Производство пленок и полиэтилена низкой плотности
Промышленное производство пленок из синтетических полимеров (полиэтилен, поливинилхлорид и др.) осуществляется непрерывным методом из расплавов полимеров двумя способами: каландровым и выдавливанием червячными прессами. Применение пленочных изделий.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 15.05.2008 |
Размер файла | 6,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Электропроводные полимерные пленки характеризуются удельным объемным электрическим сопротивлением не более 10 Ом-см. Существует два вида электропроводных пленок: гомопленки (из одного полимера), обладающие полупроводниковыми свойствами, и гетеропленки (из полимеров с различными токопроводящими наполнителями), содержащие сажу, графит, порошки никеля, меди, серебра и других металлов.
Полупроводниковые полимерные пленки. Получение таких пленок связано с технологическими трудностями: не все из них хорошо растворяются или переходят в расплав, из которого впоследствии формируют пленку. Возможности переработки таких полимеров в пленки, волокна и другие изделия ограничены. Полимеры, обладающие полупроводниковыми свойствами, относятся к классу материалов типа поливиниленов (полиенов, полиметинов), полиинов, поли-п-фениленов, полиацетиленов, полиариленов, полибензонитрилов, полипиридинов, полиаминов, или к полимерам, макромолекулы которых содержат систему сопряженных химических связей. Такие пленки и изделия из них широко применяют в технике. На их основе можно создавать выпрямители, тензодатчики, терморезисторы, термоэлектрические генераторы, антистатические покрытия фоторезисторов, детекторы ИК-излучения, фотоэлектрические датчики, чувствительные слои для электрофотографии и др. В перспективе применение пленок позволит реализоват эффект сверхпроводимости. Дальнейшей переработкой подобных пленок, например получением их в ориентированном состоянии, достигают эффекта анизотропии проводимости, т.е. ориентацией макромолекул таких полимеров (в пленках, волокнах) можно создать изделия, характеризующиеся анизотропие оптических, электрических и фотоэлектрических свойств.
Токопроводные пленки. Синтетические пленки, являющиеся большинстве своем диэлектриками, можно сделать электропроводными по крайней мере двумя способами.
Поверхностная обработка состоит в нанесении специальных веществ являющихся относительно хорошими проводниками электрических зарядов, на поверхность полимерных пленок, волокон. В качестве таких веществ применяют так называемые поверхностно-активные (ПАВ) или рошкообразные минеральные вещества. Наиболее распространены оксиэтиллированные синтетические кислоты фракций С14…..С18, оксиэтиллированные лауриновая, стеариновая и олеиновая кислоты, а также оксиэтиллированные высшие жирные спирты, сульфоэфиры высших жирных и ненасыщенных кислот. Массовая доля наносимых веществ 0,2...0,8%. В качестве электропроводных материалов для полимерных пленок применяют порошок металлического серебра, оксида олова, гигроскопические соли (хлориды кальция, лития, магния), сажу. Удельное поверхностное электрическое сопротивление пленок из ПВХ, ПС, ПЭ, ПК и др. порядка р = 1012 ...1017Ом. При поверхностной обработке пленок из ПВХ составом из сажи, даоксилфталата и метилэтилкетона (соответственно около 25; 30 и 40 частей по массе с добавками образуется электропроводная поверхность с рs = 20 Ом.
Полимерные материалы вообще и в частности пленки, содержащие наполнитель, проявляют электропроводные свойства только при образовании в полимере частичками наполнителя цепочечных структур. В качестве наполнителя применяют порошки оксидов алюминия, железа, меди, а также графита, сажи. При введении различного количества токопроводной добавки в полимер, из которого изготовляют пленку, значительно и по-разному меняется удельное сопротивление. Так, удельное сопротивление полиэтиленовой пленки рv = 1012…1013 Ом*см; после добавления 10; 20 и 40 % канальной сажи соответственно рv = 2*1016; 1,8*106 и 6,1*102 Ом*см.
В зависимости от удельного объемного сопротивления электропроводные пленки применяют для различных целей. Пленки с рv = 103..1 Ом*см применяют в качестве электронагревательных элементов различных приборов (при небольшом электрическом напряжении такие пленки нагреваются до температуры не выше температуры размягчения пластмассы), пленки с рv = 106 ...103 Ом*см -- в качестве изделий, в которых не должно накапливаться статическое электричество (пленочная облицовка салонов самолетов, транспорта, особо точных приборов и др); пленки с рц = 1...10 Ом-см -- в печатных электрических схемах, волноводах.
Из пленок с рv = 1012…1013 Ом*см м изготовляют наружную изоляцию трубопроводов для районов Севера. При пропускании по ней слабого электрического тока она нагревается и предотвращает замерзание транспортируемых по трубам жидких нефтепродуктов.
Пленки с большим количеством солей тяжелых металлов и комплексным наполнителем применяют в качестве экрана направленных электромагнитных излучений, для защиты электронных приборов от помех.
Липкие ленты на основе полимерных пленок. В качестве основы для таких лент используют ПЭ, ПВХ, ПЭТФ и др. Липкий слой, наносимый на обработанную в коронном разряде сторону пленки, состоит из смеси каучуков различных молекулярных масс, эфиров полиакриловых кислот, поливиниловых эфиров, поливинилацеталей, канифоли и др.
Толщина пленочной основы .может быть различной, но чаще составляет 20...30 мкм; толщина клеевого слоя 10...15 мкм. Температура эксплуатации ленты на основе ПЭ от -40 до +50 °С. Клеевой слой не должен отслаиваться при разматывании рулона, не должен оказывать коррозионного воздействия на скрепляемые детали (например, трубопровода). Липкая лента в рулоне должна быть равнотолщинной, плотно намотанной. При хранении рулоны должны находиться в горизонтальном положении.
«Силовые» элементы на основе высокопрочных пленок. Один из основных силовых элементов плоских приводных ремней, используемых в приводах различных машин и оборудования, -- высокопрочная (ориентированная) пленка из полиамида типа ПА 6. Толщина такой пленки 0,25...1,00 мм, ширина 150 мм, прочность при разрыве 350 МПа, модуль упругости 8 ГПа, относительное удлинение при разрыве 20 %, термическая усадка -- не более 5 %.
Плоские приводные ремни изготовляют из пленок следующим образом. Ориентированную и термообработанную пленку из ПА 6 разрезают на узкие полосы шириной 5...20 мм. Эти полосы располагают в несколько рядов, причем каждый последующий ряд смещают относительно предыдущего на половину толщины полосы. Набирают нужное число рядов, соответствующее толщине приводного ремня; число полос в одном ряду зависят от ширины изделия. Далее набор полос обклеивают с двух сторон капроновой тканью, а затем резиной. Нужную длину приводного ремня отрезают от всей ленты, а концы склеивают, срезав их под углом 1...5°С к горизоитали для увеличения площади поверхности контакта срезанных концов. Полученные плоские приводные ремни на основе полимерных ориентированных пленок бесшумны в эксплуатации, универсальны по длине и ширине, имеют небольшое тепловыделение при многократных перегибах и др.
Силовые элементы типа «пассика» из монопленки (для приводов магнитофонов) изготовляют из пленки аморфного изотропного ПЭТФ. Изготовление пассиков любых типоразмеров чрезвычайно просто. Из плоской пленочной заготовки вырубают кольцо; это кольцо растягивают при нагревании и вращении двух валков. При этом внутренний и внешний диаметры значительно увеличиваются. Ширина и толщина у пассика меньше, чем уисходной заготовки, в 2...5 раз (в зависимости от требуемой прочности пассика). Прочность при разрыве пассика может достигать 300 МПа, относительное удлинение при разрыве -- 5 %, число двойных перегибов - более 50 000; усадка незначительная.
С развитием механизации упаковки изделий (типа пакетов, газет, тюков и др.) стали применять обвязочную тисненую высокопрочную ленту (толстую пленку) из ПП и ПЭ. Для повышения прочности исходную ленточную заготовку подвергают ориентационной выдержке и последующему тиснению (нанесение рельефного рисунка) поверхности для увеличения сцепления концов. Прочность при разрыве лент толщиной 200...500 мкм может достигать 300 МПа, относительное удлинение при разрыве 10...20 %. Ленты поставляют в комплекте с установкой для автоматической упаковки. В связи с этим толщина и ширина ленты должны строго соответствовать техническим характеристикам установки.
Фибриллизованную синтетическую обвязочную веревку, предназначенную для штучной ручной упаковки товаров широкого потребления изготовляют из полиэтиленовых лент. Для упрочнения ленты подвергают ориентационной вытяжке, при которой происходит микрорасщепление их по ширине (фибриллизация). Прочность при разрыве таких изделий может достигать 400 МПа- Концы веревки необходимо многократно завязывать узлами, так как волокна гладкие и имеют очень малый коэффициент трения.
Многослойные пленочные изделия. Плоские изделия, обладающие большой прочностью на растрескивание, ударной прочностью при высокой скорости приложения нагрузки и др., изготовляют из нескольких слоев пленок одного и того же полимера (ПЭТФ, ПА 6, ПА 12 и др.), их склеиванием или сваркой (прессованием).
Изделия типа тел вращения (трубы) изготовляют наматыванием пленок с промежуточным клеевым слоем и последующим отверждением клея.
Изделия из дублированных и многослойных пленок полимеров с высокой и низкой температурами плавления (например, пленка ПЭ -- ПЭТФ -- ПЭ) получают плотной намоткой на заготовку с последующим оплавлением легкоплавкого слоя (полиэтилена) для получения монолитного соединения. Прочность при разрыве и модуль упругости таких изделий лишь на 10... 15 % меньше, чем у составляющих элементов, но такие показатели, как хрупкость, сопротивление раздиру, ударная прочность и др. значительно выше.
Полимерные пленки в качестве разделительных мембран. Разделительные мембраны из монолитных или пористых полимерных пленок используют для разделения компонентов газовых смесей, растворов, коллоидных систем, тонких взвесей; такие мембраны весьма перспективны в промышленных методах разделения. Для разделения смесей газов используют монолитные мембраны без заметных пор. Сам процесс разделения основан на таком свойстве полимерной пленки, как газопроницаемость. Мембраны для разделения газовых смесей изготовляют из весьма ограниченного числа синтетических полимеров, обладающих высокой газопроницаемостью. Так, плоские пленочные мембраны выполняют из фторированного сополимера этилена с пропиленом (толщина 5=10 мкм), армированного тканью кремнийорганического каучука (8 = 50 мкм ), поливинилтриметилсилана. С помощью мембраны, полученной из последнего полимера, удается повысить долю кислорода в воздухе с 21 до 35...40 %.
Для разделения жидких смесей, например растворов низкомолекулярных веществ, применяют пористые полимерные пленки с порами размером 5*10-4 … 1*10-2 мкм. Пленки таких мембран изготовляют из ацетата целлюлозы, ароматических полиамидов и других полимеров, обладающих относительно высокой жесткостью цепи макромолекул и умеренной гидрофильностью. Такие мембраны применяют, например, для опреснения морской и соленой воды. С их помощью удается удалять из солевого раствора до 98 % солей, причем ионы тяжелых металлов задерживаются на 100 %. Селективность разделительных мембран для жидкостей по NаС1 (поваренная соль) может достигать 90...95 %. Это самый экономичный и экологически чистый способ разделения жидких смесей.
Для разделения растворов высокомолекулярных веществ (а также коллоидных систем) и тонкодисперсных взвесей применяют пористые пленки с порами размером соответственно 3*10-3 ...1 и 5*10-2 ...20 мкм. Для этих целей используют пленки из эфиров целлюлозы; разрабатывают способы получения пор нужных размеров в пленках традиционных полимеров (ПЭТФ, ПТФЭ и др.). Мембраны используют для разделения сточных вод производств, извлечения солей драгоценных металлов и др. Кроме плоских мембран (дисков) используют также трубчатые и др.
Подобные документы
Социокультурная роль, внешний вид и физико-механические характеристики полимеров. Важнейшие свойства биополимеров и их функции. Маркировка изделий. Характеристика российского рынка изделий из полимеров. Динамика развития рынка пленок, труб и листов.
презентация [338,0 K], добавлен 13.12.2013Методы переработки термопластичных полимеров. Характеристика полимеров, перерабатываемых методом экструзии. Основные параметры процесса экструзии. Режимы экструзии рукавных пленок. Раздув, вытяжка, охлаждение заготовки-рукава. Многослойная экструзия.
курсовая работа [1,4 M], добавлен 25.04.2012Методы физической, химической модификации пленок. Производство химически модифицированных пленок. Физическая сущность метода каландрования. Технология производства поливинилхлоридных пленок, производимых деформационным способом. Метод прокатки, строгания.
курсовая работа [806,1 K], добавлен 04.01.2010Общие свойства полимерных пленок. Технологический процесс производства рукавной пленки из полиэтилена низкой плотности. Расчет коэффициента геометрической формы головки и производительности одношнекового однозаходного экструдера для производства пленки.
курсовая работа [1,3 M], добавлен 04.06.2014Изучение истории создания и теплофизических свойств полимеров и полимерных пленок. Экспериментальные методы исследования тепловодности, температуропроводности и теплоемкости. Особенности применения полимерных пленок в различных областях производства.
курсовая работа [1,3 M], добавлен 08.12.2013Методы производства полиэтилена низкого давления; выбор и обоснование технологии проектируемого производства. Характеристика продукции, ее применение; расчет и подбор оборудования; автоматизация процессов. Экологическая и экономическая оценка проекта.
дипломная работа [209,2 K], добавлен 12.03.2011Применение химических или физико-химических процессов переработки природных и синтетических высокомолекулярных соединений (полимеров) при производстве химических волокон. Полиамидные и полиэфирные волокна. Формования комплексных нитей из расплава.
дипломная работа [1,5 M], добавлен 20.11.2010Производство, строение и синтез полиимидных пленок. Диэлектрические и электрические свойства, влияние повышенной температуры и радиационного облучения. Энергетические характеристики разрушения изоляционных материалов под воздействием частичных разрядов.
дипломная работа [3,6 M], добавлен 18.10.2011Химическая формула и вид молекулы полиэтилена. Характеристика материала и изделия по назначению. Толщина пленки различных марок. Усадка и предельные отклонения. Технологическая схема установки для производства пленки рукавным методом с приемкой вверх.
реферат [847,2 K], добавлен 10.02.2014Общая характеристика и классификация полимеров и полимерных материалов. Технологические особенности переработки полимеров, необходимые процессы для создания нужной структуры материала. Технологии переработки полимеров, находящихся в твердом состоянии.
контрольная работа [1,3 M], добавлен 01.10.2010