Проектирование привода
Определение механических свойств материалов электродвигателя, расчет параметров передачи. Конструирование валов редуктора: расчет диаметров валов, шпоночных соединений и чертежа вала редуктора. Расчет быстроходного вала и подбор подшипников качения.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 09.08.2010 |
Размер файла | 315,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Оглавление
Задание для контрольной работы
1 Определение мощности на приводном валу
2 Выбор электродвигателя
3 Кинематический расчет привода
4 Расчет параметров зубчатых колес
4.1 Определение механических свойств материалов
4.2 Расчет параметров передачи
5 Конструирование валов редуктора
5.1 Расчет диаметров валов
5.2 Расчет шпоночных соединений
5.3 Расчет зубчатой муфты
5.4 Разработка чертежа вала редуктора
6 Проверочный расчет быстроходного вала
6.1 Определение реакций опор
6.2 Расчет статической прочности вала
6.3 Уточненный расчет прочности вала
7 Подбор подшипников качения
Список использованной литературы
Задание для контрольной работы
Провести проектировочный и проверочный расчет деталей механизма привода на основании его сборочного чертежа. Произвести выбор электродвигателя, расчет соединений, муфт и основных деталей редуктор, а также ориентировочного значения коэффициента полезного действия. Выполнить рабочий чертеж вала.
Кинематическая схема.
Исходные данные:
Долговечность привода tУ, ч: 11600
Мощность тихоходного вала N2, кВт: 3,3
Частота вращения тихоходного вала n2, мин-1: 435
Материал вала: сталь 45 с термообработкой улучшением
1 Определение мощности на приводном валу
КПД редуктора:
з = ззп · зм · зп2
ззп = 0,95…0,98; принимаем ззп = 0,98 - КПД закрытой цилиндрической передачи;
зм = 0,995 - КПД муфты;
зп = 0,99 - КПД пары подшипников качения.
з = 0,98 · 0,995 · 0,992 = 0,955
Требуемая мощность двигателя:
N1 = N2/ з = 3,3 / 0,955 = 3,46 кВт.
2 Выбор электродвигателя
Выбираем электродвигатель с запасом мощности: 4А112МВ6Y3 со следующими характеристиками:
Nдв = 4 кВт; nдвc = 1000 мин-1; dдв = 38 мм; шmax = 2,2.
Частота вращения двигателя при номинальной нагрузке:
n1 = nдв = nдвc · (1-s) = 1000 · (1-0,04) = 960 мин-1, где:
s - коэффициент скольжения, принимаем s = 0,04.
3 Кинематический расчет привода
Передаточное число редуктора:
u = n1 / n2 = 960 / 435 = 2,2
Принимаем ближайшее стандартное значение (второй ряд): u = 2,24.
Уточним частоту вращения тихоходного вала редуктора:
n2 = n1 / u = 960 / 2,24 = 429 мин-1
Угловые скорости вращения валов:
щ1 = рn1 / 30 = 3,14 · 960 / 30 = 100,5 с-1;
щ2 = рn2 / 30 = 3,14 · 429 / 30 = 44,9 с-1.
Вращающие моменты на валах:
Т1 = N1 / щ 1 = 3,46 · 103 / 100,5 = 34,43 Н·м;
T2 = (N2 / щ 2) · з = T1 · u · з = 34,43 · 2,24 · 0,955 = 73,65 Н·м.
4 Расчет параметров зубчатых колес
4.1 Определение механических свойств материалов
Выбираем для шестерни сталь 45 с термообработкой улучшением НВ 240, а для колеса тоже сталь 45 с термообработкой нормализацией НВ 215.
Примем предварительно: для шестерни диаметр заготовки до 100 мм, а для колеса до 400 мм. Тогда:
- для материала шестерни: предел текучести ут = 440 МПа, предел прочности ув = 780 МПа;
- для материала колеса: предел текучести ут = 280 МПа, предел прочности ув = 550 МПа.
По заданной долговечности определяем число рабочих циклов:
- шестерни Nц1 = 60 · 960 · 11600 = 6,7 · 108;
- колеса Nц2 = 60 · 429 · 11600 = 3 · 108.
Так как Nц > 107 принимаем коэффициент долговечности КHL = 1.
Коэффициент безопасности примем: [n] = 1,15.
При НВ ? 350 НВ: уНlimb = 2 · HB + 70, тогда:
- для шестерни уНlimb1 = 2 · 240 + 70 = 550 МПа
[уH]1 = (уНlimb1 · КHL) / [n] = (550 · 1) / 1,15 = 478,3 МПа
- для колеса уНlimb2 = 2 · 215 + 70 = 500 МПа
[уH]2 = (уНlimb2 · КHL) / [n] = (500 · 1) / 1,15 = 434,8 МПа
4.2 Расчет параметров передачи
Введем коэффициент, учитывающий динамичность нагрузки и неравномерность зацепления kH = 1,2.
Коэффициент ширины колеса: шba = 0,4.
Межосевое расстояние из условия контактной прочности зубьев:
бW = (u + 1) = (2,24 + 1) = 91,3 мм.
Принимаем бW = 100 мм.
m = (0,01-0,02) бW = 1-2 мм, принимаем m = 1 мм.
Определяем суммарное число зубьев шестерни и колеса:
zУ = 2 бW / m = 2 · 100 / 1 = 200,
а также отдельно для быстроходной ступени передач:
z1 = 2 бW / m(u + 1) = 2 · 100 / 1 · (2,24 + 1) = 61,7; z1 = 62
Для тихоходной ступени:
z2 = z1u = 61,7 · 2,24= 138,2; z2 = 138
Уточняем передаточное число:
u = z2 / z1 = 138 / 62 = 2,23
Делительные диаметры:
d1 = m z1 = 1 · 62 = 62 мм
d2 = m z2 = 1 · 138= 138 мм
Диаметры вершин зубьев:
da1 = d1 + 2m = 62 + 2 · 1 = 64 мм
da2 = d2 + 2m = 138 + 2 · 1 = 140 мм
Ширина колеса прямозубой передачи при шba = 0,4:
b2 = шва · бW = 0,4 · 100 = 40 мм
Ширина шестерни:
b1 = b2 + 4 = 40 + 4 = 44 мм
Диаметры окружности впадин:
df1 = d1 - 2,5m = 62 - 2,5 · 1 = 59,5 мм
df2 = d2 - 2,5m = 138- 2,5 · 1 = 135,5 мм
Коэффициент ширины шестерни по диаметру:
Шbd = b1 /d1 = 44 /62 = 0,71
5 Конструирование валов редуктора
5.1 Расчет диаметров валов
Диаметр выходного конца вала, исходя из расчета на кручение:
d = ,
где [ф]k - допускаемые напряжения кручения, определяемые механическими свойствами материала вала.
[ф]k = 0,1ут
Ведущий вал выполним за одно целое с шестерней. В качестве материалов валов возьмем: сталь 45 с термообработкой улучшением.
Тогда для ведущего вала:
[ф]k = 0,1ут = 0,1 · 440 = 44 МПа
dВ1 = = 15,8 мм
Так как диаметр вала двигателя dдв = 38 мм, то окончательно берем dВ1 = 38 мм. Диаметр вала под подшипники принимаем 50 мм.
Для ведомого вала:
[ф]k = 0,1ут = 0,1 · 440 = 44 МПа
dВ2 = = 20,3 мм
Принимаем: выходной диаметр Ш25 мм, под подшипники - Ш35 мм, под колесо - Ш45 мм.
5.2 Расчет шпоночных соединений
Размеры призматических шпонок выбираем по диаметру вала:
Ведущий вал:
dВ1 = 38 мм, берем шпонку: 10х8, t1 = 5 мм.
Ведомый вал:
dВ2 = 25 мм, берем шпонку: 8х7, t1 = 4 мм.
dВ2.1 = 45 мм, берем шпонку: 14х9, t1 = 5,5 мм.
Длину призматической шпонки выбираем из стандартного ряда в соответствии с расчетом на смятие по боковым сторонам шпонки:
lр ? (2 · Т · 103)/( d(h - t1) · [усм])
Допускаемые напряжения смятия:
[усм] = ут / [s],
где [s] - допускаемый коэффициент запаса.
Для шпонок из чистотянутой стали 45Х принимаем ут = 400 МПа. Принимаем: [s] = 2,3
[усм] = 400 / 2,3 = 173,9 МПа
Ведущий вал:
lр1 = (2 · 34,43 · 103)/( 38 · (8 - 5) · 173,9) = 3,47 мм
l1 = lр1 + b = 3,47 + 10 = 13,47 мм
Окончательно берем: l1 = 20 мм
Ведомый вал:
lр2 = (2 · 73,65 · 103)/( 25 · (7 - 4) · 173,9) = 11,3 мм
l2 = lр2 + b = 11,3 + 8 = 19,3 мм
Окончательно берем: l2 = 20 мм
lр3 = (2 · 73,65 · 103)/( 45 · (9 - 5,5) · 173,9) = 5,4 мм
l3 = lр3 + b = 5,4 + 14 = 19,4 мм
Окончательно берем: l3 = 20 мм
Ширина колеса 40 мм - шпонка подходит.
5.3 Расчет зубчатой муфты
В приводе будем использовать зубчатую муфту. Выбор муфты производится в зависимости от диаметра вала и передаваемого крутящего момента по критерию:
Трасч = k · Тдл. ? Ттабл.
Принимаем k = 1, тогда:
Трасч = Т1 = 34,43 Н·м
Диаметр муфты:
dМ ? 10 = 10 = 35 мм
qM = 0,2 - 0,25
kМ = 4 - 6 - при твердости 40-50 HRC
Выбираем зубчатую муфту dМ = 60 мм, Т = 4000 Н · м.
5.4 Разработка чертежа вала редуктора
Основные размеры вала редуктора были получены в результате его проектирования. Недостающие размеры определим на основании выбранного варианта исполнения.
Вал редуктора спроектирован ступенчатым, это дает ряд преимуществ: удобство сборки; изготовление сопрягаемых деталей в системе отверстия.
Размеры под посадочные места под сопрягаемые детали выберем по их соответствующим размерам и условиям соединений.
Для обеспечения возможности выхода шлифовального камня при обработке
посадочных поверхностей вала введем канавку.
Для обеспечения требований взаимозаменяемости и обеспечения необходимого качества соединений проставим на чертеже допуски на размеры.
Укажем шероховатость обрабатываемых поверхностей. В технических требованиях укажем термообработку.
6 Проверочный расчет быстроходного вала
6.1 Определение реакций опор
Для проверочного расчета статической и усталостной прочности ступенчатого вала составим его расчетную схему.
Расчетная схема вала.
Геометрические параметры вала определим на основании чертежа:
а = 75 мм; b = 42 мм; с = 42 мм.
Рассмотрим внешние силы, нагружающие быстроходный вал редуктора.
Со стороны муфты от электродвигателя на вал действует крутящий момент Т1 и поперечная сила Fr; со стороны зацепления окружная сила FT и поперечная R0:
FT = 2T1 / d1 = 2 · 34,43 · 103 / 62 = 1111 Н
R0 = FT · tgб = 1111 · tg 20° = 404 Н
Fr = (0,1 - 0,3)Ft ,
где Ft - окружное усилие, действующее на зубья муфты.
Ft = 2T1 / dМ = 2 · 34,43 · 103 / 60 = 1148 Н
Принимаем Fr = 344,4 Н
Рассмотрим плоскость YOZ:
УМАу = 0; -RBy · (c+b) - R0 · b + Fr · a = 0
RBy = (Fr · a - R0 · b) / (c+b) = (344,4 · 75 - 404 · 42) / 84 = 105,6 H
УМBу = 0; RAy · (c+b) + R0 · c + Fr · (a + b + c) = 0
RAy = (-Fr · (a + b + c) - R0 · c) / (c+b) = (-344,4 · 159 - 404 · 42) / 84 = - 854 H
Проверка:
УFу = 0; -Fr - RAy - R0 - RBy = -344,4 + 854 - 404 - 105,6 = 0
Построение эпюры Му:
Участок 0 ? z ? a, a = 0,075 м.
Му = - Fr · z
Му(0) = 0
Му(0,075) = -344,4 · 0,075 = -25,8 Н · м
Участок a ? z ? a + b, a = 0,075 м, b = 0,042 м.
Му = - Fr · z - RAy · (z - a)
Му(0,075) = - Fr · z = -344,4 · 0,075 = -25,8 Н · м
Му(0,117) = -344,4 · 0,117 - (- 854) · (0,117 - 0,075) = -4,4 Н · м
Плоскость XOZ.
УМАх = 0; -FT · b - RBx (c + b) =0
RBx = - FT · b / (c + b) = -1148 · 42 / 84 = -574 Н
УМВх = 0; FT · с + RАx (c + b) =0
RАx = - FT · с / (c + b) = -1148 · 42 / 84 = -574 Н
Проверка:
УFx = 0; RАx + RBx + FT = 0
-574 - 574 + 1148 = 0
Построение эпюры Мх.
Участок 0 ? z ? a, a = 0,075 м.
Мх(0) = 0
Мх(0,075) = 0 - на этом участке нет изгибающих сил.
Участок a ? z ? a + b, a = 0,075 м, b = 0,042 м.
Мх(0,075) = 0
Мх(0,117) = RАx · b = 574 · 0,042 = 24,1 Н · м
Результирующие реакции опор.
RA = = = 1029 H
RB = = = 583,6 H
Построение эпюры Мz.
T1 = 34,43 Н · м
Участок 0 ? z ? a + b
Mz = - T1 = -34,43 Н · м
6.2 Расчет статической прочности вала
На основании эпюр можно сделать следующие выводы.
Опасными сечениями для рассматриваемого вала, которые необходимо проверить на прочность, являются сечения: (z = 0), как наименее жесткое при кручении dВ1 = 38 мм, а также сечения (z = a) и (z = a + b), где действуют наибольшие изгибающие моменты.
В сечении (z = 0) находится еще и шпоночный паз, ослабляющий его жесткость. Сечение (z = a), где действует изгибающий момент:
Ма = = = 25,8 Н·м
И крутящий момент Мz = 34,43 Н·м, находится в сложном напряженном состоянии и при этом имеет диаметр, незначительно превышающий наименьший. В сечении (z = a + b) изгибающий момент достигает величины:
Ма + b = = = 24,5 Н·м
Рассчитаем наибольшие напряжения в опасных сечениях.
В сечении (z = 0) нормальные напряжения от осевых сил и изгибающих моментов равны нулю, касательные напряжения фmax определяются крутящим моментом
Мz = 34,43 Н·м и полярным моментом сопротивления сечения Wp цилиндрического конца вала со шпоночным пазом, глубиной t1 = 5 мм.
Wp = - = - = 10052 мм3
Тогда наибольшие касательные напряжения:
фmax = Мz / Wp = 34,43 / 10052 · 10-9 = 3,4 МПа,
а условие прочности вала в сечении (z = 0):
фmax = 3,4 МПа ? [ф]k = 44 МПа
выполняется.
В сечении (z = a) наибольшие нормальные напряжения определяются величиной изгибающего момента Ма = 25,8 Н·м и моментом сопротивления сечения вала.
Wa = = = 12266 мм3
уmax = Ма / Wa = 25,8 / 12266 · 10-9 = 2,1 МПа,
а наибольшие касательные напряжения этого сечения с полярным моментом:
Wp = = = 24532 мм3, равны:
фmax = Мz / Wp = 34,43 / 24532 · 10-9 = 1,4 МПа
В качестве допустимых напряжений на изгиб примем:
[у] = 0,8 · уT = 0,8 · 440 = 352 МПа
При этом условие статической прочности по приведенным напряжениям выполняется.
упр = = = 3,2 МПа ? [у] = 352 МПа,
В сечении (z = a + b) рассчитаем аналогично, с учетом того, что наибольшие нормальные напряжения определяются величиной изгибающего момента
Ма + b = 24,5 Н·м и моментом сопротивления сечения вала (с диаметром шестерни по впадинам):
Wa = = = 20670 мм3
уmax = Ма + b / Wa = 24,5 / 20670 · 10-9 = 1,2 МПа
Wp = = = 41340 мм3
фmax = Мz / Wp = 34,43 / 41340 · 10-9 = 0,8 МПа
Условие статической прочности по приведенным напряжениям выполняется.
упр = = = 1,8 МПа ? [у] = 352 МПа,
6.3 Уточненный расчет прочности вала
Определим усталостные характеристики материала вала - шестерни, изготовленной из стали 45 с улучшением (ут = 440 МПа, ув = 780 МПа). При симметричном цикле (R = -1) имеем:
у-1 = 0,43 · ув = 0,43 · 780 = 335,4 МПа
ф-1 = 0,6 · у-1 = 0,6 · 335,4 = 201,2 МПа
При пульсационном цикле (R = 0) имеем:
у0 = 1,6 · у-1 = 1,6 · 335,4 = 536,6 МПа
ф0 = 1,6 · ф-1 = 1,6 · 201,2 = 321,9 МПа
Рассчитаем коэффициенты, отражающие соотношение пределов выносливости при симметричном и пульсирующем циклах соответственно изгиба и кручения:
шу = (2 · у-1 - у0) / у0 = (2 · 335,4 - 536,6) / 536,6 = 0,25
шф = (2 · ф-1 - ф0) / ф0 = (2 · 201,2 - 321,9) / 321,9 = 0,25
Из графика [3] определим коэффициенты влияния абсолютных размеров:
- в сечении (z = 0) при dв1 = 38 мм получим еу = еф = 0,82
- в сечении (z = а) при dп1 = 50 мм получим еу = еф = 0,77.
Зададим коэффициенты шероховатости [3] в зависимости от шероховатости поверхности Ra:
- в сечении (z = 0) при Ra = 1,25 получим kуn = kфn = 1,1
- в сечении (z = а) при Ra = 2,5 получим kуn = kфn = 1,2.
Эффективные коэффициенты концентрации напряжений определим из графика [1]:
- в сечении (z = 0) для концентратора в виде шпоночного паза имеем эффективные коэффициенты концентрации при изгибе и кручении соответственно
kу = 2,3 и kф = 2,1.
- в сечении (z = а) для концентратора в виде посадки с гарантированным натягом подшипника на вал имеем:
kу / еу = 3,9; kф / еф = 1 + 0,6(kу / еу - 1) = 1 + 0,6 · 2,9 = 2,74
Примем коэффициент упрочнения в расчетных сечениях равным kу = 1, поскольку поверхность вала не упрочняется. Рассчитаем коэффициенты перехода:
- для сечения (z = 0):
kуD = (kу / еу + kуn - 1) / kу = (2,3 / 0,82 + 1,1 - 1) / 1 = 2,9
kфD = (kф / еф + kфn - 1) / kу = (2,1 / 0,82 + 1,1 - 1) / 1 = 2,66
- для сечения (z = a):
kуD = (kу / еу + kуn - 1) / kу = (3,9 + 1,2 - 1) / 1 = 4,1
kфD = (kф / еф + kфn - 1) / kу = (2,74 + 1,2 - 1) / 1 = 2,94
Определим коэффициенты долговечности kСу и kСф [3]. Для этого рассчитаем эквивалентное число циклов при наибольшем значении показателя степени m = 9:
NУ = 60 · n1 · tУ · = 60 · 960 · 11600 · (19 · 0,1 + 0,89 · 0,25 + + 0,69 · 0,65) = 5,3 · 106
Коэффициент долговечности: kСу = = 0,96 < 1, следовательно,
kСу = kСф = 1.
Поскольку вал не испытывает осевой нагрузки, то будем считать, что нормальные напряжения, возникающие в поперечном сечении вала, изменяются по симметричному циклу, т.е. уm = 0, амплитуда цикла нормальных напряжений равна наибольшему номинальному напряжению изгиба, соответственно: для сечения (z = 0), уa = 0 МПа; для сечения (z = a), уa = уmax = 2,1 МПа
Исходя из неблагоприятных условий примем, что напряжения кручения изменяются по нулевому (пульсирующему) циклу, тогда:
- для сечения (z = 0) фа = фm = фmax / 2 = 3,4 / 2 = 1,7 МПа;
- для сечения (z = a) фа = фm = фmax / 2 = 1,4 / 2 = 0,7 МПа.
Тогда коэффициент запаса прочности по касательным напряжениям для сечения
(z = 0):
nф = ф-1 / ((kфD / kСф) · фа + шф · фm ) = 201,2 / (2,66 · 1,7 + 0,25 · 1,7) = 40,7
Для сечения (z = a) коэффициент запаса прочности определим по нормальным и касательным напряжениям соответственно:
nу = у-1 / ((kуD / kСу) · уa + шу · уm) = 335,4 / (4,1 · 2,1) = 39
nф = ф-1 / ((kфD / kСф) · фа + шф · фm ) = 201,2 / (2,94 · 0,7 + 0,25 · 0,7) = 90,1
Окончательно получим для сечения (z = a):
n = (nу · nф) / = (39 · 90,1) / = 35,8
Поскольку допускаемые значения коэффициента запаса принимают [n] = 1,5 - 2, то условие достаточной прочности n ? [n] выполняется.
7 Подбор подшипников качения
Определим ресурс:
Тихоходный вал:
L = (tУ · 60 · n) / 106 = (11600 · 60 · 435) / 106 = 302,8 млн. об.
Быстроходный вал:
L = (tУ · 60 · n) / 106 = (11600 · 60 · 960) / 106 = 668,2 млн. об.
Подсчитаем эквивалентные нагрузки:
Р = V · Rp · Кб · Кт
V = 1 - вращается внутреннее кольцо;
Кб = 1,3 - 1,5 - коэффициент безопасности;
Кт = 1 - температурный коэффициент;
Rp - силы возникающие в подшипнике.
Для быстроходного вала:
Р = 1 · 1029 · 1,5 · 1 = 1544 Н
Для тихоходного вала:
Р = 1 · 574 · 1,5 · 1 = 861 Н
Динамическая грузоподъемность:
С = Р , где:
а1 = 1 - коэффициент надежности,
а2 = 0,7 - 0,8 - обобщенный коэффициент.
Для быстроходного вала:
С = 1544 = 1551 Н
Для тихоходного вала:
С = 861 = 867 Н
Для быстроходного вала: dп1 = 50 мм, С = 1551 Н, берем подшипник средней серии №310 (С = 61800 Н). [2]
Для тихоходного вала: dп1 = 35 мм, С = 867 Н, берем подшипник легкой серии №207 (С = 25500 Н). [2]
Список использованной литературы
1. Курсовое проектирование деталей машин. /Под общ. ред. В. Н. Кудрявцева. - Л.: Машиностроение, 1984. - 400с.
2. Анурьев В. И. Справочник конструктора - машиностроителя. М.: Машиностроение. 1979. Т. 1-3.
3. Кудрявцев В. Н. Детали машин. Л.: Машиностроение, 1980. 464 с.
4. Гжиров Р. И. Краткий справочник конструктора. - Л.: Машиностроение. 1983. - 464 с.
Подобные документы
Подбор электродвигателя. Расчет общего передаточного числа. Кинематический расчет валов, клиноременной и конической передачи. Подбор подшипников для конического редуктора. Ориентировочный расчет и конструирование быстроходного вала конического редуктора.
курсовая работа [2,2 M], добавлен 06.01.2016Выбор электродвигателя и кинематический расчет привода. Подбор подшипников тихоходного вала. Оценка прочности шпоночных соединений. Конструирование элементов корпуса редуктора. Расчет червячной передачи, валов редуктора и крутящих моментов на них.
курсовая работа [1,2 M], добавлен 07.06.2010Определение конструктивных размеров шкивов и основных параметров передачи. Выбор механических характеристик материалов передачи и определение допускаемых напряжений. Расчет быстроходного вала редуктора. Подбор подшипников качения, компоновка редуктора.
курсовая работа [3,0 M], добавлен 28.03.2011Кинематический расчет привода и зубчатой тихоходной передачи. Предварительный расчет валов редуктора. Определение геометрических параметров зубчатых колес и параметров корпусных деталей. Расчет подшипников качения и шпоночных соединений привода.
курсовая работа [3,3 M], добавлен 06.10.2014Расчет зубчатых и цепных передач, закрытой цилиндрической передачи и предварительных диаметров валов привода. Подбор подшипников для выходного вала редуктора. Расчет выходного вала редуктора на прочность. Проверка прочности шпоночного соединения.
курсовая работа [185,8 K], добавлен 01.03.2009Кинематический расчет привода. Расчет закрытой зубчатой косозубой передачи. Расчет тихоходного вала привода. Расчет быстроходного вала привода. Подбор подшипников быстроходного вала. Подбор подшипников тихоходного вала. Выбор сорта масла.
курсовая работа [2,3 M], добавлен 16.05.2007Выбор электродвигателя, кинематический и силовой расчет привода. Расчет зубчатой и цепной передачи редуктора. Конструктивные размеры корпуса и крышки редуктора. Подбор подшипников для валов редуктора и шпонок, проверочный расчет шпоночных соединений.
курсовая работа [255,4 K], добавлен 25.02.2011Выбор электродвигателя и кинематический расчет привода, быстроходной и тихоходной ступени. Ориентировочный расчет валов редуктора, подбор подшипников. Эскизная компоновка редуктора. Расчет клиноременной передачи. Проверка прочности шпоночных соединений.
курсовая работа [1,2 M], добавлен 05.10.2014Кинематический расчет привода электродвигателя, определение требуемой мощности. Расчет быстроходного и тихоходного валов, подшипников. Проверочный расчет валов на прочность. Выбор смазки редуктора, подбор муфты. Проверка прочности шпоночного соединения.
курсовая работа [277,2 K], добавлен 12.06.2010Выбор электродвигателя и кинематический расчет. Предварительный расчет валов редуктора. Конструкция ведущего вала. Размеры шестерни, колеса, корпуса редуктора. Расчет клиноременной передачи. Компоновка редуктора. Проверка долговечности подшипников.
курсовая работа [705,8 K], добавлен 13.01.2014