Производство химических волокон
Применение химических или физико-химических процессов переработки природных и синтетических высокомолекулярных соединений (полимеров) при производстве химических волокон. Полиамидные и полиэфирные волокна. Формования комплексных нитей из расплава.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 20.11.2010 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
55
Содержание
- Введение
- 1. Химические волокна
- 1.2 Полиамидные и полиэфирные волокна
- 1.2 Полиамидные волокна
- 1.3 Полиэфирные волокна
- 2. Производство капроновых нитей и волокон
- 2.1 Синтез капролактама
- 2.2 Синтез поликапроамида
- 3. Формование волокон. Теоретическая часть
- 3.1 Формования комплексных нитей из расплава
- 3.2 Устройство для намотки сформованной комплексной нити
- 3.3 Параметры процесса формования
- 3.4 Формование капроновых нитей
- 3.5 Текстильная обработка капроновых нитей
- 3.5.1 Вытяжка нитей
- 3.5.2 Крутка нитей
- 3.5.3 Отделка нитей
- 3.5.4 Сушка и кондиционирование нитей
- 3.5.5 Перемотка нитей
- 3.5.6 Сортировка нитей
- 4. Примеры технологических расчетов
- Заключение
- Список литературы
Введение
Впервые мысль о том, что человеком может быть создан процесс, подобный процессу получения натурального шелка, при котором в организме гусеницы шелкопряда вырабатывается вязкая жидкость, затвердевающая на воздухе с образованием тонкой прочной нити, была высказана французским ученым Р. Реомюром еще в 1734 году. Однако прошло около полутора столетий, прежде чем эта идея нашла свое практическое воплощение.
Химическими волокнами называют волокна, при получении которых используют химические или физико-химические процессы переработки природных и синтетических высокомолекулярных соединений (полимеров). В зависимости от происхождения полимера химические волокна разделяют на две основные группы: искусственные волокна (если используемый полимер имеет природное происхождение) и синтетические (если волокнообразующий полимер получают в результате химического синтеза из низкомолекулярных соединений-мономеров).
В свою очередь, особенности химического строения волокнообразующих полимеров позволяют разделить химические волокна на два основных класса карбоцепные волокна и гетероцепные волокна.
Гетероцепные волокна. В эту группу включены все виды волокон, полученных из различных полиамидов. Такими волокнами являются поликапроамидные, полигексаметиленадипамидные, полиэнантоамидные, полиундеканамидные и т.д.
Гетероцепные волокна - основной класс синтетических волокон, получивший наибольшее распространение. В промышленных масштабах вырабатываются в основном два вида гетероцепных волокон - полиамидные и полиэфирные - и в небольших количествах высокоэластичное полиуретановое волокно.
Наибольшее распространение полиамидных волокон объясняется присущими им цепными свойствами, широкой сырьевой базой для их производства. Так же в значительной мере тем, что методы получение исходных материалов, а так же процессы формования и последующей обработки разработаны для полиамидных волокон раньше и более детально, чем для других гетероцепных волокон.
Карбоцепные волокна. К этому классу синтетических волокон относят волокна, макромолекулы которых содержат в основной цепи только атомы углерода.
Вырабатываемые карбоцепные волокна подразделяются на полиакрилонитрильные, поливинилхлоридные, поливинилспиртовые, полиолефиновые и фторсодержащие.
Полиакрилонитрильные волокна (нитрон, орлон и др.) получают из полимера и сополимеров нитрила акриловой кислоты.
Поливинилхлоридные волокна вырабатывают из полимеров и сополимеров ВХ (волокно типа ровиль) и винилденхлорида (волокно совиден, саран и др.), а также из хлорированного ПВХ (волокно хлорин).
Поливинилспиртовы, полиолефиновые и фторсодержащие волокна получают соответственно из поливинилового спирта (волокно винол, куралон), полиолефинов (полиэтиленовые и полипропиленовые волокна) и фторсодержащих полимеров (волокно тефлон, фторлон).
Важные преимущества химических волокон перед волокнами природными - широкая сырьевая база, высокая рентабельность производства и его независимость от климатических условий. Многие химические волокна обладают также лучшими механическими свойствами (прочностью, эластичностью, износостойкостью) и меньшей сминаемостью. Недостаток некоторых химических волокон, например полиакрилонитрильных, полиэфирных, - низкая гигроскопичность.
1. Химические волокна
1.2 Полиамидные и полиэфирные волокна
Волокна используют главным образом для изготовления одежды. Кроме этого, значительное количество их расходуется на изготовление всевозможных технических тканей и изделий, высокопрочной кордной ткани, фильтровальных тканей, рыболовных снастей, веревок, канатов и тд. Натуральных волокон не достаточно для удовлетворения все возрастающих потребностей населения в текстильных товарах, а для технических изделий натуральные волокна во многих случаях непригодны, т.к не обладают необходимым комплексом особых свойств (высокой термостойкостью, прочностью, хемостойкостью, биостойкостью и т.д.). Кроме того, производство натуральных волокон является очень трудоемким и дорогостоящим. Поэтому возникла необходимость в разработке промышленных способов получения волокон искусственным путем.
Производство химических волокон ввиду их высокой рентабельностью и огромной сырьевой базы растет очень интенсивно. Быстрому росту производства химических волокон в большой степени способствует их высокие характеристики.
Наиболее быстрыми темпами развития производства синтетических волокон - полиамидных (капрон, анид), полиэфирных (лавсан), что объясняет их ценными свойствами (высокая прочность в эластичности, устойчивость к многократным деформациям и т.д.) полиамидные и полиэфирные волокна выпускаются в виде текстильной и высокопрочной кордных нитей, волокна и мононитей различной линейной плотности. Особенно большое значение имеют синтетические волокна для производства некоторых видов технических изделий. Например, корд для авиационных и тяжелых грузовых пневматических шин, электроизоляционные материалы, фильтровальные ткани для химической промышленности и т.д. Так же высокопрочные нити или ткани из капрона и нейлона применяются для изготовления каркаса автомобильных и авиационных резиновых шин. Такие шины обладают повышенной ходимостью и надежностью.
1.2 Полиамидные волокна
Полиамидными волокнами называются синтетические волокна, получаемые из линейных полимеров, макромолекулы которых содержат амидные группы . Широкое промышеленное развитие получили полиамидные волокна, изготовливаемые из алифатических полиамидов. Макромолекулы этих полиамидов, наряду с амидными группами, содержат метиленовые группы .
Поликапроамидные волокна формуют из поликапроамида - полимера, полимера синтезированного из капролактама. Эти волокна выпускаются в разных странах под различными названиями, например "капрон" (СССР), "дедерон" (Германия), "найлон 6" (США).
Поликапроамид представляет собой твердый белый полупрозрачный продукт с ММ 15000 - 25000. При повышенной температуре в присутсвии кислорода поликапроамид подвергается деструкции.
Полигексаметиленадипамидные волокна ("анид" (СССР), "найлон 6,6" (США) и др.), . Этот полимер получают из соли АГ:
Полиэнатоамидные волокна (энант (СССР), "найлон 7" (США)) формируют из полиэнантоамида - полимера, полученного поликонденсацией щ - аминоэнантовой кислоты.
Полиундеканамидные волокна (ундекан, найлон 11, киана), вырабатываемые из полиундеканамида - полиамида, синтезированного из
щ - аминоундекановой кислоты.
1.3 Полиэфирные волокна
Название данного вида синтетического волокна определено химической природой полимера - сложного полиэфира, из которого получают эти волокна. К сложным полиэфирам относятся высокомолекулярные вещества с общей формулой , макромолекулы которых состоят из элементарных звеньев, соединенных между собой сложноэфирной связью . Этот класс включает как натуральные (янтарь, шелк и др.) синтетические полиэфиры. Полиэфирные волокна на основе полиэтилентерефталата (ПЭТ) выпускаются под названиями "лавсан" (СССР), "дакрон" (США), "тетерон" (Япония), "териталь" (Испания).
ПЭТ представляет собой твердое белое непрозрачное вещество, способное плавится при нагревании. При быстром охлаждении расплава полимера образуется твердый прозрачный продукт, кристаллизующийся при температуре выше 80єС. Полимер стоек во многих органических растворителях (ацетоне, этилацетате, ксилоле, диоксане и т.д.), но растворяется в фенолах и их хлорзамещенных. В щелочах и концентрированных растворах аммиака полимер разрушается.
Химические волокна имеют в основном текстильное назначение и должны характеризоваться очень большим отношением длины к диаметру (>10 000), а также своеобразными механич. свойствами:
1) высокой прочностью (до 1 Гн/м2 (100 кгс/мм2));
2) большим относительным удлинением (>5%);
3) эластичностью и быстрым исчезновением деформаций, возникающих под воздействием внешних сил;
4) минимальными пластическими (остаточными) деформациями после снятия нагрузки;
5) максимальной устойчивостью к многократным и знакопеременным нагрузкам. Поэтому для производства химических волокон в качестве сырья используют лишь волокнообразующие полимеры, которые состоят из гибких макромолекул линейной или слаборазветвленной формы, обладающих большой молекулярной когезией. Молекулярная масса этих полимеров должна быть более 15 000, а молекулярно-массовое распределение достаточно узким. Кроме того, эти полимеры должны плавиться без разложения, растворяться в доступных растворителях или переводиться в вязкотекучее состояние какими-либо другими способами.
Таблица 1. Сравнительная характеристика физико-механических свойств химических и натуральных волокон
Волокна |
Плотность, кг/м3 |
Равновесная влажность,% |
Относительная разрывная нагрузка, МПа |
Относительное удлинение при разрыве,% |
Устойчивость к многократным изгибам, число циклов |
Устойчивость истиранию (при нагрузке 3кПа) |
Тпл, єС |
|
Капрон |
||||||||
Обычная нить |
1140 |
3.5-3,9 |
46-51 |
20-32 |
25000-28000 |
1500-2170 |
196-216 |
|
Прочная нить |
1140 |
69-85.5 |
15-16 |
16000-30000 |
1400-2230 |
196-216 |
||
Найлон |
||||||||
Обычная нить |
1140 |
3,3-3,8 |
39-46 |
23-32 |
11000-14000 |
1000-1040 |
235-255 |
|
Прочная нить |
1140 |
74-79 |
14-16 |
27700-34000 |
3600-4100 |
235-255 |
||
Лавсан |
||||||||
Обычная нить |
1380 |
0.4-0,5 |
48-62 |
15-20 |
9000-12000 |
1250-1360 |
235-255 |
|
Упрочненная нить |
1380 |
0,4-0,5 |
69-83 |
9-12 |
7200-14000 |
450-680 |
235-255 |
|
Волокно |
1380 |
41-55 |
25-40 |
21000-30000 |
- |
235-255 |
||
Хлопок |
1520 |
7,5-9.0 |
40-60 |
7-8 |
- |
- |
- |
|
Шерсть |
1320 |
13-15 |
15-20 |
30-40 |
- |
- |
- |
|
Шелк натуральный |
1320 |
11 |
33-42 |
20-25 |
- |
- |
- |
2. Производство капроновых нитей и волокон
Процесс получения капроновых нитей и волокон хорошо изучен и непрерывно развивается. Ассортимент нитей, рассчитанный на удовлетворение потребностей различных отраслей народного хозяйства, включает нити текстильного и технологического назначения.
Существует три способа производства капроновых нитей и волокон:
1) Периодический способ - периодический или непрерывный синтез полимера, периодические процессы экстракции и сушки крошки (гранул), формование комплексных нитей.
2) Непрерывный способ с получением крошки - непрерывный синтез полимера, экстракция и сушка крошки, формование комплексных нитей.
Непрерывный способ с формованием комплексных нитей непосредственно из расплава (непрерывный синтез полимера и формование комплексных нитей непосредственно из расплава).
Первые два способа производства капроновых нитей состоят из одинаковых, технологических стадий, но второй способ выгодно отличается от первого применением непрерывных процессов синтеза полимера, экстракции и сушки крошки, что значительно улучшает технологию производства и повышает качество полимера и нитей.
Третий способ предусматривает совмещение в едином технологическом процессе непрерывного способа получения полимера с формованием нитей из расплава без повторного плавления полимера, при этом коренным образом изменяется технология получения нитей. Непрерывный процесс осуществлен в полном объеме при получении волокон и находит все большее применение в производстве текстильных нитей.
2.1 Синтез капролактама
Капролактам может быть синтезирован из фенола, бензола, анилина, а также из н-бутана, фурфурола, ацетилена, этиленоксида и дивинила.
Рассмотрим пример получения капролактама из фенола:
Получение капролактама из фенола.
При гидрировании фенола (135-160°С) в присутствии никелевого катализатора образуется циклогексанол:
Дегидрированием циклогексанола получают кетон-циклогексанон:
Реакция дегидрирования протекает при атмосферном давлении и температуре 400-450°С в присутствии железо?цинкового катализатора. При взаимодействии циклогексанона с гидроксиламином образуется оксим циклогексанона (циклогексаноксим). Этот процесс называется оксимированием:
Оксимирование проводится при 20°С. В конце процесса при нейтрализации выделяющейся серной кислоты аммиаком температура реакционной массы самопроизвольно повышается до 90°С.
При действии концентрированной серной кислоты оксим циклогексанона изомеризуется в лактам е?аминокапроновой кислоты (изоксим циклогексанона) происходит перегруппировка атомов в молекуле циклогексаноноксима:
Полученный таким способом капролактам подвергается очистке от примесей экстракцией органическими растворителями (например, трихлорэтиленом) и многократной дистилляции под вакуумом.
Из 1 кг фенола получают 0,65 кг капролактама.
Качество капролактама, применяемого для производства волокна капрон, характеризуется следующими основными показателями:
Внешний вид Белые кристаллы
Молекулярная масса 113,16
Температура, єС
кристаллизации 68,8-69,0
кипения 262
Перманганатное число
3% -ного водного раствора, с 5000-10000
Содержание летучих оснований
мэкв */кг 0,0-0,6
Окраска 50% -ного водного раствора,
ед. платиновокобальтовой шкалы,
не более 5,0
Содержание,%, не более
Циклогексаноноксима 0,002
Железа 0,00002
Кислотность мэкв/кг, не более 0,2
Щелочность мэкв/кг, не более 0,05
Капролактам поступает на заводы синтетического волокна в полиэтиленовых мешках или в бумажных мешках, помещенных в мешки из прорезиненной ткани. Он транспортируется также в расплавленном состоянии в специальных цистернах, покрытых термоизоляцией и снабженных змеевиком для парового обогрева. При транспортировании расплава капролактама достигается значительный экономический эффект, так как отпадает операция плавления капролактама на заводе - потребителе и исключается загрязнение продукта. Расплавленный лактам может храниться в обогреваемых и изолированных емкостях.
2.2 Синтез поликапроамида
Процесс полимеризации капролактама - превращение циклов в линейные полимеры - называется полиамидированием. Он протекает только при сравнительно высокой температуре и повышенном, нормальном или пониженном давлении в присутствии активатора.
Активаторами могут служить органические или минеральные кислоты, а также вода, соль АГ, аминокапроновая кислота или другие соединения, которые в условиях процесса полиамидирования капролактама способны претерпевать химические превращения с выделением воды.
Кроме перечисленных соединений очень эффективными активаторами являются щелочи и металлический натрий, которые в десятки и сотни, раз сокращают продолжительность реакции полиамидирования. В производственных условиях в качестве активатора процесса полиамидирования капролактама чаще всего применяется вода.
Механизм реакции образования поликапроамида зависит от характера применяемого активатора. В присутствии воды реакция полиамидирования капролактама протекает ступенчато по следующей схеме:
На начальной стадии процесса при взаимодействии капролактама с водой образуется аминокапроновая кислота:
Аминокапроновая кислота соединяется с молекулой капролактама и образуется димер:
Димер взаимодействует еще с одной молекулой капролактама и образуется тример:
Присоединение молекул капролактама происходит до образования поликапроамида:
Реакция полиамидирования капролактама является равновесной и обратимой:
В связи с этим капролактам не полностью превращается в поликапроамид и в полимере всегда содержится некоторое количество мономера и других низкомолекулярных водорастворимых соединений (димера, тримера и капролактама).
Количество и состав низкомолекулярной фракции, содержащейся в поликапроамиде (рис.1), зависит от температурных условий проведения процесса. Например, при 180°С количество низкомолекулярных фракций, состоящих из димера и тримера, достигает 2-3%, а при 250-270°С - уже 10-12%, причем примерно 2/3 составляет мономер и 1/3 - димеры и тримеры капролактама. Низкомолекулярные водорастворимые соединения могут быть удалены из поликапрамида экстракцией горячей водой или отгонкой под вакуумом из расплавленного полимера.
График 1 - Зависимость содержания низкомолекулярных соединений в поликапроамиде от температуры полиамидирования капролактама.
К поликапроамиду, предназначенному для переработки в волокно капрон, предъявляются определенные требования. В частности, он должен иметь достаточно большую молекулярную массу (не ниже 11000) и быть монолитным, т.е. не содержать большого числа пустот и раковин. Кроме того, в полимере не должно быть продуктов окисления (поликапроамид белого цвета).
Важным показателем способности поликапроамида к волокнообразованию является молекулярная масса или степень полиамидирования.
Заданная молекулярная масса полимера может быть достигнута регулированием условий полиамидирования - температуры, продолжительности процесса и содержания регулятора (стабилизатора). Регуляторами молекулярной массы полиамидов являются вещества, способные при синтезе полимера взаимодействовать с одной из концевых групп растущей цепи макромолекулы, прекращая ее рост. Чаще всего в качестве регулятора применяют уксусную, себациновую или адипиновую кислоты. Для этих целей используют также уксуснокислый н-бутиламин - регулятор двойного действия, способный блокировать обе функциональные группы макромолекулы полиамида.
Изменяя количество добавляемого регулятора, можно получить полимер с желаемой молекулярной массой. Чем больше регулятора добавлено к мономеру, тем меньше молекулярная масса полимера.
Волокнообразующая способность поликапроамида, зависит от таких показателей полимера, как монолитность и содержание продуктов окисления. Наличие в расплавленном полимере пузырьков газообразных продуктов (чаще всего паров воды) является причиной обрывности нити при формовании и вытягивании. К обрывности приводит также частичное (наличие темных точек) или сплошное окисление поликапроамида (полимер имеет коричневый оттенок). Кроме того, при использовании такого полимера на нитях появляются наплывы и невытянутые участки.
Окисление поликапроамида может быть предотвращено при соответствующих усилиях полиамидирования капролактама, обеспечивающих полную изоляцию реакционной массы от воздействия кислорода воздуха.
3. Формование волокон. Теоретическая часть
Формование волокон. Процесс заключается в продавливании прядильного раствора (расплава) через мелкие отверстия фильеры в среду, вызывающую затвердевание полимера в виде тонких волокон. В зависимости от назначения и толщины формуемого волокна количество отверстий в фильере составляет:
1) 1?4 ? для моноволокна;
2) 10?60 ? для текстильных нитей;
3) 800?1200 ? для кордных нитей;
4) 3000?80000 ? для штапельного волокна. При формовании химического волокна из расплава полимера полиамидных волокон средой, вызывающей затвердевание полимера, служит холодный воздух. Если формование проводят из растворара полимера в летучем растворителе (напр., ацетатных волокон), такой средой является горячий воздух, в котором растворитель испаряется ("сухой" способ формования). При формовании из раствора полимера в нелетучем растворителе (напр., вискозных волокон) для осаждения полимера и формования волокна служит раствор, содержащий различные реагенты, так называемая осадительная ванна ("мокрый" способ формования).
Скорость формования зависит от толщины и назначения волокон, а также от метода формования: при формовании из расплава - 10-20 м/сек, из раствора по "сухому" способу - 5-10 м/сек, по "мокрому" способу - 0,5-2 м/сек.
Прядильный раствор (расплав) в процессе превращения струек вязкой жидкости в волокна одновременно вытягивается (фильерная вытяжка), в некоторых случаях волокно дополнительно вытягивается в прядильной шахте (осадительной ванне) или непосредственно после выхода с прядильной машины в пластичном состоянии (пластификационная вытяжка). Вытягивание волокон в пластичном состоянии (ориентирование) приводит к увеличению их прочности. После формования жгуты, содержащие от нескольких до 360000 волокон, направляют на отделку или дополнительно вытягивают в холодном или нагретом (до 100-160°С) виде в 3?10 раз. Дополнительное вытягивание значительно повышает прочность волокон при растяжении и снижает их относительное удлинение. Одновременно улучшаются многие ценные текстильные свойства волокон (увеличивается модуль упругости, снижается доля пластичной деформации, растет устойчивость при многократных деформациях). Условия формования (скорость затвердевания полимера, равномерность его выделения из раствора или расплава, натяжение и степень вытягивания) определяют качество формуемых волокон и их физико-механические свойства.
Уравнения, описывающие процессы течения любых жидкостей, являются результатом применения к движению этих жидкостей основных физических принципов, сформулированных в законах сохранения момента количества движения, энергии и массы.
Эти законы формулируются следующим образом: производительный элемент, выделенный внутри занятого движущейся жидкостью объема и ограниченный воображаемой замкнутой поверхностью, представляет собой термодинамическую замкнутую систему (т.е. такую систему, которая может обмениваться с окружающей средой только энергией).
Из закона сохранения материи следует, что масса, находящаяся в замкнутой системе, остается постоянной. Математически этот закон выражается следующим образом:
где t - время, - расхождение вектора скорости х.
В соответствии со вторым законом Ньютона скорость изменения количества движения элемента жидкости равна сумме всех действующих на него сил:
где g - главный вектор массовых сил, действующих на жидкость в рассматриваемой точке.
Однако, учитывая, что при течении полимеров ввиду их высокой вязкости силы трения во многом раз превышают инерционные и массовые силы, членами, учитывающими влияние этих сил, пренебрегают. С учетом этого упростим уравнение и запишем в виде:
- уравнение Стокса.
Из закона сохранения энергии следует уравнение теплового баланса:
где Сх - удельная теплоемкость жидкости при постоянном объеме.
q - вектор теплового потока,
k - коэффициент теплопроводности жидкости.
Уравнения сохранения массы (уравнения неразрывности) в прямоугольной системе координат (x,y,z):
Уравнения сохранения массы в цилиндрических координатах (r,?,z):
Уравнения движения в прямоугольной системе координат:
Уравнения движения в цилиндрической системе координат (r,?,z):
В компонентах тензора напряжений первый индекс указывает направление нормали к площадке, на которой действует данное напряжение, второй индекс - направление действия напряжения.
В силу симметрии тензора напряжений справедливы следующие равенства (закон парности касательных напряжений):
Приведенные выше уравнения движения не описывают связи между величиной напряжения сдвига и соответствующими скоростей деформации. Для того чтобы полностью охарактеризовать поведение деформирующего полимера, необходимо дополнить это уравнение реологическим уравнением состояния, связывающим компоненты тензора скоростей деформации с компонентами тензора напряжений.
Из реологического уравнения, которое относится к случаю установившегося одномерного течения.
Реологическое уравнение состояния, учитывающее релаксационный характер развития высокоэластической деформации и справедливо при малых обратных деформациях, имеет вид:
где
Заметим, что уравнения состояния следует связывать для определенного интервала времени не с какой-либо определенной точкой пространсва с координатами хi, а с одним и тем же элементом среды, находившимся в момент времени t в точке пространства с координатами хi.
В последнее время так же популярна формула реологического состояния для упруговязской среды предложенная Уайтом.
где pI - изотропия составляющая тензора напряжений.
Функционал G можно представить в виде интегрального разложения:
Реологические свойства среды определяются соответствующим выбором интегральных ядер Ф и Ш. Первое ядро Ф связывает релаксационный модуль линейной вязкоэластичности и ограничивает область малых деформация.
Используя некоторое мгновенное состояние среды как начало отсчета, можно выразить конкретную деформацию среды при помощи разложения в ряд Тейлора:
где - e (s) =e (t - ц) - тензор деформаций, определенных в соответствии с мерой Финглера:
Простейшая форма реологического уравнения, учитывающая аномалию вязкости:
где I2 - квадратичный инвариант тензра скоростей деформации,
м0 - значение эффективной вязкости при I2=1.
Значение квадратичного инварианта в прямоугольных координатах:
Значение квадратичного инварианта в цилиндрических координатах:
в случае простого сдвига реологическое уравнение примет вид:
Уравнение энергетического баланса, составленное для установившегося режима в предположении, что все теплофизические характеристики не зависят от температуры, имеет вид:
где с - плотность расплава, Сp - теплоемкость расплава, km - коэффициент теплопроводности расплава.
Для построения модели, допускающей аналитическое решение, сделаем следующие допущения:
Течение в направлении оси y существует только в непосредственной близости к стенкам канала. В остальной части сечения канала течение в направлении оси y отсутствует .
Размеры канала по всей дине постоянны, следовательно, значения хx и хz не зависят от z.
Температурный градиент в поперечном направлении из-за циркуляционного течения пренебрежимо мал по сравнению с продольным градиентом. Таким образом,
Если уравнение энергетического баланса будем считать, что теплопередача за счет теплопроводности за счет вдоль оси канала пренебрежимо мала, то уравнение энергетического баланса сведется к следующему виду:
3.1 Формования комплексных нитей из расплава
Принцип формования комплексных нитей из расплава заключается в продавливании расплава полимера с помощью дозирующего насоса через тонкие отверстия фильеры. Выходящая из каждого отверстия фильеры струйка расплава полимера, охлаждаясь на воздухе, затвердевает и превращается в элементарную нить. Соединенные в пучок элементарные нити образуют комплексную нить, которая наматывается на бобину.
Фильеры обычно представляют собой короткие капилляры, у которых . Канал фильеры имеет плавный контур, что позволяет придать потоку на входе форму рюмки и свести до минимума искажение формы экструдата, обусловленным эластическим восстановлением.
Рисунок 1 - Схема формования волокна из расплава
С увеличением скорости вытяжки и ориентационного напряжения величина отношения D/D0 быстро уменьшается. Приблизительное выражение для оценки эластичного восстановления струи при наличии вытяжки имеет следующий вид:
где, B=D/D0 - коэффициент восстановления струи осевом усилии,
F = 0, лeff - время релаксации макромолекул расплава полимера ,
м - условно фиксированный динамический коэффициент вязкости,
G - функция, описывающая диссипацию внутренней энергии потока.
По степенному закону Освальда де Виля следует, уравнение сохранения энергии и количества движения следующие:
При рассмотрении энергетического баланса интенсивность теплового потока за счет работы сил вязкого трения, отнесенная к единице обьема (ev) описывается выражением:
Рисунок 2 - Прядильное место: 1 - бункер с крошкой; 2 - кран; 3 - компенсатор; 4 - патрубок; 5 - плавильная решетка; в - паровая рубашка; 7-расплавленный полимер; 8-дозирующий насос; 9 - напорный насос; 10 - насосный блок; 11 - фильерный комплект; 12 - фильера; 13 - обдупоч-ная шахта; 14 - прядильная шахта; 15 - препарационпые шайбы; 16 - прижимной ролик; 17 и 18 - прядильные (приемные) лиски; 19 - ннтераскладчик; 20-шпуля; 21 - фрикционный цилиндр; 22 - теплоизоляция.
где ?
Для формования нитей из расплава характерна вертикальная схема при движении нити сверху вниз. Машина для формования капроновых нитей комплектуется из ряда прядильных мест. Каждое прядильное место (рис.2) состоит из трех основных узлов: узла плавления поликапроамида (крошки) и нитеобразования. Зоны отверждения струек расплава и образования элементарных и комплексной нитей. Устройства для намотки сформованной комплексной нити.
Узел плавления полимера и формования струек расплава состоит из бункера и прядильной головки. В бункере в среде азота хранится запас крошки, необходимый для непрерывной работы в течение 2?6 суток. Бункер ? вертикальный цилиндрический сосуд из алюминия с люком в верхней части для загрузки крошки и коническим днищем со смотровым стеклом для наблюдения за расходом крошки (рис.3). В конической части бункера крепится кран, соединяющий бункер через компенсатор и патрубок с прядильной головкой. К верхней части бункера подведены коммуникации для подачи азота и вакуумирования. После загрузки крошки и герметизации бункера из него удаляют воздух, для чего несколько раз попеременно создают разрежение и наполняют бункер азотом.
Рисунок 3 - Прядильная головка:
1 - патрубок; 2 - плавильная решетка; 3 - дозирующий насос; 4-теплоизоляция; 5-насосный блок; 6 - корпус головки; 7-рубашка; 8 - фнльерный комплект; 9 - гильза термопары; 10-напорный насос.
Прядильная или плавильно-формовочная головка состоит из обогревающей рубашки, плавильной решетки и насосного блока. Плавильная решетка (рис.4) представляет собой плоский, спиралевидный, трубчатый змеевик, обогреваемый изнутри парами ВОТ. Насосный блок (рис.5) снабжен двумя шестеренчатыми насосами ? напорным и дозирующим (Рис.6) и фильерным комплектом, состоящим из фильтрующего приспособления (металлические сетки и кварцевый песок) и фильеры ? массивной пластины с отверстиями диаметром 0, 20?0,25мм (для мононити до 0,5мм). Плавильная решетка и насосный блок находятся в рубашке прядильной головки, обогреваемой парами или жидким ВОТ от общей котельной или при помощи местного электронагревателя.
Рисунок 4 - Плавильная решетка: 1 - корпус; 2-змеевик.
Из бункера крошка самотеком через кран, компенсатор и патрубок поступает на плавильную решетку, где при 265-290°С происходит плавление крошки. Расплавленная смола собирается в коническом пространстве под решеткой, откуда забирается нагнетательным насосом и передается к дозирующему насосу. Дозирующий насос нагнетает расплав под избыточным давлением до 8 МПа, продавливая его через фильтр и фильеру, откуда он выходит в виде тонких равномерных струек (рис.7).
Рисунок 5 - Насосный блок с плавильной решеткой.
Рисунок 6 - Шестеренчатый прядильный (напорный и дозирующий) насос.
Рисунок 7 - Нижняя часть прядильной головки с обдувочной шахтой: 1-торец прядильной головки; 2 - обдувочная шахта; 3 - нить.
Все детали прядильной головки (решетка, блок, насосы), с которыми соприкасается расплавленный полимер, сделаны из легированной жаростойкой стали.
Для избегания окисления полимера при плавлении над плавильной решеткой непрерывно продувается азот, содержащий не более 0,0005% кислорода. Количество подаваемого азота строго контролируется, так как избыток азота даже при указанном содержании кислорода в нем вызывает окисление полимера.
Наряду с описанными применяются также и другие конструкции плавильных решеток и прядильных головок, обогреваемых жидким ВОТ и электричеством.
Рисунок 8 - Схема шнекового расплавителя (экструдера):
1 - цилиндрический сосуд; 2 - загрузочное устройство; 3 - электронагреватели; 4-шнек; 5 - зона плавления; 6 - зона темперирования; 7 - зона выгрузки.
Другим видом плавильного устройства является шнековый расплавитель - экструдер (рис.8), обеспечивающий высокую производительность, минимальную продолжительность пребывания полимера в расплавленном состоянии, что обусловливает минимальное увеличение содержания низкомолекулярных соединений в полимере в процессе формования нитей, интенсивное перемешивание расплава, что очень важно для усреднения его свойств и создает достаточное давление, необходимое для транспортирования расплава к прядильным головкам. Такая плавильная головка обеспечивает работу группы прядильных головок. Нить, сформованная из крошки, расплавляемой с помощью экструдеров (содержащая 0,5 - 0,8% низкомолекулярных соединений и 0,05% влаги) содержит до 2% низкомолекулярных соединений, которые не требуется экстрагировать.
Зона отверждения струек расплава и образования элементарных и комплексной нити состоит из обдувочной и прядильной (сопроводительной) шахт. Выходящие из отверстий фильеры струйки расплава полимера застывают в виде элементарных нитей, где они соединяются в пучок, образуя комплексную нить, которая поступает к приемно-намоточной части машины.
Обдувочная шахта размещается непосредственно под фильерой и служит для создания равномерного потока воздуха в направлении, перпендикулярном движению элементарных нитей. Благодаря этому фиксируется движущийся пучок элементарных нитей (комплексная нить) в определенном положении и исключается возможность колебания их и образования утоненных и утолщенных участков. Для обдувки применяют кондиционированный воздух. Из обдувочной шахты комплексная нить попадает в прядильную шахту, которая служит для ограждения формующейся, нити от влияния случайных воздушных потоков и для дополнительного охлаждения в случае формования технических нитей. С этой целью прядильная шахта снабжена рубашкой для охлаждения холодной водой.
3.2 Устройство для намотки сформованной комплексной нити
Выходящие из прядильной шахты нити касаются увлажняющих и замасливающих устройств (шайб) и, проходя через два прядильных диска, поступают на приемную бобину, которая приводится во вращение фрикционным валом.
Прядильные диски служат для удобства заправки нити и, кроме того, способствуют устойчивому режиму формования нити с постоянной скоростью, предотвращая колебания элементарных нитей в зоне отверждения, вызываемые возвратно-поступательным движением нитераскладчика.
Элементарные нити, выходящие из прядильной головки, практически не содержат влаги; на пути от фильеры к приемной бобине комплексная нить не успевает увлажниться влагой воздуха. Для предотвращения увлажнения нити на прядильной бобине в процессе намотки, что привело бы к сползанию волокна с бобины и порче его, ее увлажняют до поступления на бобину. Кроме того, в отделении намотки комплексных нитей воздух кондиционируется по температуре и влажности (температура 18 - 20°С, относительная влажность 45-55%). Таким образом, специально создается пониженная влажность, что предотвращает набухание нити и способствует сохранению формы намотки.
Одновременно с увлажнением или непосредственно после него на нить наносится замасливатель (препарация). Эта операция необходима для облегчения процесса вытягивания и для снижения трения нити о детали машин при операциях вытяжки и крутки. В последнее время все большее применение находит совмещенный способ увлажнения и замасливания нити при формовании. В этом случае применяют замасливатель в виде водной эмульсии, содержащей 5-20% препарирующих веществ.
3.3 Параметры процесса формования
Основные параметры процесса формования нитей - температура и скорость определяются свойствами полимера, толщиной элементарных и комплексных нитей, назначением и заданными свойствами нитей.
Температура формования нити обычно соответствует температуре плавильной решетки. Последняя изменяется в пределах 265 - 290°С в зависимости от молекулярной массы полимера. Чем она больше, тем выше температура формования нити. Температура рубашки обычно ниже температуры решетки на 2-5°С.
Скорость формования изменяется в пределах 350 - 1500м/мин и зависит от производительности плавильного устройства, вязкости расплава полимера (молекулярной массы полимера и температуры формования), толщины элементарных и комплексной нитей.
Комплексные нити толщиной 29, 93,5 и 187 текс формуют со скоростью от 350 до 600 м/мин, комплексные нити толщиной 15,6; 6,7; 5; 3,3; 1,67 - со скоростью от 700 до 1500 м/мин.
3.4 Формование капроновых нитей
Для формования капроновых нитей различных толщин в производстве используют разные типы машин. Качество сформированной нити в прядильном цехе контролируется по следующим показателям: полновесность бобин. Линейная плотность нити, содержание влаги и замасливателя.
Капроновые нити после формования еще не обладают комплексом свойств, требуемых для дальнейшей текстильной переработки, вследствие большого удлинения при разрыве и малой прочности. Для достижения требуемых свойств они должны быть подвергнуты операциям вытяжки (3 - 6 раз) и крутки.
Свойства готовых нитей (прочность удлинение и др.) зависят от многих факторов. Требования к нитям определяются в основном областью их применения. Как правило, нити, предназначенные для изготовления текстильных изделий, должны обладать большим удлинением (26?34%), чем нити технического назначения (12?16%). Поэтому последние подвергаются более сильному вытягиванию. Способность полиамидных нитей вытягиваться дает возможность получать их с заданными свойствами и удовлетворять требования различных потребителей. Капроновая нить одной и той же толщины может быть получена с различным удлинением в зависимости от назначения.
В этих условиях заправка машины для получения комплексных нитей, удовлетворяющих всем требованиям потребителя (по толщине, прочности, удлинению и т.п.), достаточно сложна. На практике при заправке машины поступают следующим образом. Для нити данной толщины задаются степенью вытяжки, расчетным путем определяют необходимую подачу насоса и частоту его вращения при заданной скорости формования.
Подачу насоса Q (в г/мин) находят по формуле
где ? скорость формования, м/мин, М ? степень вытягивания нити, Т ? линейная плотность нити, текс.
При ориентировочных расчетах поправки, учитывающие содержание влаги и замасливателя в готовой нити, разницу в содержании низкомолекулярных соединений в свежесформованной и готовой нити, а также усадку при отделке и укрутку, можно не принимать во внимание.
Частоту вращения насоса п (об/мин) определяют, пользуясь следующим соотношением:
где с ? плотность расплавленного полимера, q ? производительность насоса за один оборот.
После определения значений Q и п проводят опытное формование нити на нескольких прядильных местах машины. Сформованную нить вытягивают с возрастающей кратностью до получения нити с заданными показателями по прочности и удлинению. Если при этом получается нить с отклонением по линейной плотности, проводится корректировка линейной плотности сформованной нити соответствующим изменением подачи насоса. После этого вновь повторяют опытное формование и вытягивание нити до получения готовой нити с заданными свойствами.
3.5 Текстильная обработка капроновых нитей
Бобины с невытянутыми нитями, поступающие из прядильного цеха, выдерживают в буферной камере или в текстильном цехе в кондиционных условиях (температура 21?23°С, относительная влажность 55?65%) не менее 12ч. Это необходимо для усреднения свойств нити на бобине по слоям паковки и для равномерного распределения влаги и замасливателя. Характер текстильной обработки (степень вытяжки и крутки) капроновых нитей зависит от ее толщины и назначения.
Операций обработки капроновых нитей текстильного назначения:
а) вытяжка;
б) крутка с перемоткой на перфорированные бобины;
в) отделка (удаление низкомолекулярных соединений и фиксация крутки);
г) сушка;
д) кондиционирование;
е) перемотка на конические патроны;
ж) сортировка.
Капроновые нити, предназначенные для производства различных технических изделий, выпускают с завода на конических бобинах и подвергают тем же операциям последующей обработки. Технические (кордные) нити линейной плотности 93,5 и 187текс почти полностью перерабатываются на заводе в кордную ткань. В этом случае в комплекс текстильных операций входят операции крутки кордных нитей и ткачества кордной ткани.
Раньше обработка капроновых нитей (как и других полиамидных нитей) начиналась с операции предварительной крутки. До вытяжки нити в зависимости от толщины сообщалась крутка от 50 до 100 витков/м. Предварительная крутка придает нити компактность, что облегчает процесс ее вытяжки, при этом уменьшается обрывность элементарных и комплексных нитей и повышается равномерность свойств вытянутых нитей. В последние годы операция предварительной крутки исключена на всех заводах капронового волокна в результате более строгого контроля параметров всех технологических процессов, использования исходного сырья более высокой степени чистоты и применения соответствующих замасливающих составов на машинах. При этом значительно сократились производственные площади и уменьшились затраты труда.
3.5.1 Вытяжка нитей
Эта операция осуществляется на крутильно-вытяжных машинах. Из всех операций технологического процесса получения капроновых нитей вытяжка нитей является одной из самых ответственных. Эта операция в значительной степени определяет качество и свойства нитей и как бы контролирует все предыдущие стадии процесса. Это связано с тем, что равномерность вытягивания а, следовательно, и равномерность свойств вытянутой нити зависят от многих факторов: молекулярной массы полимера, содержания низкомолекулярных соединений, условий формования (температура и скорость), влажности количества замасливателя, нанесенного на нить, и др.
Свойства нитей характеризуются не только абсолютными значениями физико-механических показателей, но в значительной степени и равномерностью этих показателей. Колебания температуры и скорости формования, влажности и температуры воздуха в цехе, изменение условий увлажнения и замасливания нити и других параметров технологического процесса приводят к получению нити, отдельные участки которой имеют неодинаковые свойства. Естественно, что при вытягивании такой нити отдельные ее участки будут по-разному вытягиваться, и вследствие этого готовая нить будет обладать неравномерными физико-механическими показателями. Поэтому так важно строгое соблюдение параметров технологического процесса.
Принципиальная схема крутильно-вытяжного механизма машины КВ-300-И показана на (рис.9). Применяется для вытягивания и кручения текстильных нитей линейной плотностью от 1,67 до 15,6текс на кратность вытяжки 2,42 - 4,90 и скорость выпуска вытянутой нити до 750 м/мин. Масса выходной паковки составляет до 400г.
Рисунок 9 - Схема механизма холодного и горячего вытягивания технической нити машины КВ-300-И: 1 - паковка с невытянутым волокном, 2 - натяжные нитепроводники; 3 - нитеводитель; 4 - питающее устройство; 5 - тормозная палочка; 6 - верхний вытяжной диск; 7-нагреватели; 8 - нижний вытяжной диск; 9 - нитепроводник; 10 - копе; 11 - кольцо с бегунком; 12 - веретено.
При вытягивании полиамидных нитей, как и многих других синтетических нитей, получаемых из кристаллизующихся полимеров, наблюдается характерный эффект образования шейки. Для фиксации места образования шейки и повышения равномерности вытягивания нити между питателем и галетой (в поле вытягивания) установлена круглая тормозная палочка из твердого материала (агат, корунд и др.), вокруг которой нить делает один оборот. В результате непрерывного трения нити палочка сильно разогревается (до 80°С). Таким образом, образование шейки на нити (при сходе с палочки) обусловлено притормаживанием и нагреванием ее палочкой. Тормозная палочка применяется, как правило, при получении технических нитей; тонкие нити можно вытягивать и без палочки. Описанный процесс называется холодным вытягиванием.
Капроновые нити технического назначения линейной плотностью 93,5 и 187текс подвергаются комбинированному вытягиванию: холодному и горячему. При этом в зону вытягивания помещают приспособление для нагревания нитей до 150 - 180°С.
При фильерной вытяжке волокна из расплава площадь поперечного сечения волокна на участке от выхода из фильеры до приемных роликов гиперболически уменьшается. Типичное изменение площади поперечного сечения и радиуса полимерного волокна показано на графике 2. Участок, на котором происходит вытяжка волокна, имеет протяженность примерно 200см. Способа обнаружения момента начала затвердевания волокна пока не существует.
По характеру зависимостей A (z) и R (z), представленных на графике 2, можно видеть, что поле скоростей на участке вытяжки волокна описывается функциями вида: . Следовательно, чтобы описать течение, нужно совместно решить r - и z-компоненты уравнения движения, уравнение энергетического баланса и уравнения состояния при соответствующих граничных условиях. Это довольно сложная задача, особенно при необходимости использования нелинейного уравнения реологического состояния.
График 2 - Кривые изменения площади поперечного сечения и радиуса волокна на участке вытяжки расплава (z - расстояние от выхода из фильеры). Материал, температура и скорость отбора волокна соответственно 1 - капрон; 265°С; 300 м/мин; 2 - полипропилен; 262°С; 350 м/мин.
В настоящее время еще не разработан математический аппарат, позволяющий точно предсказать закон уменьшения радиуса волокна или распределение скорости течения на участке интенсивного уменьшения радиуса волокна. Правда, несколько попыток оценить скорость, радиус волокна и температуру в зависимости от расстояния от фильеры уже предпринято. Первыми, кто исследовал неизотермическое формование волокна, были Кейс и Матсуо. В работе Хана обобщены результаты, полученные упомянутыми авторами, и предложены два уравнения, описывающие распределение единственной компоненты скорости и
Т = Т (z) для установившегося режима:
где е - коэффициент лучеиспускания, - массовый расход, - теплоемкость при постоянном объеме, FD - сила сопротивления воздуха (приходящиеся на единицу площади), равная
где К - поправочный коэффициент; индекс а указывает, что соответствующие характеристики относятся к окружающему воздуху.
Хан дополнил эти два уравнения переноса степенным законом течения при растяжении, учитывающим температурную зависимость вязкости:
где , - вязкость при нулевой скорости сдвига, e - ширина, - энергия активации вязкого течения.
Решение этой системы уравнений можно получить только численным методом. Полученные результаты имеют физический смысл на участке оси z до момента начала кристаллизации, когда тепловыделение за счет экзотермического эффекта кристаллизации снижает скорость охлаждения расплава (график 3). Здесь приведены результаты измерения температуры поверхности волокна в процессе вытяжки из расплава в зависимости от расстояния z.
В результате кристаллизации внутренних слоев по мере увеличения расстояния от фильеры температура поверхности волокна может даже повышаться.
График 3 - Зависимость температуры поверхности волокна от расстояния от фильеры z. Скорость отбора волокна: 1 - 50 м/мин; 1,93 г/мин; 2 - 100; 1,93; 3 - 200; 1,93; 4 - 200; 0,7.
Сейчас наибольшее внимание привлекают к себе две проблемы, связанные со стабильностью процесса вытяжки волокна из расплава, а именно: резонанс при вытяжке и волокноформуемость. При наличии резонанса при вытяжке наблюдается регулярная и постоянная периодичность изменения диаметра вытягиваемого волокна. Волокноформуемость означает способность полимерного расплава растягиваться без разрыва из-за образования "шейки" или когезионного разрушения.
Рисунок 10 ? Кристаллизация линейного волокна при формовании волокна. Морфология структуры, развивающейся в процессе вытяжки волокна (1 - сферолитная структура; 2 - зародыши кристалла, складчатая ламель; 3 - зародыш кристалла, выпрямленная ламель). Заштрихованные участки заняты расплавом. Скорость отбора волокна: а - очень маленькая; б - маленькая; в - средняя; г - высокая.
Подобные документы
Классификация химических волокон. Свойства и качества искусственных их разновидностей: вискозы и ацетатного волокна. Полиамидные и полиэфирные их аналоги. Сфера применения капрона, лавсана, полиэфирного и полиакрилонитрильного волокон, акриловой пряжи.
презентация [537,4 K], добавлен 14.09.2014Этапы производства химических волокон. Графит и неграфитированные виды углерода. Высокопрочные, термостойкие и негорючие волокна и нити (фенилон, внивлон, оксалон, армид, углеродные и графические): состав, строение, получение, свойства и применение.
контрольная работа [676,2 K], добавлен 06.07.2015Сравнительная характеристика химических и физико-химических свойств гетероцепных и карбоцепных волокон. Технология крашения хлопчатобумажных, льняных тканей и из смеси целлюлозных и полиэфирных волокон. Суть заключительной отделки шерстяных тканей.
контрольная работа [741,5 K], добавлен 20.09.2010Виды искусственных волокон, их свойства и практическое применение. Вискозные, медно-аммиачные и ацетатные волокна, целлюлоза как исходный материал для их получения. Улучшение потребительских свойств пряжи благодаря использованию химических волокон.
курсовая работа [1,3 M], добавлен 02.12.2011Анализ развития производства химических волокон. Основные направления совершенствования способов получения вискозных волокон. Современные технологии получения гидратцеллюлозных волокон. Описание технологического процесса. Экологическая экспертиза проекта.
дипломная работа [313,0 K], добавлен 16.08.2009Физико-механические свойства базальтовых волокон. Производство арамидных волокон, нитей, жгутов. Основная область применения стекловолокна и стеклотекстильных материалов. Назначение, классификация, сфера применения углеродного волокна и углепластика.
контрольная работа [39,4 K], добавлен 07.10.2015Направления рационального использования электроэнергии. Материальный и энергетический балансы технологических процессов. Процессы термической переработки топлив. Классификация химических волокон. Характеристика оборудования, станочного приспособления.
методичка [7,1 M], добавлен 15.01.2010Номенклатура показателей качества пряжи и нитей для текстильной промышленности. Свойства пряжи из натуральных, растительных и химических волокон. Потребительские свойства трикотажного полотна, преимущества его применения в производстве швейных изделий.
курсовая работа [27,3 K], добавлен 10.12.2011Сравнение физико-химических свойств волокон натурального шелка и лавсана. Строение волокон, его влияние на внешний вид и свойства. Сравнение льняной системы мокрого прядения льна и очесочной системы сухого прядения. Гигиенические свойства тканей.
контрольная работа [26,7 K], добавлен 01.12.2010Химические аппараты для ведения в них одного или нескольких химических, физических или физико-химических процессов. Аппараты с перемешивающими устройствами, их использование в химической промышленности. Определение конструктивных размеров аппарата.
курсовая работа [1,9 M], добавлен 08.01.2010