Производство химических волокон
Применение химических или физико-химических процессов переработки природных и синтетических высокомолекулярных соединений (полимеров) при производстве химических волокон. Полиамидные и полиэфирные волокна. Формования комплексных нитей из расплава.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 20.11.2010 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Физически явление резонанса при вытяжке можно представить себе следующим образом. На участке между выходом из фильеры и тянущими роликами общая масса экструдируемого материала может меняться во времени, поскольку, несмотря на постоянство скорости поступления материала на этот участок, скорость отвода массы не контролируется (регулируется только скорость отбора волокна, но не его диаметр). Поэтому когда вблизи приемных роликов нить утончается, то рядом с этим местом диаметр нити увеличивается, что приводит к чередованию толстых и тонких участков нити. Вскоре утолщенный участок нити попадает на приемные ролики. Скорость отвода массы увеличивается, вследствие чего нить снова утончается, и возникает периодическое изменение диаметра. Резонанс при вытяжке наступает при критическом значении кратности вытяжки (т.е. отношения скорости нити на тянущих роликах к скорости нити на выходе из фильеры). С уменьшением кратности вытяжки и протяженности участка вытяжки уменьшается отношение максимального значения диаметра волокна к его минимальному значению. Критическое значение кратности вытяжки составляет примерно 20,2. Для аномально-вязких жидкостей критическая кратность вытяжки оказывается несколько меньше 20,2 в случае псевдопластичных жидкостей и больше 20,2.
3.5.2 Крутка нитей
В результате вытягивания и кручения нитей на крутильно-вытяжных машинах получают нить с величиной крутки от 50 до 110 витков/м в зависимости от скорости вытягивания и частоты вращения веретен.
Капроновые нити текстильного ассортимента в зависимости от назначения выпускаются с пологой (до 200 витков/м) и с повышенной круткой (более 200витков/м). Нормы повышенной крутки для различных нитей текстильного ассортимента неодинаковы ? скорость кручения увеличивается с понижением линейной плотности нити:
Линейная плотность, текс 29 15,6 6,7 5 3,3
Величина крутки, витки/м 200 200 600 800 1000
Докручивание вытянутого капронового волокна до заданной крутки, т.е. окончательное кручение капроновой нити. Нити докручиваются и одновременно перегоняются на перфорированные бобины с образованием паковки, соответствующей по характеру раскладки нити, плотности и форме намотки требованиям отделки нити на бобине.
Скорость движения нити на этажной крутильной машине при пологих крутках составляет 60 ? 90 м/мин, частота вращения веретена 900 ? 12000 об/мин. Для получения нити с повышенной круткой могут применяться крутильные машины с веретенами двойного кручения и соответственно более низкими скоростями движения нити.
Для кручения технических капроновых нитей линейной плотности 93,5 и 187 текс, предназначенных для изготовления корда, используются различные схемы кручения и применяются разные крутильные машины. Двухпроцессное кручение кордных нитей осуществляется на двух кольцекрутильных машинах первой и второй крутки. По двухпроцессному способу изготавливают кордную нить в два и большее число сложений. Для этих же целей применяются кольцекрутильные машины с веретенами двойного кручения.
3.5.3 Отделка нитей
Отделка капроновых нитей проводится для удаления из них низкомолекулярных соединений путем обработки горячей водой, нанесения на нити замасливающего препарата и фиксации величины крутки. Капроновая вытянутая нить, не подвергнутая термической обработке, обладает способностью в свободном состоянии усаживаться в горячей воде на 8-15% (в зависимости от температуры воды и продолжительности воздействия). Вследствие усадки нити увеличивается ее толщина, снижается прочность и повышается удлинение нити. Обработка нити горячей водой под натяжением на жесткой паковке способствует снятию напряжений в нити, фиксации свойств и получению нити с резко пониженной способностью к усадке. При последующих обработках такой нити в горячей воде в свободном состоянии усадка ее не превышает 3 - 3,5%.
Для отделки капроновых нитей на бобинах применяют коллекторные аппараты, моечные ящики и отделочные агрегаты ОИК-2. Перечисленные аппараты аналогичны по принципу действия; отличаются они по конструкции и по степени механизации процесса.
Коллекторный аппарат (рис.11) состоит из ванны 1, на дне которой проложен коллектор 2 с 60 - 80 патрубками. К каждому патрубку на фланцах крепится перфорированная труба (свеча) 3, заканчивающаяся стержнем с крупной резьбой.
На каждую свечу, одна над другой, устанавливают 4 - 6 бобин с нитью, разделенные резиновыми уплотняющими прокладками. Верхняя бобина закрывается крышкой, и все бобины прижимаются плотно друг к другу зажимающей головкой 4, навертываемой на стержень свечи. Отделочный аппарат вместе с барками для промывных жидкостей, теплообменниками и насосами составляет отделочный агрегат.
Рисунок 11 - Коллекторный аппарат для отделки капроновой нити: 1 - ванна; 2 - коллектор; 3 - свеча; 4 - зажимная головка; 5 - прокладки; 6 - бобина с волокном.
Отделочная жидкость под давлением до 0,3 МПа по коллектору поступает в свечи и, пройдя сквозь толщину намотки нити, поднимается в ванне, откуда самотеком переливается в барку. Достаточно полное вымывание низкомолекулярных соединений из нити достигается при скорости циркуляции промывной воды (при 80 - 90°С) не менее 2,5л/мин на одну бобину и продолжительности отделки 1 - 2 ч.
После промывки горячей водой и обработки отделочной жидкостью нить кратковременно промывают холодной водой для устранения возможного выделения капролактама на поверхности намотки и образования пятен на ней. Регенерация капролактама из промывных вод затруднена из-за присутствия в воде замасливающих веществ, нанесенных на нити при формовании и вымытых при отделке, и поэтому не проводится. Отработанные промывные воды спускаются в канализацию.
После отделки нить на бобинах отжимается в отделочном аппарате путем продувки пара (или воздуха) или на специальных центрифугах. При этом влажность волокна снижается с 30 до 10%.
При отделке капроновой нити повышенной крутки, описанный режим фиксации крутки не применяется. Для фиксации крутки такие нити подвергаются термической обработке острым паром при 125 - 130°С. свечей, на которые устанавливаются бобины. В каждый ящик помещаются одновременно три пакета.
3.5.4 Сушка и кондиционирование нитей
Нити на бобинах сушат в течение 3 - 4 ч в туннельных двухзональных сушилках при 85 - 90°С. Высушенные нити на бобинах выдерживают не менее 18 ч в специальной камере при относительной влажности воздуха 55 - 65%. До достижения равновесной влажности 3,5 - 4,5%.
3.5.5 Перемотка нитей
Полученные капроновые нити перематывают с бобин на конические шпули для получения удобной товарной паковки трехконусной формы с крестовой намоткой. Эта операция проводится на бобинажно-перемоточных машинах. Некоторые виды капроновой нити при перемотке замасливаются. При этом на нить наносится до 4 - 6% безводного замасливателя (вазелиновое масло, стеарокс (ОС-20), триэтаноламин)
Перемотка нити на бобинажно-перемоточных машинах осуществляется при постоянной линейной скорости, которая составляет обычно 250 - 400 м/мин. Плотность намотки нити на конических паковках имеет большое значение для выравнивания свойств нити по слоям паковки. Чем меньше плотность намотки (мягкая намотка), тем лучше выравниваются свойства. Регулируют плотность намотки, соответствующим изменением натяжения нити при перемотке. Однако плотность намотки должна быть достаточной для обеспечения сохранности паковки, предотвращения самопроизвольного сползания нити при транспортировании и переработке волокна, а также при изменении его влажности. Плотность намотки регламентируется и должна составлять 600 - 700 кг/м3 для гладких нитей и 500 - 600 кг/м3 для высокообъемных нитей. При перемотке нити удаляются дефектные участки, концы связываются и выводятся узлы на верхний торец бобины. Масса паковки достигает 600г.
3.5.6 Сортировка нитей
После отделки и перемотки готовую нить сортируют в строгом соответствии с требованиями ГОСТ на данный вид продукции.
Сортность нити устанавливают по наихудшему физико-механическому показателю, внешним признакам и внутрипаковочным дефектам.
Бобины с нитью, качество которой удовлетворяет требованиям ГОСТ, обертывают плотной мягкой упаковочной бумагой.
Коробку перевязывают и помещают в контейнер или деревянный ящик.
4. Примеры технологических расчетов
Ниже приводятся примеры технологических расчетов в производстве капроновых нитей.
Расчет расхода капролактама. Определить расход капролактама на 1кг капроновой текстильной нити линейной плотностью 3,3 текс, если выпуск такой нити, содержащей 5% влаги и 5% замасливателя, составляет 5000 кг/сут.
Для определения расхода капролактама необходимо знать потери на всех технологических операциях и определить массу теряемого при этом полимера. Обозначим массу полимера буквой G, а потери ? буквой g. Содержание полимера в готовой нити G1 составляет:
G1 = 5000 · 0,9 = 4500кг
Потери в сортировочном цехе достигают 0,05%. Следовательно, содержание полимера G2 в нити, поступающей в сортировочный цех, составляет
G2 = 4500 · 1,0005 = 4502,25кг
Потери полимера в сортировочном цехе составляют:
g2 = 2,25кг
Потери при перемотке нити на бобинажно-перемоточных машинах составляют 1,2%, поэтому в перемоточный цех поступает полимера:
G3 = 4502,25 · 1,012 = 4556,28кг
Потери полимера в перемоточном цехе составляют:
g3 = 4556,28 - 4502,25 = 54,03 кг
В результате вымывания низкомолекулярных соединений потери при отделке достигают 3%.
Следовательно, на отделку поступает поликапроамида (в виде нити):
G4 = 4556,28 - 1,03 = 4692,97кг
Потери в виде низкомолекулярных соединений составляют:
g4= 4692,97 - 4556,28 = 136,7кг
Поскольку регенерация капролактама из воды После промывки волокна не проводится, указанные потери являются безвозвратными.
При окончательной крутке (крутке с перемоткой нити на перфорированные бобины) потери составляют 2%. Содержание полимера в нити, поступающей на эту операцию, составляет:
G5 = 4692,97 · 1,02 = 4786,83кг
Потери полимера при окончательной крутке составляют:
g5 = 4786,83 - 4692,97 = 93,86кг
На крутильно-вытяжных машинах потери составляют 3% и около 2% несортной нити отбраковывается (скрытый брак прядильного цеха). На эту операцию поступает нить, в которой содержится полимера:
G6 = 4786,83 · 1,05 = 5026,17кг
Потери полимера составляют g6 = 143,60 в виде вытянутой нити и
g7 = 95,74кг в виде невытянутой нити.
В прядильном цехе потери полимера составляют 6%.
Из них 3,8% теряется в виде отходов невытянутого волокна (эти отходы образуются при смене бобин, возвратимые потери), 1,5% - в виде слитков, образующихся при смене фильер и при проверке подачи насосов (возвратимые потери) и 0,7% ? при смене деталей прядильной головки (безвозвратные потери, так как при обжиге деталей полимер сгорает).
Следовательно, в прядильный цех для получения нитей поступает полимер в виде крошки в количестве:
G7 = 5026,17 · 1,06 = 5327,74кг
Возвратимые потери в виде невытянутого волокна составляют:
g8 = 5026,17 · 0,038 = 191,00кг
и в виде слитков:
g9 = 5026,17 · 0,015 = 75,39кг
Безвозвратные потери полимера равны:
g10 = 5026,17 - 0,007 = 35,18кг
Потери полимера при сушке крошки составляют 0,1% или
g11 = 5327,74 · 0,001 = 5,33кг
Таким образом, на сушку поступает полимера:
G8 = 5327,74 - 1,001 = 5333,07кг
При экстрагировании крошки теряется 7,5% (в основном в виде капролактама), это составляет:
g12 = 5333,07 · 0,075 = 399,9кг
Следовательно, на экстракцию поступает полимера:
G9 = 5333,07 · 1,075 = 5733,05кг
При плавлении и полиамидировании капролактама потери составляют
2,5%: g13 = 5733,05 · 0,025 = 143,32кг
Масса капролактама, поступающего на плавление, при влажности его 0,4% составляет:
G10 = (5733,05 + 143,32) · 1,004 = 5899,87кг
Потери за счет влажности капролактама составляют:
g14 = 5899,87 - 5733,05 - 143,32 = 23,50кг
В итоге получается, что для производства 5000кг капроновой нити в сутки необходимо 5899,87кг капролактама.
Расход капролактама на 1кг нити без учета использования отходов и регенерации капролактама из экстрагированных вод равен:
5899,87: 5000 = 1,18кг
В связи с тем, что часть отходов используется, фактический расход капролактама будет значительно ниже.
Для определения удельного расхода капролактама с учетом использования отходов нужно подсчитать массу отходов, возвращаемых в производство.
Общая масса таких отходов составляет:
Отходы Операция Масса, кг
Вытянутая нить Сортировка 2,25
Перемотка 54,03
Окончательная крутка 93,86
Крутка с вытяжкой 143,60
Всего 293,74
Невытянутая нить Крутка с вытяжкой 95,74
Формование 191,00
Всего 286,74
Поликапроамид Формование 75,39
Полиамидирование 143,25
Всего 218,61
Отходы вытянутой нити перерабатываются в штапельные волокна, при этом теряется 15% отходов и получается штапельного волокна:
G11 = 293,74 · 0,85 = 249,64кг
Отходы невытянутых нитей и отходы полимера составляют:
G12 == 286,74 + 218,64 = 505,38кг
Эти отходы подвергаются деполиамидированию (щелочному расщеплению), 30% отходов теряется.
Регенерируется капролактама (возвращаемого в производство):
G13 = 505,38 · 0,7 = 353,76кг
Воды после экстракции крошки, поступающие на вакуум-выпарку, содержат 399,97кг капролактама.
При регенерации теряется 15% мономера.
Следовательно, возвращается в производство капролактама:
G14 = 399,97 · 0,85 = 340,00кг
Всего возвращается в производство в виде штапельного волокна и капролактама:
G15 = 249,64 + 353,76 + 340,00 = 943,40кг
Таким образом, расход капролактама на 1кг нити с учетом использования отходов составляет:
кг
Расчет числа прядильных машин.
При расчете необходимого числа прядильных машин для капроновых нитей принимаем:
Скорость формования х, м/мин 860
Число формуемых нитей n 112
Масса нити на бобине, кг 1,5
Кратность вытяжения, М 3,6
КПД машин з 0,9
Линейная плотность сформированной нити Т0 равна:
где Т0 и Т - линейная плотность нити до и после вытяжения (текс),
К = 0,9 - суммарный коэффициент, учитывающий содержание влаги и замасливателя в готовой нити и низкомолекулярных соединений в невытянутом и готовом волокне, а так же усадку нити при отделке.
Суточная производительность одного прядильного места составляет:
Производительность одной прядильной машины равна:
Для производства 10000кг нити (с учетом 11,3% отходов, образующихся на всех последующих стадиях технологического процесса переработки сформированной нити, а так же содержания влаги и замасливателя в готовой нити - всегда 10%) необходимо получить невытянутой нити:
Следовательно, число необходимых прядильных машин составляет:
С учетом резерва на случай ремонта следует иметь 8 прядильных машин.
Из полученных данных построим график зависимости производительности прядильной машины от плотности.
55
График 4 - график зависимости G12=f (To)
Расчет числа крутильно-вытяжных машин для капронового волокна.
Для этого расчет принимаем:
Число веретен на машине n 164
Частота вращения веретена, об/мин 4500 - 8000
Скорость вытянутой нити V, м/мин 360
КПД машины з 0,9
Продолжительность работы машины
в сутки ф, ч 21
Производительность одной крутильно-вытяжной машины составляет:
Масса нити, подлежащей вытягиванию с учетом 2% несортной продукции (скрытый брак) равна:
Число крутильно-вытяжных машин составляет:
Необходимое число крутильно-вытяжных машин для капроновых нитей составляет 45.
На основании полученных данных построим график зависимости производительности крутильно-вытяжной машины от скорости вытягивания капроновой нити.
55
График 5 - график зависимости G15=f (V)
Заключение
Формование волокон представляет собой процесс экструзии (продавливания) расплава или раствора полимера через металлическую пластину, имеющих ряд симметрично расположенных отверстий малого диаметра, в результате чего образуется жидкие полимерные струи. Последующая обработка струй включает вытяжку расплава, охлаждение и холодную вытяжку. Диаметр полученных волокон значительно меньше диаметра струй. Волокна являются анизотропными (макромолекулы полимера ориентированы вдоль оси вытяжки),
Полиамидные волокна, а именно капроновое волокно обладают комплексом ценных свойств, определяющих целесообразность и необходимость их широкого использования для изготовления разнообразных изделий.
Капрон - очень прочное вещество т.к практически полностью оказывается кристаллическим. Это достигается за счет вытягивания и одновременного охлаждения выходящего экструдера (продукта формования) в виде нескольких струей (волокон). Затем не полностью остывшие волокна подвергают продольной вытяжке путем намотки на тянущиеся барабаны, при этом их диаметр уменьшается в 10 - 15 раз, что приводит к усилению нитей за чет кристаллизации.
Эластичность капрона намного выше шелка. Но капроновое волокно характеризуется сравнительно невысокой гигроскопичностью, так, же обладают наиболее высокой устойчивостью к истиранию, превосходя по этому параметру другие волокна. Капрон обладает стойкостью к действию микроорганизмов (гниению), но недостаточно стойки в условиях тропиков. Кроме того, волокно не стойко к щелочам и концентрированным минеральным кислотам.
К недостатком капронового волокна можно отнести:
Низкий модуль эластичности. Полиамидные волокна и капрон в частности имеют значительно меньший модуль, чем другие химические волокна.
Пониженная сцепляемость. Из-за чрезмерной гладкости волокон и обусловлена их пониженная сцепляемость их с другими волокнами. В результате высокой прочности и высокой устойчивости к истиранию, эти нити не обрываются, а скатываются на поверхности ткани в шарики, что ухудшает внешний вид изделия. Повышенной гладкостью полиамидных нитей объясняется также и частный спуск петель в чулках и других трикотажных изделиях, а так же неприятный блеск этих изделий (для уменьшения гладкости волокон их обрабатывают кислотами).
Изделия из капрона, и в сочетании с капроном, стали уже обычными в нашем быту. Из капроновых нитей шьют одежду, которая стоит намного дешевле, чем одежда из натуральных природных материалов. Из капрона делают рыболовные сети, леску, фильтровальные материалы, кордную ткань. Из кордной ткани делают каркасы авто - и авиапокрышек.
Список литературы
1. Ермилов А.С., ? Теоретические основы процессов получения и переработки полимерных материалов: урс лекций/ А.С. Ермилов. - Пермь: Изд-во Перм. гос. Техн. ун-та, 2009. - 159с.
2. Тадмор З., Гогос К., ? Теоретические основы переработки полимеров. Пер. с англ. - М.: "Химия", 1984. - 632 с., ил. - Нью-Йорк. 1979.
3. Торнер Р.В., ? Основные процессы переработки полимеров. - М.: "Химия", 1972. - 452 с., ил.
4. Роговин З.А., ? Основы химии и технологии химических волокон. Т II. Изд.4-е, перераб. и доп. М.: Химия, 1974. - 344 с., ил.
5. Технология производства химических волокон: Учебник для техникумов. - 3-е изд., пераб. и доп. / А.Н. Ряузов., В.А. Груздев и др. - М.: Химия, 1980. - 448 с., ил.
6. Николаев А.Ф., ? Синтетические полимеры и пластические массы на их основе, Ленинградское отделение, "Химия", 1966. - 768 с., ил.
7. Пырков Л.М., ? Химические волокна. - М.: Наука, 1969. - 174 с., ил.
8. Энциклопедия полимеров. Ред. Коллегия: В.А. Каргин (глав. ред) Т.1 - М.: "Советская Энциклопедия", 1972. - 1224с., ил.
9. Энциклопедия полимеров. Ред. Коллегия: В.А. Кабанов (глав. ред) Т.2 - М., "Советская Энциклопедия", 1974. - 1082с., ил.
10. Яхно О.М., Дубовицкий В.Ф., ? Основы реологии полимеров. - Киев: "Вища школа", 1976. - 186 с.
11. http://ru. wikipedia.org/wiki
Подобные документы
Классификация химических волокон. Свойства и качества искусственных их разновидностей: вискозы и ацетатного волокна. Полиамидные и полиэфирные их аналоги. Сфера применения капрона, лавсана, полиэфирного и полиакрилонитрильного волокон, акриловой пряжи.
презентация [537,4 K], добавлен 14.09.2014Этапы производства химических волокон. Графит и неграфитированные виды углерода. Высокопрочные, термостойкие и негорючие волокна и нити (фенилон, внивлон, оксалон, армид, углеродные и графические): состав, строение, получение, свойства и применение.
контрольная работа [676,2 K], добавлен 06.07.2015Сравнительная характеристика химических и физико-химических свойств гетероцепных и карбоцепных волокон. Технология крашения хлопчатобумажных, льняных тканей и из смеси целлюлозных и полиэфирных волокон. Суть заключительной отделки шерстяных тканей.
контрольная работа [741,5 K], добавлен 20.09.2010Виды искусственных волокон, их свойства и практическое применение. Вискозные, медно-аммиачные и ацетатные волокна, целлюлоза как исходный материал для их получения. Улучшение потребительских свойств пряжи благодаря использованию химических волокон.
курсовая работа [1,3 M], добавлен 02.12.2011Анализ развития производства химических волокон. Основные направления совершенствования способов получения вискозных волокон. Современные технологии получения гидратцеллюлозных волокон. Описание технологического процесса. Экологическая экспертиза проекта.
дипломная работа [313,0 K], добавлен 16.08.2009Физико-механические свойства базальтовых волокон. Производство арамидных волокон, нитей, жгутов. Основная область применения стекловолокна и стеклотекстильных материалов. Назначение, классификация, сфера применения углеродного волокна и углепластика.
контрольная работа [39,4 K], добавлен 07.10.2015Направления рационального использования электроэнергии. Материальный и энергетический балансы технологических процессов. Процессы термической переработки топлив. Классификация химических волокон. Характеристика оборудования, станочного приспособления.
методичка [7,1 M], добавлен 15.01.2010Номенклатура показателей качества пряжи и нитей для текстильной промышленности. Свойства пряжи из натуральных, растительных и химических волокон. Потребительские свойства трикотажного полотна, преимущества его применения в производстве швейных изделий.
курсовая работа [27,3 K], добавлен 10.12.2011Сравнение физико-химических свойств волокон натурального шелка и лавсана. Строение волокон, его влияние на внешний вид и свойства. Сравнение льняной системы мокрого прядения льна и очесочной системы сухого прядения. Гигиенические свойства тканей.
контрольная работа [26,7 K], добавлен 01.12.2010Химические аппараты для ведения в них одного или нескольких химических, физических или физико-химических процессов. Аппараты с перемешивающими устройствами, их использование в химической промышленности. Определение конструктивных размеров аппарата.
курсовая работа [1,9 M], добавлен 08.01.2010