible automation allows a mixture of different products to be produced one right after another.
Vocabulary
equipment -- оборудование
sequence -- последовательность
initial -- первоначальный, начальный
investment -- инвестиция, вклад
to facilitate -- способствовать
rate -- скорость, темп
assembly machines -- сборочные машины
quantity -- количество
non-productive -- непроизводительный
changeover -- переход, переналадка
General understanding:
1. What is the most important application of automation?
2. What are the types of automation used in manufacturing?
3. What is fixed automation?
4. What are the limitations of hard automation?
5. What is the best example of programmable automation?
6. What are the limitations of programmable automation?
7. What are the advantages of flexible automation?
8. Is it possible to produce different products one after another using automation technology?
Exercise 7.2. Find equivalents in English in the text:
1. сфера применения
2. фиксированная последовательность операций
3. автоматические сборочные машины
4. определенные химические процессы
5. станок с числовым программным управлением
6. потерянное производственное время
7. разнообразная продукция
Exercise 7.3. Explain in English what does the following mean?
1. automation technology
2. fixed automation
3. assembly machines
4. non-productive time
5. programmable automation
6. computer terminal
7. numerical-control machine-tool
Text C: «ROBOTS IN MANUFACTURING»
Today most robots are used in manufacturing operations. The applications of robots can be divided into three categories:
1. material handling
2. processing operations
3. assembly and inspection.
Material-handling is the transfer of material and loading and unloading of machines. Material-transfer applications require the robot to move materials or work parts from one to another. Many of these tasks are relatively simple: robots pick up parts from one conveyor and place them on another. Other transfer operations are more complex, such as placing parts in an arrangement that can be calculated by the robot. Machine loading and unloading operations utilize a robot to load and unload parts. This requires the robot to be equipped with a grip-per that can grasp parts. Usually the gripper must be designed specifically for the particular part geometry.
In robotic processing operations, the robot manipulates a tool to perform a process on the work part. Examples of such applications include spot welding, continuous arc welding and spray painting. Spot welding of automobile bodies is one of the most common applications of industrial robots. The robot positions a spot welder against the automobile panels and frames to join them. Arc welding is a continuous process in which robot moves the welding rod along the welding seam. Spray painting is the manipulation of a spray-painting gun over the surface of the object to be coated. Other operations in this category include grinding and polishing in which a rotating spindle serves as the robot's tool.
The third application area of industrial robots is assembly and inspection. The use of robots in assembly is expected to increase because of the high cost of manual labour. But the design of the product is an important aspect of robotic assembly. Assembly methods that are satisfactory for humans are not always suitable for robots. Screws and nuts are widely used for fastening in manual assembly, but the same operations are extremely difficult for an one-armed robot.
Inspection is another area of factory operations in which the utilization of robots is growing. In a typical inspection job, the robot positions a sensor with respect to the work part and determines whether the part answers the quality specifications. In nearly all industrial robotic applications, the robot provides a substitute for human labour. There are certain characteristics of industrial jobs performed by humans that can be done by robots:
1. the operation is repetitive, involving the same basic work motions every cycle,
2. the operation is hazardous or uncomfortable for the human worker (for example: spray painting, spot welding, arc welding, and certain machine loading and unloading tasks),
3. the workpiece or tool is too heavy and difficult to handle,
4. the operation allows the robot to be used on two or three shifts.
Vocabulary:
handling -- обращение
transfer -- передача, перенос
location -- местонахождение
pick up -- брать, подбирать
arrangement -- расположение
to utilize -- утилизировать, находить применение
gripper -- захват
to grasp -- схватывать
spot welding -- точечная сварка
continuous -- непрерывный
arc welding -- электродуговая сварка
spray painting -- окраска распылением
frame -- рама
spray-painting gun -- распылитель краски
grinding -- шлифование
polishing -- полирование
spindle -- шпиндель
manual -- ручной
labour -- труд
hazardous -- опасный
shift -- смена
General understanding:
1. How are robots used in manufacturing?
2. What is «material handling»?
3. What does a robot need to be equipped with to do loading and unloading operations?
4. What does robot manipulate in robotic processing operation?
5. What is the most common application of robots in automobile manufacturing?
6. What operations could be done by robot in car manufacturing industry?
7. What are the main reasons to use robots in production?
8. How can robots inspect the quality of production?
9. What operations could be done by robots in hazardous or uncomfortable for the human workers conditions?
Exercise 7.4. Translate into English:
1. Существует несколько различных сфер использования автоматизации в производстве.
2. Для использования жесткой автоматизации необходимы большие инвестиции.
3. Жесткая автоматизация широко используется в химической промышленности.
4. Станки с числовым программным управлением -- хороший пример программируемой автоматизации.
5. Гибкая автоматизация делает возможным перепрограммирование оборудования.
6. Время простоя оборудования оборачивается большими убытками.
7. Использование гибкой автоматизации делает возможным производство разнообразной продукции.
FAMOUS PEOPLE OF SCIENCE AND ENGINEERING
James Watt
James Watt was a Scottish inventor and mechanical engineer, known for his improvements of the steam engine.
Watt was born on January 19, 1736, in Greenock, Scotland. He worked as a mathematical-instrument maker from the age of 19 and soon became interested in improving the steam engine which was used at that time to pump out water from mines.
Watt determined the properties of steam, especially the relation of its density to its temperature and pressure, and designed a separate condensing chamber for the steam engine that prevented large losses of steam in the cylinder. Watt's first patent, in 1769, covered this device and other improvements on steam engine.
At that time. Watt was the partner of the inventor John Roebuck, who had financed his researches. In 1775, however. Roebuck's interest was taken over by the manufacturer Matthew Boulton, owner of the Soho Engineering Works at Birmingham, and he and Watt began the manufacture of steam engines. Watt continued his research and patented several other important inventions, including the rotary engine for driving various types of machinery; the double-action engine, in which steam is admitted alternately into both ends of the cylinder; and the steam indicator, which records the steam pressure in the engine. He retired from the firm in 1800 and thereafter devoted himself entirely to research work.
The misconception that Watt was the actual inventor of the steam engine arose from the fundamental nature of his contributions to its development. The centrifugal or flyball governor, which he invented in 1788, and which automatically regulated the speed of an engine, is of particular interest today. It embodies the feedback principle of a servomechanism, linking output to input, which is the basic concept of automation. The watt, the unit of power, was named in his honour. Watt was also a well-known civil engineer. He invented, in 1767, an attachment that adapted telescopes for use in the measurement of distances. Watt died in Heathfield, near Birmingham, in August 1819.
UNIT8
COMPUTERS
I. Text A: «What is a computer?», Text B: «Hardware», Text C: «Types of software»
II. Famous people of science and engineering: Charles Babbage.
Text A: «WHAT IS A COMPUTER?»
The term computer is used to describe a device made up of a combination of electronic and electromechanical (part electronic and part mechanical) components. Computer has no intelligence by itself and is referred to as hardware. A computer system is a combination of five elements:
* Hardware
* Software
* People
* Procedures
* Data/information
When one computer system is set up to communicate with another computer system, connectivity becomes the sixth system element. In other words, the manner in which the various individual systems are connected -- for example, by phone lines, microwave transmission, or satellite -- is an element of the total computer system.
Software is the term used to describe the instructions that tell the hardware how to perform a task. Without software instructions, the hardware doesn't know what to do. People, however, are the most important component of the computer system: they create the computer software instructions and respond to the procedures that those instructions present.
The basic job of the computer is the processing of information. Computers accept information in the form of instruction called a program and characters called data to perform mathematical and logical operations, and then give the results. The data is raw material while information is organized, processed, refined and useful for decision making. Computer is used to convert data into information. Computer is also used to store information in the digital form.
Vocabulary:
characters -- символы
data -- данные
decision -- решение
device -- устройство
hardware -- оборудование
instruction -- команда
intelligence -- разум
manner -- манера, способ
microwave -- микроволновая
procedures -- процедуры, операции
purpose -- цель
raw -- необработанный, сырой
to come to life -- оживать
to connect -- соединять
to convert -- превращать, преобразовывать
to create -- создавать
to evaluate -- оценивать
to refer to as -- называть что-либо
to refine -- очищать
to respond -- отвечать
transmission -- передача
various -- различные
General understanding:
1) What does the term «computer» describe?
2) Is computer intelligent?
3) What are five components of computer system?
4) What is connectivity?
5) What is software? What's the difference between hardware and software?
6) Why people are the most important component of a computer system?
7) In what way terms «data» and «information» differ?
8) How does computer convert data into information?
Exercise 8.1. Which of the listed below terms have Russian equivalents:
computer, diskette, metal, processor, scanner, information, data, microphones, printer, modem, Internet.
Exercise 8.2. Which of the listed above statements are true/false. Specify your answer using the text.
1) Computer is made of electronic components so it is referred to as electronic device.
2) Computer has no intelligence until software is loaded.
3) There are five elements of computer system: hardware, software, people, diskettes and data.
4) The manner in which computers are connected is the connectivity.
5) Without software instructions hardware doesn't know what to do.
6) The software is the most important component because it is made by people.
7) The user inputs data into computer to get information as an output.
8) Computer is used to help people in decision making process.
Exercise 8.3. Match the following:
1)... doesn't come to life until it is connected to other parts of a system.
2)... is the term used to describe the instructions that tell the hardware how to perform a task.
3)... create the computer software instructions and respond to the procedures that those instructions present
4) Information in the form of instruction is called a...
5) The manner in which the various individual systems are connected is...
6)... is organized, processed and useful for decision making
7) The basic job of the computer is the...
a) program
b) information
c) processing of information
d) software
e) connectivity
f) computer
g) people
Exercise 8.4. Translate the text. Retell the text, using the vocabulary.
Exercise 8.5. Questions for group discussion:
1) Why so many people are still «computer illiterate»?
2) What are the most important applications of computer? (Are computer games just a «waste of time» or it is a nice hobby and a lot of fun?)
3) Who has a computer in your group? Ask them what they use it for?
Text B: «HARDWARE»
What is hardware? Webster's dictionary gives us the following definition of the hardware -- the mechanical, magnetic, electronic, and electrical devices composing a computer system.
Computer hardware can be divided into four categories:
1) input hardware
2) processing hardware
3) storage hardware
4) output hardware.
Input hardware
The purpose of the input hardware is to collect data and convert it into a form suitable for computer processing. The most common input device is a keyboard. It looks very much like a typewriter. The mouse is a hand held device connected to the computer by small cable. As the mouse is rolled across the mouse pad, the cursor moves across the screen. When the cursor reaches the desired location, the user usually pushes a button on the mouse once or twice to signal a menu selection or a command to the computer.
The light pen uses a light sensitive photoelectric cell to signal screen position to the computer. Another type of input hardware is optic-electronic scanner that is used to input graphics as well as typeset characters. Microphone and video camera can be also used to input data into the computer. Electronic cameras are becoming very popular among the consumers for their relatively low price and convenience.
Processing hardware
The purpose of processing hardware is retrieve, interpret and direct the execution of software instructions provided to the computer. The most common components of processing hardware are the Central Processing Unit and main memory.
The Central Processing Unit (CPU) is the brain of the computer. It reads and interprets software instructions and coordinates the processing activities that must take place. The design of the CPU affects the processing power and the speed of the computer, as well as the amount of main memory it can use effectively. With a well-designed CPU in your computer, you can perform highly sophisticated tasks in a very short time.
Memory is the system of component of the computer in which information is stored. There are two types of computer memory: RAM and ROM.
RAM (random access memory) is the volatile computer memory, used for creating loading, and running programs and for manipulating and temporarily storing data;
ROM (read only memory) is nonvolatile, non-modifiable computer memory, used to hold programmed instructions to the system.
The more memory you have in your computer, the more operations you can perform.
Storage hardware
The purpose of storage hardware is to store computer instructions and data in a form that is relatively permanent and retrieve when needed for processing. Storage hardware serves the same basic functions as do office filing systems except that it stores data as electromagnetic signals. The most common ways of storing data are Hard disk, floppy disk and CD-ROM.
Hard disk is a rigid disk coated with magnetic material, for storing programs and relatively large amounts of data.
Floppy disk (diskette) - thin, usually flexible plastic disk coated with magnetic material, for storing computer data and programs. There are two formats for floppy disks: 5.25" and 3.5". 5.25" is not used in modern computer systems because of it relatively large size flexibility and small capacity. 3.5" disks are formatted 1.4 megabytes and are widely used.
CD-ROM (compact disc read only memory) is a compact disc on which a large amount of digitized read-only data can be stored. CD-ROMs are very popular now because of the growing speed which CD-ROM drives can provide nowadays. Output hardware
The purpose of output hardware is to provide the user with the means to view information produced by the computer system. Information is output in either hardcopy or softcopy form. Hardcopy output can be held in your hand, such as paper with text (word or numbers) or graphics printed on it. Softcopy output is displayed on a monitor.
Monitor is a component with a display screen for viewing computer data, television programs, etc.
Printer is a computer output device that produces a paper copy of data or graphics.
Modem is an example of communication hardware -- an electronic device that makes possible the transmission of data to or from computer via telephone or other communication lines.
Hardware comes in many configurations, depending on what the computer system is designed to do. Hardware can fill several floors of a large office building or can fit on your lap.
Vocabulary:
amount -- количество
capacity -- вместительность
circuitry -- эл. цепи
CPU, microprocessor -- микропроцессор
hard disk -- жесткий диск, «винчестер»
input hardware -- устройства ввода данных
keyboard -- клавиатура
lap -- колени
modem -- модем
mouse -- устройство для перемещения объектов на экране, «мышь»
output hardware -- выходные устройства отображения информации
printer -- принтер
processing hardware -- устройства обработки данных
RAM -- ОЗУ (оперативное запоминающее устройство)
ROM -- ПЗУ (постоянное запоминающее устройство)
CD-ROM -- накопитель на компакт-дисках (CD)
scanner -- сканер
sensitive -- чувствительный
sophisticated -- сложный
storage hardware -- устройства хранения данных
temporarily -- временно
temporary -- временный
the purpose -- цель
tier -- ярус
to affect -- влиять
to connect -- соединять
to convert -- преобразовывать
to direct -- управлять
to execute -- выполнять
to interpret -- переводить
to provide -- обеспечивать
to reach -- достигать
to retrieve -- извлекать
to roll -- катать, перекатывать
volatile -- летучий, нестойкий, временный
General understanding:
1. What is the Webster's dictionary definition of the hardware?
2. What groups of hardware could be defined?
3. What is input hardware? What are the examples of input hardware?
4. What is mouse designed for? What is a light pen?
5. What is processing hardware? What are the basic types of memory used in a PC?
6. Can a PC-user change the ROM? Who records the information in ROM?
7. What is storage hardware? What is CD-ROM used for? Can a user record his or her data on a CD? What kind of storage hardware can contain more information: CD-ROM, RAM or ROM?
8. What is modem used for? Can PC-user communicate with other people without a modem?
Exercise 8.6. Which of the listed below statements are true/false. Specify your answer using the text.
1) Computer is an electronic device therefore hardware is a system of electronic devices.
2) The purpose of the input hardware is to collect data and convert it into a form suitable for computer processing.
3) Scanner is used to input graphics only.
4) The purpose of processing hardware is to retrieve, interpret and direct the execution of software instructions provided to the computer.
5) CPU reads and interprets software and prints the results on paper.
6) User is unable to change the contents of ROM.
7) 5.25" floppy disks are used more often because they are flexible and have more capacity than 3.5" disks.
5) Printer is a processing hardware because its purpose is to show the information produced by the system.
6) Modem is an electronic device that makes possible the transmission of data from one computer to another via telephone or other communication lines.
7) The purpose of storage hardware is to store computer instructions and data in a form that is relatively permanent and retrieve them when needed for processing.
Exercise8.7. Give definitions to the following using the vocabulary
1)CPU
2) ROM
3) Floppy-disk
4) CD-ROM
5) Printer
6) Modem
7) Motherboard
8) Hard disk
9) Keyboard
10) Sound-card
Exercise 8.8. Which of the following is Hardware:
1) program
2) mouse
3)CPU
4) printer
5) modem
6) command
7) port
8) cursor or the pointer
9) keyboard
10) character
Exercise 8.9. Match the following:
1) процессор
2) клавиатура
3) мышь
4) дискета
5) «винчестер»
6) модем
7) экран
8) ПЗУ
9) ОЗУ
a) nonvolatile, non-modifiable computer memory, used to hold programmed instructions to the system.
b) the part of a television or computer on which a picture is formed or information is displayed.
c) rigid disk coated with magnetic material, for storing computer programs and relatively large amounts of data.
d) an electronic device that makes possible he transmission of data to or from computer via telephone or other communication lines.
e) a set of keys, usually arranged in tiers, for operating a typewriter, typesetting machine, computer terminal, or the like.
f) volatile computer memory, used for creating, loading, and running programs and for manipulating and temporarily storing data; main memory.
g) central processing unit: the key component of a computer system, containing the circuitry necessary to interpret and execute program instructions.
h) a palm-sized device equipped with one or more buttons, used to point at and select items on a computer display screen and for controlling the cursor by means of analogous movement on a nearby surface.
i) a thin, usually flexible plastic disk coated with magnetic material, for storing computer data and program.
Questions for group discussion:
1) Without what parts computer is unable to work?
2) What is the most expensive part of the hardware?
3) What other hardware devices do you know? What are they for? Do you know how to use them?
Text C: "TYPES OF SOFTWARE»
A computer to complete a job requires more than just the actual equipment or hardware we see and touch. It requires Software -- programs for directing the operation of a computer or electronic data.
Software is the final computer system component. These computer programs instruct the hardware how to conduct processing. The computer is merely a general-purpose machine which requires specific software to perform a given task. Computers can input, calculate, compare, and output data as information. Software determines the order in which these operations are performed.
Programs usually fall in one of two categories: system software and applications software.
System software controls standard internal computer activities. An operating system, for example, is a collection of system programs that aid in the operation of a computer regardless of the application software being used. When a computer is first turned on, one of the systems programs is booted or loaded into the computers memory. This software contains information about memory capacity, the model of the processor, the disk drives to be used, and more. Once the system software is loaded, the applications software can be brought in.
System programs are designed for the specific pieces of hardware. These programs are called drivers and coordinate peripheral hardware and computer activities. User needs to install a specific driver in order to activate a peripheral device. For example, if you intend to buy a printer or a scanner you need to worry in advance about the driver program which, though, commonly goes along with your device. By installing the driver you «teach» your mainboard to «understand» the newly attached part.
Applications software satisfies your specific need. The developers of application software rely mostly on marketing research strategies trying to do their best to attract more users (buyers) to their software. As the productivity of the hardware has increased greatly in recent years, the programmers nowadays tend to include as much as possible in one program to make software interface look more attractive to the user. These class of programs is the most numerous and perspective from the
marketing point of view.
Data communication within and between computers systems is handled by system software. Communications software transfers data from one computer system to another. These programs usually provide users with data security and error checking along with physically transferring data between the two computer's memories. During the past five years the developing electronic network communication has stimulated more and more companies to produce various communication software, such as Web-Browsers for Internet.
Vocabulary:
aid -- помощь
to attach -- присоединять
control -- управление
developer -- разработчик
equipment -- оборудование
general-purpose -- общего назначения
internal -- внутренний
mainboard -- материнская плата
memory capacity -- вместимость памяти
peripheral -- периферийный
regard -- отношение
regardless -- несмотря на, безотносительно,
security -- безопасность
specific -- конкретный, определенный
to boot -- загружать
to check -- проверять
to complete -- совершать, завершать
to conduct -- проводить
to develop -- развивать, проявлять
to direct -- управлять, руководить
to handle -- управлять, обращаться с
to install -- устанавливать, встраивать, инсталлировать
to provide with -- обеспечивать чем-либо
to require -- требовать
to secure -- обеспечивать безопасность
to transfer -- переводить, переносить
Web-browser -- «браузер» (программа, позволяющая пользователю искать и считывать информацию с глобальной электронной сети Internet)
General understanding
1. What is software?
2. In what two basic groups software (programs) could be divided?
3. What is system software for?
4. What is an operating system -- a system software or application software?
5. What is a «driver»?
6. What is application software?
7. What is application software used for?
8. What is the tendency in application software market in the recent years?
9. What is the application of the communication software?
Exercise 8.10. Which of the following is Software:
1. Program
2. Mouse
3. CPU
4. Word processor
5. Modem
6. Web-browser
7. Operating system
8. Scanner
9. Printer
10. Display
Exercise 8.11. Which of the listed below statements are true/false. Specify your answer using the text:
1) Computer programs only instruct hardware how to handle data storage.
2) System software controls internal computer activities.
3) System software is very dependable on the type of application software being used.
4) The information about memory capacity, the model of the processor and disk drives are unavailable for system software.
5) The driver is a special device usually used by car drivers for Floppy-disk driving.
6) It is very reasonable to ask for a driver when you buy a new piece of hardware.
7) Software developers tend to make their products very small and with poor interface to save computer resources.
8) Communication software is in great demand now because of the new advances in communication technologies.
9) Application software is merely a general-purpose instrument.
10) Web-browsers is the class of software for electronic communication through the network.
Exercise 8.12. Find English equivalents in the text:
1) Программное обеспечение определяет порядок выполнения операций.
2) Прикладные программы выполняют поставленную вами конкретную задачу (удовлетворяют вашу потребность).
3) Этот класс программ -- самый многочисленный и перспективный с точки зрения маркетинга.
4) Системные программы предназначены для конкретных устройств компьютерной системы.
5) Устанавливая драйвер, вы <учите» систему «понимать» вновь присоединенное устройство.
6) Когда компьютер впервые включается, одна из системных программ должна быть загружена в его память.
7) Развитие систем электронной коммуникации за последние пять лет стимулировало производство соответствующих программных продуктов возрастающим числом компаний-разработчиков.
Exercise 8.13. Give definitions to the following using the vocabulary:
1) Software
2) Driver
3) Application software
4) Operating system
5) Communication software
6) Computer
7) Peripheral device
8) Operating system
Questions for group discussion:
1) What do you think is more expensive -- hardware or software?
2) Has anyone in your group ever purchased software? Why do you think piracy (audio, video, computer software) still exists?
FAMOUS PEOPLE OF SCIENCE AND ENGINEERING
Babbage, Charles (1792-1871), British mathematician and inventor, who designed and built mechanical computing machines on principles that anticipated the modern electronic computer. Babbage was born in Teignmouth, Devon, and educated at the University of Cambridge. He became a Fellow of the Royal Society in 1816 and was active in the founding of the Analytical, the Royal Astronomical, and the Statistical Societies.
In the 1820s Babbage began developing his Difference Engine, a mechanical device that could perform simple mathematical calculations. Although Babbage started to build his machine, he was unable to complete it because of a lack of funding. In the 1830s Babbage began developing his Analytical Engine, which was designed to carry out more complicated calculations, but this device was never built, too. Babbage's book, «Economy of Machines and Manufactures» (1832), initiated the field of study known today as operational research.
UNIT 9
MODERN COMPUTER TECHNOLOGIES
I. Text A: «Operating systems», Text B: «Windows 95»,
Text C: «Internet and WWW»
II. Famous people of science and engineering: Bill Gates.
Text A: «OPERATING SYSTEMS»
When computers were first introduced in the 1940's and 50's, every program written had to provide instructions that told the computer how to use devices such as the printer, how to store information on a disk, as well as how to perform several other tasks not necessarily related to the program. The additional program instructions for working with hardware devices were very complex, and time-consuming. Programmers soon realized it would be smarter to develop one program that could control the computer's hardware, which others programs could have used when they needed it. With that, the first operating system was born.
Today, operating systems control and manage the use of hardware devices such as the printer or mouse. They also provide disk management by letting you store information in files. The operating system also lets you run programs such as the basic word processor. Lastly, the operating system provides several of its own commands that help you to use the computer.
DOS is the most commonly used PC operating system. DOS is an abbreviation for disk operating system. DOS was developed by a company named Microsoft. MS-DOS is an abbreviation for «Microsoft DOS». When IBM first released the IBM PC in 1981, IBM licensed DOS from Microsoft for use on the PC and called it PC-DOS. From the users perspective, PC-DOS and MS-DOS are the same, each providing the same capabilities and commands.
Подобные документы
Modal verbs in middle English. Functions of modal verbs in modern English. The meaning of modal verbs in translation. Differences and peculiarities of the usage of modal verbs in newspapers and fiction. The usage of modal verbs in business English.
курсовая работа [59,7 K], добавлен 27.09.2012А complex comparison of morphological characteristics of English and Ukrainian verbs. Typological characteristics, classes and morphological categories of the English and Ukrainian verbs. The categories of person and number, tenses, aspect, voice, mood.
дипломная работа [162,2 K], добавлен 05.07.2011The rules and examples of using modal verbs in English: may, mights, can, could, allow. The difference of meaning between verbs. Using perfect infinitive to express an unfulfilled obligation. Examples of Absence of obligation and unnecessary action.
презентация [20,7 K], добавлен 29.09.2011Translating of suggestion into the English language. Use of regular shape of participle. The use of correct times of verbs is in suggestion. Putting of verbs in brackets in Gerund or Infinitive. Development of skills of business intercourse in English.
контрольная работа [27,1 K], добавлен 04.03.2011General guidelines on word stress: one word has only one stress; stress vowels, not consonants. Origins of the word stress and the notion of accent. English accentuation tendencies. Typical patterns of stress of nouns, verbs, adjectives and adverbs.
курсовая работа [275,8 K], добавлен 12.04.2014Using constructions "There is/ There are". Form "to be going to" sentences, meaning. Test exercises with pronouns. The Future Indefinite Tense. Modal verbs, the articles, noun. Past Tenses, passive voice, the Sequence of Tenses, prepositions in English.
тест [49,6 K], добавлен 10.12.2011Рractical and theoretical value of the types of Phrasal verbs, the structure and their role in the English Grammar. Defining, analyze and classification of Phrasal verbs. List of Phrasal verbs. Meanings of phrasal verbs with different prepositions.
курсовая работа [32,7 K], добавлен 17.01.2011Adjectives. Degrees of Comparison. Substantivization of Adjectives. Syntactic Functions of Adjectives. Position of Adjectives. Order of Adjectives. Adjectives with prepositions. Adjectives with "to" - infinitive or "that" - clauses.
курсовая работа [30,7 K], добавлен 21.01.2008The definition of the verb. The function of Phrasal verbs. The structure and meaning of Phrasal verbs. Classification of Phrasal verbs. Preposition and postposition. Verbs with preposition and noun. Verbs with postposition. English Phrasal Verbs Lists.
курсовая работа [32,5 K], добавлен 17.01.2011Can, may, We can compare may and can. Must. Must and May compared. To have to. To be to. Must, to have to and to be to compared. Ought to. Shall and should. Must, Should and ought to compared. Should + Perfect infinitive.
дипломная работа [35,2 K], добавлен 22.07.2006