Обследва процеса на реформинг на природния газ и получаване на водород
Методи за получаване на водород: термохимични, електрохимични, фотоелектрохимични. Получава водородът в нефтохимическата промишленост. Обследва процеса на реформинг на природния газ и получаване водород като съставна част на азото-водородния синтез газ.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | болгарский |
Дата добавления | 10.10.2009 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Паровата конверсия на въглеводородите се осъществява в стома-нени реакционни тръби (d = 100 - 150 мм) с външно подгряване. Паро-газовия поток се движи през слой от катализатор с височина до 12 м. Максимално възможната обемна скорост на суровината зависи не само от активността на катализатора, но и от скоростта на подаване на топли-на, а също и от съпротивлението на катализаторния слой.
В резултат на разработването на високоактивни катализатори, лимитиращ фактор при провеждане на процеса се е оказало подаването на топлина. Ускоряването на топлопреноса в слоя катализатор при прове-ждане на процес под налягане, а също и усъвършенстване конструкцията на пещите и увеличаване дължината на реакционните тръби довело довело до това, че съпротивлението на слоя катализатор станало лими-тиращ фактор на процеса. То в значителна степен зависи от размера и формата на частиците на катализатора и за понижаване съпротивление-то на слоя се използват катализатори с по-големи размери и с пръстено-видна форма.
Процесът на конверсия протича на активната повърхност на катали-затора. Външната повърхност на частиците е относително неголяма и тя се увеличава за сметка на увеличение пористостта на катализатора и създаване на развита вътрешна повърхност.
Към катализатора има изисквания относно неговата термична, хи-мична и механична устойчивост. Срокът на използване на катализатора не трябва да е по-малък от 2 години. Катализатора за ПК на въглеводоро-дите се оценява по съвкупност от свойства като: активност, селективност, коефициент на хидравлично съпротивление, здравина и т.н.
Изброените изисквания не са изчертателни. В случай на временно нарушение в системата за очистване от серни съединения е възможно отравяне на катализатора, така че, той трябва да притежава способност за възстановяване на активността. При понижаване на отношениеот пара кам суровина, е възможно на катализатора да се отдели въглерод, което обикновено води до неговото унищожаване. Катализатор, който не се е разрушил, трябва да може да възстанови своята активност след газифи-кация на въглерода. Също, катализаторът не трябва да отделя летливи компоненти като серни съединения, силициеви оксиди и кисилини под действие на водните пари. Тези съединения може да попречат на по-нататъшното протичане на процеса.
Катализаторите за ПК съдържат активен компонент, промотор и но-сител. Като активен компонент се използва никел. Кобалтът е по-малко достъпен и затова не се използва. Паладий, платина, родий и рутений, въпреки, че са по-ефективни от никела са значително по-скъпи. Процеса се катализира от активните центрове, затова основно значение има акти-вната повърхност, а не общата повърхност.
Носителят придава на катализатора механична здравина, позваля-ва да се съкрати разхода на активния компонент и да обезпечи необходи-мата високоразвита повърхност. Никелът на повърхността на носителя е във вид на малки кристали. В условията на парова конверсия при високо съдържание на пара и температура по-висока от 750 0С е възможно нара-стване на кристалите и свързано с това понижаване на активността. Носителят трябва да възпрепятства този процес, т. е. трябва да стабили-зира катализатора и не трябва да променя свойствата си до температура до 900 0С. В качество на носител се използва алуминиев оксид в б - мо-дификация, оксиди на магнезия и оксиди на силиция.
Неголемите добавки от промотор (1 - 1,5%) към основния компо-нент позволява да се повиши и съхрани активността на катализатора. Като промотор се използват оксиди на магнезия и алуминия. В някои ка-тализатори с цел интензификация на реакцията на газификация на въгле-рода, в неголеми количества се добавят алкални метали. Във връзка с летливостта на алкалите са предложени катализатори на основа оксиди на урана.
Използват се два метода за производство на катализатори. По пър-вият соли на металите се смесват с прахообразен носител и се формоват чрез екструзия от мокра тестообразна маса или чрез сухо пресоване. Често в качество на свързваща добавка се използва цимент.
По втория метод, върху формувания и закален носител, чрез дву-, три- или четирикратно напояване с воден разтвор на соли се нанася на-пример Ni(NO3) върху б-Al2O3. По втория метод се получават катализатори съдържащи до 10% Ni. Катализатор с по-високо съдържание на никел се получава чрез формуване. За по-добро смесване на компонентите, те биват съвместно утаявани под формата на хидрати, оксиди или карбона-ти.
Готовият катализатор, независимо от метода на получаване, се из-пича при температура 400 - 500 0С, при което солите на Ni преминават в кристална форма.
С особено внимание трябва да се добавя към носителя магнезиев оксид, тък като в резултат на неговата хидратация е възможно да се раз-руши катализатора или да се намали здравината му. Хидратацията може да стане при понижаване на температурата под 425 0С, затова при темпе-ратури по-ниски от 500 0С е задължително да се избягва контакт на ката-лизатор съдържащ MgO с водна пара. Калциевият оксид, в състава на носителя, ако не е химически свързан, напримес с алуминиев оксид(кал-циев алуминат), също е способен на хидратация.
При конверсия на нефтозаводски газове и бензини има опасност от отлагане на въглерод на катализатора. За конверсия на бензини, фирма ICI е разработила катализатор 46-1 с добавка от акален метал. В този катализа-тор калият е химически свързан с алумосиликати, образувайки комплекс-ни съединения, например KAlSiO4. В условията на ПК под действие на водна пара и въглероден диоксид тези съединения бавно се разлагат с образуване на неголеми количества калиев карбонат. Той предотвратява отлагане на въглерод, но от друга страна е летлив и постепенно се унася от реактора. Влошава се работата на котел-утилизатора, поради отложенията от калиев карбонат. За да се избегне това е предложено на изход от реактора да се зарежда друг катализатор 46-2, който химически свързва калия. Последният катализатор едновременно с това и служи за конверсия на метана.
Магнезиевият оксид също способства за предотвратяване отделяне на въглерод върху катализатора. Има съобщения за разработка на ката-лизатор с високи якостни показатели от магнезиев оксид без добавка от алкални метали, съдържащ 7% Ni. Вследствие някои свойства на магне-зия не се отделя въглерод дори при отношение пара:газ = 2:1.
Като най-радикално решение на проблема с конверсия на хомоло-зите на метана следва да признаем двустепенния процес на ПК. В 1-ва степен процеса се води в адиабатен реактор при 450 - 520 0С с получава-не на газ, съдържащ преимуществено метан. Във 2-ра степен се провеж-да пълна конверсия на метана в реакционните тръби с външно нагряване и с използване на добре представящи се катализатори. В последните години за частична конверсия на въглеводородите са разработени високоефективни и устойчиви катализатори.
Катализаторите за частична конверсия също съдържат никел като активен компонент. По-ниската температура на процеса изисква използ-ване на по-активни катализатори. Повишаване на активността на катали-затора се постига чрез увеличаване на концентрацията на никел до 40 - 60%, увеличаване на относителната повърхност до 100 - 300 м2/гр и относителната повърхност на активния компонент - никел до 20 - 60 м2/гр. Следва да се отбележи, че повишаване концентрацията на никел в катализатора не означава увеличаване на неговата относителна повърх-ност, което е видно от следните данни:
Концентрация на никел, %........ 5 17 30 53 73
Относителна повърхност на
активния компонент Ni, м2/гр.... 1 14 25 52 43
Активността на катализатора зависи от носителя и метода на про-изводството му. За катализатор за частична конверсия се използват малки сферички от алуминиев оксид г-модификация. По-доброто раз-пределение на никела се постига при утаяване на никел съвместно с алу-миний в разтвор на тези метали. Падащите при това аморфни сфери от хидрогел, при по-нататъшна кристализация се разпадат на по-малки кристали, образувайки голяма контактна повърхност. В качество на про-мотор може да се използва магнезиев оксид, титанов диоксид и циркони-ев оксид.
Табл. 11 Характеристика на катализаторите за конверсия на въглеводороди, произвеждани в Русия
Показатели |
ГИАП-3 |
ГИАП-3-6н |
ГИАП-5 |
ГИАП-16 |
ГИАП-15 |
|
Химичен състав, % NiO ……………………. Al2O3 ………………….. CaO …………………... MgO …………………... SiO2 …………………… Fe2O3 …………………. TiO2 …………………… Гранула-пръстен с размер, мм Гранула-пръстен с размер, мм Гранула-цилиндър с размер, мм Относителна плътност, кг/м3 Относителна повърхност, м2/гр Пористост, %............................ Средна механична якост, МN/m2 |
4,5 95,0 - - - - - 11х11х3 15х15х5 20х20х7 8х9 1400 8 33 - 39 60 - 90 |
7,0 86,0 - - - - - 8х9 12х12 1650 8 33 90 |
23 - 26 24 - 30 10 - 15 11 - 17 18 - 25 ?4 ?2 10х10х4 14х14х6 19х19х8 - 800 - 900 30 - 50 31 50 |
25 46 14 15 - - - 15х17х11 - 1100 44 33 70 |
6 - 10 88 - 92 - - - - ?2 12х12х6 - 1200 0,5 25 55 |
За да се предотврати отделяне на въглерод към катализатора се добавят алкални метали, катализиращи газификацията на въглерода. В този случай добавката на алкален метал е по-оправдана, отколкото при каталицаторите за пълна конверсия, доколкото до 500 0С алкалите почти не се унасят. От алкалните и алкалоземни метали, най-често се препо-ръчва добавка на калий, макар че има и препоръки за Ba, Mg и Са. Изпол-зват се също катализатори съдържащи 10 - 30% Ni на Al2O3. В такъв ка-тализатор се добавя 5 - 25% Zn или Cr и се промотира с вече споменати-те добавки.
Основните производители на катализатори са фирми като Gendler (САЩ), ICI(Англия), BASF(Германия). Фирма Gendler произвежда катали-затор G-56 с различно съдържание на никел в пръстеновидна форма. Фирма ICI има катализатор 57-1, предназначен за ПК на природен газ и нефтозавод-ски газове, несъдържащи ненаситени въглеводороди, при налягане до 3 МРа и температура до 850 0С. Съставът на катализаторите от фирма ICI е следния:
марка............ 57-1 46-1 марка........... 57,1 46-1
Ni ……………. 32 21 Al2O3 ……….. 54 32
CaO …………. 14 11 MgO ………… - 13
SiO2 …………. 0,1 16 K2O …………. - 7
1.2.4 Загуба на активност на катализатора
Под действие на каталитичните отрови, катализаторите могат час-тично или изцяло да загубят своята активност. В редица случаи е възмо-жно тя да се възстанови, ако не нацяло, то поне частично, след прекратя-ване действието на отровителя. Някои вещества отрявят катализатора необратимо. Към каталитическите отрови следва да се отнесат: сярово-дород и органични съединения на сярата, съединения на арсена, халоге-ните, фосфора, оловото и медта. Суровина и пара, подадени отделно или в недостатъчни количества също могат да са отровители.
Загуба на активността е вследствие химичното взаимодействие на никела с катализаторния отровител и образяване на неактивни съедине-ния. За отравяне на катализатора е нужно в такова взаимодействие да са встъпили дори само активните центрове на Ni. Например, катализатор съдържащ 15% Ni бил отровен при 750 0С, когато съдържанието на сяра в него било едва 0,005%, т. е. когато само 0,069% от Ni са образували сул-фид. По-активните катализатори, по принцип са и по-чувствителни към отровители. Така повишаване качеството на катализаторите е довело до изискване към по-добро очистване на суровината от сяра.
Отравяне на катализатора със сяра е възможно при нарушаване режима на работа на инсталацията за сероочистка. При непродължител-ни нарушения, катализаторът в срок от няколко денонощия възстановява активността си. При отравяне на катализатора се нарушава кинетичното равновесие на реакцията на образуване и газификация на въглерода, което може да доведе до отлагане на въглерод и разрушаване на катали-затора.
Хлорът е силен отровител на катализаторите за ПК на въглеводо-родите и в още по-голяма степен за катализаторите за нискотемператур-ната конверсия на въглеродните оксиди. Йоните на хлора могат да попа-днат на катализатора от водните пари при недобро обезсоляване на химически очистената вода.
Катализаторът губи своята активност и при продължително въздей-ствие на водна пара, вследствие окисление на никела. В условия на ПК съотношението между окислителя (водни пари) и възстановяващия ком-понент (СО и Н2) е такова, че реакцията на възстановяване преобладава над реакцията на окисление и никелът в по-голяма част се намира във възстановено състояние. На вход в реактора при 400 - 500 0С конверсия не протича и възстановяването е слабо и в участък с дължина 1 - 3 м, къ-дето става подгряването на компонентите до 600 - 700 0С, процесите на окисление преобладават над тези на възстановяване. Така в началния участък никела се окислява и катализаторът губи своята активност, което от своя страна задържа началото на реакция. В такива условия началния участък работи като подгряващ за суровина и пара, което не е ефективно. Ако в газа постъпващ за конверсия има водород, условията за възстано-въване на катализатора в началните участъци се подобряват и никелът се съхранява във възстановен вид.
Окисление на никела в целия обем на катализатора може да стане при прекратяване или намаляване подаването на суровина и запазване подаването на пара. При 700 - 800 0С никеловият оксид взаимодейства с алуминиевия оксид, преобладаващ в носителя, с образуване на никелов алуминат (шпинел) по реакцията:
NiO + Al2O3 ЃЁ NiiAl2O4
Полученият шпинел не притежава каталитична активност. Реакция-та протича по-бързо с г-Al2O3 и значително по-бавно с б- Al2O3. Катали-затор съдържащ б- Al2O3 може да бъде нагряван с водни пари до 800 0С без да се образуват шпинели. Възстановяването на катализатор, в който никелът се е окислил не е сложно, ако пък са се образували шпинели, е необходимо третиране с водород при 800 0С.
1.2.5 Механизъм и кинетика на парова конверсия на въглеводороди
Механизмът на реакция между метан и водна пара на никелов ката-лизатор не е точно установен. Редица автори считат, че това е реакция от първи порядък, т. е. нейната скорост е право пропорционална на кон-центрацията на метана. Изследвания, направени върху реален катализа-тор, показали, че макрокинетиката на ПК на метана се подчинява на вътренодифузионния режим и скоростта на реакция (w, mol/s на 1м3 от катализатора) се описва с уравнението:
w = з.k.pCH4
където з-фактор на ефективноста, отчитащ масообмена; k - реална скоростна константа на реакцията (при отсъствие на вътрешнодифузинни пречки); pCH4 - парциално налягане на СН4, МРа.
Факторът на ефективност зависи от отношението между размера на катализаторните гранули и дълбочината на проникване на реакцията в тяхната вътрешност. По данни, дълбочина на проникване във въкрешно-стта на катализатор с диаметър 1,2 мм е само 0,04 мм. За катализатора на фирма Gerdler - G-56В, факторът на ефективност зависи от размера на частиците. При размер 6,4 мм з=0,216, а при гранули с размер 0,51 - 0,84 мм з=0,954. По тези данни дълбочината на проникване във вътреш-ността на гранулите е 0,2 - 0,3 мм. Тази величина свидетелства за това, че катализаторът работи с малка част от повърхностния слой. Така се оказва, че не повече от 5 - 8% от никела, съдържащ се в катализатора контактира с реагиращите вещества.
Намерена е примерна зависимост на скоростта на реакция от външ-ната повърхност на катализатора, която е свързана с малката дълбочина на проникване на реакцията във вътрешността на гранулите. Ако се вклю-чи фактора на ефективност в скоростната константа, уравнението ще приеме вида:
w = k.pCH4
За катализатор ГИАП-3, k се определя от уравнение:
k = 2,1.104.S.e-19400/RT
където S e относителната повърхност на катализатора, см2/гр.
В редица разработки са открити затормозяващи влияния от продук-тите на реакцията върху скоростта на ПК на метана. Затова, скоростта на реакция се описва с уравненията:
w = k. pCH4
pH2
w = k. pCH4.pH2O
10.pH2 + pH2O
w = k. pCH4
1 + a(pH2O/pH2) + b.pCO
Още по-малка е яснотата по отшение механизма на ПК на висшите въглеводороди. Установено е само, че в процеса на ПК хомолозите на метана се превръщат в метан, т. е. протича процес на частична конвер-сия. Предполага се, че въглеводородът, попаднал на повърхността на катализатора се дисоциира и образува радикали СНх, които реагират с водна пара и водород. В резултан на взаимодействие на радикали с вод-ни молекули, се образуват въглероден оксид и водород, а при взаимодей-ствие с водород - метан и въглерод. Така разрледан механизмът на кон-версия включва крекинг на въглеводороди, хидриране на продукти на кре-кинга и газификация на получения въглерод.
Има и други предположения за механизма на процеса на частична конверсия с преимуществено получаване на метан. Отначало става кон-версия на въглеводорода:
2СО + 2Н2 ЃЁ СН4 + СО2
СО2 + 4Н2 ЃЁ СН4 + 2Н2О
Противоположно мнение, предложено от други изследователи, че в началото се образува метан, който в последствие се подлага на конвер-сия с пара и се образува СО, СО2 и Н2. В други трудове е посочено, че първата реакция е на хидрокрекинг на въглеводородите:
СnH2n+2 + (n - 1)H2 ЃЁ nCH4
, а след това е вече реакция на конверсия на метана.
Липсата на яснота около механизма на процеса не позволява да се даде кинетично уравнение за частичната конверсия. В своя труд L. U. Hyman се опитва да заобиколи това затруднение като предлага такава су-марна реакция за ПК на въглеводородите:
CnH2n+2 + mH2O ЃЁ xCH4 + yCO2 + zCO + iH2
и математически задоволително описва резултатите от експеримента.
1.3 Парова конверсия на въглеродния оксид
Газът, получев в процеса на ПК и паро-кислородна газификация, съдържа заедно с водорода и метан, въглероден оксид и диоксид. Кон-центрацията на въглеродните оксиди в газа, получени при конверсия на различни въглеводородни суровини се колебае от 6 - 15%, а в газ, полу-чен от газификация на мазут достига до 45%.
В резултана на конверсия на въглеродните оксиди с водна пара се получава допълнително количество водород, равно на съдържащия се в газа СО. Реакцията протича без промяна на общия обем от реагенти, съ-провожда се от отделяне на топлина и не зависи от налягането. С пони-жаване на температурата, равоновесието се премества към образуване на водород и въглероден диоксид.
В реални условия на протичана на процеса на ПК на въглеводороди и паро-кислородна газификация на мазута, когато реакционната темпера-тура подмине 800 0С, пректически се достига равновесие на реакцията на конверсия на въглеродния оксид и концентрацията му в газа, постъпващ за конверсиям; тази концентрация обикновено отговаря на равновесната за максимана температура на конверсия на въглеводороди или газифика-ция. В отделни случаи се наблюдава по-ниско съдържание на СО, което може да се случи, ако реакция протича при по-ниска температура в колек-торите след изхода на газа от тръбите на пеща за конверсия на въглево-дороди или на агрегата за газификация. Този ефект е незначителен, по-ради краткото време на престой на газа в системата пред реактора за конверсия на СО.
Знаейки състава на газа постъпващ за конверсия на СО, и констан-тата на равновесие (таблица 12), може чрез уравнението за константите на реакцията и данните от материалния баланс да се пресметне равно-весната концентрация на СО и други компоненти. В таблица 13 са приве-дени данните за материалния баланс на конверсия на въглеродния оксид (изчислено за 100 мола от изходния газ).
Като заместим стойностите на равновесните концентрации на ком-понентите във влажния конвертиран газ в уравнението за константите на конверсия на СО с пара и го решим за „х”, ще пулучим
Табл. 12 Константи на равновесие а реакцията СО + Н2О СО2 + Н2
Температура, 0С |
К1 |
Температура, 0С |
К1 |
|
200 250 300 350 400 450 500 520 540 560 580 600 620 640 660 680 700 710 720 730 740 750 760 |
2,279.102 8,651.10 3,922.10 2,034.10 1,170.10 7,311 4,878 4,215 3,670 3,220 2,843 2,527 2,259 2,031 1,835 1,666 1,519 1,453 1,391 1,333 1,279 1,228 1,180 |
770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 |
1,135 1,092 1,053 1,015 9,793.10-1 9,457.10-1 9,139.10-1 8,837.10-1 8,552.10-1 8,282.10-1 8,025.10-1 7,781.10-1 7,549.10-1 7,328.10-1 7,118.10-1 6,918.10-1 6,728.10-1 6,546.10-1 6,372.10-1 6,206.10-1 6,047.10-1 5,896.10-1 5,750.10-1 |
Табл. 13 Материален баланс за изчисляване на равновисието на конверия на въглероден оксид
Компоненти |
Изходящ газ, mol |
Реагирало коли- чество, mol |
Полу-чено,mol |
Конвертиран газ, mol |
|
CO H2 CO2 CH4 |
a b c 1 - (a + b + c) |
x - - - |
- x x - |
a - x b + x c + x 1 - (a + b + c) |
|
Общ сух газ |
1 |
х |
2х |
1 + х |
|
Н2О |
е |
х |
- |
е - х |
|
Общ влажен газ |
1 + е |
2х |
2х |
1 + е |
Изчисленията показват, че за достигане на дастатъчно ниска кон-центрация на въглероден оксид в конвертирания газ, конверсията трябва да се провежда при температура не по-висока от 250 0С. С цел повишава-не производителността на процеса, конверсията обикновено се провежда на две степени: на първа се използва високотемпературен желязохромен катализатор, на втора - нискотемпературен катализатор, на който медта е активен компонент. Преди откриването на нискотемпературните катали-затори, конверсията на въглероден оксид се е провеждала на железохро-мен катализатор при 350 - 450 0С в няколко степени. Високата степен на превръщане на СО се достигала за сметка на големия излишък на водна пара и очистване на конвертирания газ от въглероден диоксид между сте-пените. Такава схема е тромава и неикономична, затова с основно значе-ние на изследванията за този стадий е откриването на нискотемперату-рен катализатор.
Двустепенната конверсия на въглероден оксид на първи стадий се провежда при 350 - 400 0С, а на втори - при 220 - 250 0С. В газа, на вход на първа степен, отношението пара:газ се определя от режима на пред-ходния стадий (конверсия на въглеводородите) и трябва да се поддържа не подържа не по-ниско от 0,6:1 при налягане 2МРа и не по-ниско от 0,9:1 при налягане близко до атмосферното. Ако в газа получен на предходния стадий парата е недостатъчно, тя се добавя. Излишъкът на пара е благо-приятен за провеждане на конверсия, но при определени условия той мо-же да способства за отравяне на катализатора.
Обемната скорост също зависи от налягането, при което се осъще-ствява прощеса и се променя от 1000ч-1 при налягане, близко до атмос-ферното, до 2500ч-1 при 2 МРа. Налягането на процеса обикновено зави-си от налягането на предходния стадий. На инсталации за ПК на въглево-дороди, конверсия на въглеродния оксид се води при налягане близко до атмосферното или при 2,0 - 2,5 МРа. На инсталации за газификазия на-лягането може да бъде повишено до 15 МРа. Въпреки, че изменение на налягането не влияе на равновесието на реакцията, повишеното наляга-не се оказва благоприятно влияние на кинетичните фактори, които позво-ляват да се увеличи обемната скорост на газа.
В описаните условия конверсия на въглероден оксид протича с дъл-боко превръщане, близко до равновесното. Във всеки случай съдържа-нието на СО в газа след високотемпературна конверсия е 3 - 4%, а след нискотемпературна конверсия - до 0,5%. В реални условия дълбочината на превръщане на СО на стадия на високотемпературна конверсия е92 - 95%, а на стадия на нискотемпературна конверсия 90 - 92% от равно-весната дълбочина а превръщане.
За стадия на високотемпературна конверсия в началото се е из-ползвал катализатор на основата на Fe3O4. След това той е бил осъвър-шенстван с въвеждане на оксиди на хрома, възпрепятстващи увелича-ването на кристалите на Fe3O4, което увеличава срока на работа на ката-лизатора. Днес за този стадий на процеса се използват само модифика-ции на железохромния катализатор, отличаващи се по начина на произ-водство. Основни характеристики на двата железохромни катализатори № 482 и С-12-1 са следните:
№482 С-12-1
Форма.................................. гранули таблетки
Диаметър, мм..................... 4,5 - 5,5 9,7
Височина, мм...................... 5 - 20 4,9
Съдържание, %
желязо......................... 89 - 90 85,8
хром............................. 7,0 - 7,5 9,4
Активност* по скоростна кон-
станта при 350 0С, см3/гр ката-
лизатор в час..................... 1,0 - 1,3 1,30
Механична якост на
надлъжно напрежение, MN/m2 35 - 40 35
напречно напрежение, MN/m2 82,2 251
Относителна плътност, кг/м3 1150 1200
Относителна повърхност, м2/гр 25 - 30 110
Обем на порите, см3/гр..... 0,32 0,24
в това число с радиус
r < 7,5 нм 0,03 0,12
r > 7,5 нм 0,29 0,12
* активността е измерене на инсталация от проточен тип:
размер на зърната 1 - 2 мм, температура 350 0С, отно-
шение пара:газ = 3:1, обемна скорост 1200 ч-1
Срокът на използване на катализатора се определя основно от ме-ханичната якост; в процеса на работа той постепенно се разрушава, кое-то води до увеличаване на хидравличното съпротивление на слоя. Последното се наблюдава по-малко при използване на таблетирани ката-лизатори, но при тяхното използване се влошава дифузията и мате-риалът от вътрешността на таблетката се използва слабо. За подобрява-не на условията на дифузия се използва катализатор със ситно зърно или таблетки с малки размери. За намаляване на съпротивлението се използ-ват конвертори от радиален тип.
Желязохромният катализатор е малко чувствителен към отравяне от серни съединения, но съдържащите се в него или погълнати серни съединения, при взаимодействие с водород образуват H2S, който може да предизвика отравяне на катализатора в нискотемпературния стадий на конверсия. Затова при извеждане на инсталацията в режим газ от ре-актора, зареденият железохромен катализатор се изважда от схемата до-като в него се съдържа сероводород.
В състава на катализатора за нискотемпературна конверсия се въ-веждат мед, цинк и алуминий. В невъзстановена форма катализаторът е неактивен. В процеса на възстановяване CuO преминава в проста мед, която се явява катализатор на процеса. Цинковиятоксид изпълнява роля на стабилизатор, препятстващ увеличаване на размерите на кристала на медта, което може да намали активната повърхност на катализатора. За тази цел служи и алуминиевия оксид, а също и хромния оксид.
Активността и стабилността на работа на катализатора в голяма степен зависи от метода на производството му. Така например, цинко-медните катализатори с добавка на хромен оксид се приготвят чрез съв-местно утаяване имат висока активност, но не са достатъчно стабилни. Друг метод се състой в смесването на прахове от меден оксид и цинков оксид с концентриран разтвор на (NH4)2Cr2O7 и последващо закаляване и формуване. Катализаторите приготвени по този метод поддържат актив-ност на достатъчни високо ниво в продължение на 1 - 2 години. Такъв е срокът на работа на цинкомедните катализатори на фирмите Gendler, CCI и ICI. Активен и стабилно работещ катализатор ГИАП, се приготвя чрез разтваряне на Сu2CO3 в хромен анхидрид (CrO3) и смесвана разтвора със суспензия на цинков оксид. Получената маса се промотира, суши, закаля-ва и таблетира. В качество на промотор се използва манганов оксид, алу-миний, магнезий и титан.
Нискотемпературният катализатор е много чувствителен към отра-вяне от серни съединения и халогени. Условията на процеса са благопри-ятни за образуване на цинков и меден сулфид, но механизмът на отравя-не е свързан преди всичко с образуване на цинков сулфид и възникващо-то от това уголемяване на медните кристали. Аналогично е действието на йоните на хлора. Отравянето става послойно по ход на газа. Рязкото понижаване активността на катализатора в долните части на слоя се наб-людава при съдържание на сяра от 0,12%. Концентрацията на хлора, дос-татъчна за отравяне на катализатора е под аналитично измеримото ниво (0,1 мг/м3). За да се избегне отравяне на катализаторите, във връхната зона,първ по хода на конвертирания газ, се зарежда поглътител предста-вляващ смес от цинков оксид и активен алуминиев оксид. Използват се също и зеолити.
Друга причина за дезактивация на катализатора може да бъде прег-ряване на слоя, предизвикващо неговото спичане. За високотемператур-ния катализатор не трябва да се допускат температури по-високи от 500 0С, за нискотемпературния - по-високи от 260 0С. Опасност от прегряване може да възникне както при възстановяване, така и в процес на конвер-сия, доколкото реакциите на възстановяване на железния и медния оксид и реакцията на конверсия протичат с отделяне на значително количество топлина.
Количеството топлина отделящо се на стадия на високотемпера-турна конверсия, зависи преди всичко от концентрацията на СО в конвер-тирания газ. В адиабатен реактор повишението на температурата на кон-вертируемия газ в реални е около 10 0С на всеки процент превърнат въг-лероден оксид. Обикновено съдържанието на въглероден оксид в газа, получен от паровата конверсия на въглеводородите не превишава 6% от-несено към влажния газ. В такъв случай високотемпературната конверсия на СО може да се проведе в адиабатен реактор в една степен. При по-ви-соко съдържание на въглероден оксид процесът се провежда в няколко степени с междинно охлаждане на конвертирания газ.
Газът постъпващ за нискотемпературна конверсия, независимо от състава на изходната суровина, съдържа не повече от 2,5% СО. Следо-вателно повишението на температурата не трябва да е повече от 25 0С, което е напълно допустимо, а прегряване е допустимо само при наруше-ние в режима на работа на предходния стадий. Характеристиката на изменение на температурата в катализаторния слой е свързана с разпре-делението по дължината на реакционната зона на реакцията на въглеродния оксид и зависи от активността на катализатора (фигура 8)
Относно кинетиката на конверсията на въглеродния оксид е предло-жен механизъм на реакция на повърхността на оксидния катализатор:
Н2О + () ЃЁН2 + (О)
СО + (О) ЃЁС О2 + ()
Н2О + СО ЃЁС О + Н2
, където (О) - атомът на кислорода на повърхността на катализатора, () - активния центърна повърхността на катализатора.
За реакции, протичащи в кинетичната област е предложено уравне-нието:
w = k.pH2O.pCO - k-1.pCO2.pH2
B.pH2O + pCO2
, където w е скорост на реакция в mol/s на 1 м3 от катализатора; k - кон-станта на скоростта, В - отношение на скоростта на правата и обратна ре-акция.
Зависимостта на k и В от температурата за железомолибденовия катализатор е следната:
k = - 34000 + 10,2 B = 8800 + 2,32
4,57. T 4,57.T
За по-точно отределяне на кинетичните фактори, J. S. Cambell и В. И. Атрощенко предлагат уравнение включващо ролята на дифузията и по-пълно описващо процеса. B. Banerjee предлага емпирична формула за скоростта на реакция w (м3/ч на 1 м3 от катализатора) от различни показа-тели на процеса, отчитащи такива фактори като дифузия, стареене и отравяне на катализатора:
w = 8,26.106.e-4,38.103/T.P0,5P/250.0,2145.?.(XH2O/0,37)0,5.4,5/d
, където 0,2145 - коефициент, отчитащ стареенето на катализатора и ди-фузията; ХН2О - концентрация на водни пари в газа; ? - коефициент, отчитащ отравянето на катализатора със сяра (при изменено съдържание на серни съединения от 0,6 до 20 мг/м3 от сухия газ ? се изменя от 0,1 до 0,37); d - диаметър на частиците на катализатора.
Тази зависимост се използва за пресмятане на обема на зарежда-ния катализатор за висикотемпературна конверсия на въглероден оксид при известен срок на употреба на катализатора.
1.4 Метаниране
Газът, получен след конверсия на въглероден оксид и очистване от въглероден диоксид съдържа от 0,2 до 0,5% СО и до 1% СО2. Използване на този газ за различни процеси в нефтопреработката и нефтохимията е нерационално, а понякога и невъзможно. С цел очистване на газа от при-меси на въглеродни оксиди се използва реакциата на метаниране:
СО + 3Н2 ЃЁСН4 + Н2О + 206 kJ
CO2 + 4H2 ЃЁCH4 + 2H2O + 165 kJ
Принципните преимущества на метанирането се състоят в то-ва:
1. За провеждане на процеса не е необходимо на вход да се добавят допълнителни вещества; в газа подлагащ се на очистване се съдържа значително количество водород, което спомага за пъл-ното протичане на реакцията на метаниране.
2. В газа, който се подлага на очистване се съдържа СН4 и Н2O, следователно в процеса на метаниране не се вкарват вещест-ва, несъдържащи се в него до провеждането на този стадий.
3. Метанирането позволява едновременно да се очисти газа от примеси на кислород по реакцията:
Н2O + 0.5O2 ЃЁH2O + 242 kJ
Последното обстоятелство, което е съществено в този случай е ако охлаждането на газа на предходния стадий се осъществява с пара или впръскване на вода.
Реакцията на метаниране на СО е реакция обратна на ПК на метана и ТД й характеристики са дадени на стр. 12, а стойността на константите на равновесие са дадени в таблица 14:
Табл.14 Константи на равновесие (К2) на реакцията СО + Н2О СО2 + Н2
Температура, 0С |
К2 |
Температура, 0C |
К2 |
|
200 250 300 350 400 450 500 520 540 560 580 600 620 640 660 680 700 710 720 730 740 750 760 |
2,279.102 8,651.10 3,922.10 2,034.10 1,170.10 7,311 4,878 4,215 3,670 3,220 2,843 2,527 2,259 2,031 1,835 1,666 1,519 1,453 1,391 1,333 1,279 1,228 1,180 |
770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 |
1,135 1,092 1,053 1,015 9,793.10-1 9,457.10-1 9,139.10-1 8,837.10-1 8,552.10-1 8,828.10-1 8,025.10-1 7,781.10-1 7.549.10-1 7,328.10-1 7,118.10-1 6,918.10-1 6,728.10-1 6,546.10-1 6,372.10-1 6,206.10-1 6,047.10-1 5,896.10-1 5,570.10-1 |
Константата на равновесие в реакцията на метаниране на СО2 се определя от уравнението:
Кр = рСН4.(рН2О)2
рСО2.(рН2)4
В температурния интервал 200 - 900 0С нейните стойности са след-ните:
Температура, 0С Кр Температура, 0С Кр
200 9,509.108 600 7,868.10-1
250 1,377.107 650 1,930.10-1
300 3,998.105 700 5,424.10-2
350 1,980.104 750 1,714.10-2
400 1,491.103 800 5,995.10-3
450 1,570.102 850 2,292.10-3
500 2,171.10 900 9,478.10-4
550 3,761
Равновесни концентрации на въглеродните оксиди могът да бъдат пресметнати, вземайки предвид уравнението за равновесните константи на реакциите и материалния баланс на процеса.
В условията на метаниране на газове получени в процеса на ПК, из-менението на концентрацията на водорода може да се пренебрегне. В то-зи случай пресмятането на равновесните концентрации на въглеродните оксиди значително се опростява и техните стойности могат да бъдат опре-делени с помощта на уравненията:
рСО = (рСО)2 рСО2 = 4.(рСО2)3
Кр.(рн2)3 Кр.(рН2)4
,където рСО, рСО2 и рН2 са парциалните налягания на компонентите на газа подлаган на метаниране.
Зависимостта на парциалните налягания на оксида и диоксида на въглерода в условията на ТД равновесие от температурата при съдържа-нието им в изходния газ в количество 1% е показана на фигура 9. При голям излишък на водород реакцията на метаниране при температури до 300 0С са практически необратими.
Повишаване на налягането е ТД благоприятно за протичане на реак-цията. Метанирането се провежда обикновено при 280 - 350 0С, налягане-то на процеса се определя от налягането на стадия на очистване от СО2, но ако полученият водород в последствие се компримира е възможно да се използва схема, предвиждаща метаниране при по-високо налягане. Обемната скорост зависи от налягането на процеса и използвания катали-затор и се колебае в границите от 1000 - 1500 ч-1, при атмосферно налягане до 6000 - 8000 ч-1 при 2Mpa.
Съществен фактор при метанирането е отвеждането на отделящата се реакционнна топлина. Тук повишението на температурата на газа е 74 0С на 1% СО и СО2 встъпващи в реакция. Процесът е едностепенен и се провежда в адиабатен реактор. При тази концентрация оксидите на въгле-рода в газа, постъпващ за метаниране се ограничава от горната граница на работната температура на катализатора. Практически общото съдър-жание на въглеродни оксиди в изходния газ не превишава 1%. Отделянето на топлина се съпровожда също с реакция на възстановяване на катали-затора, обаче опасността от прегряване практически отсъства.
Хидрирането на въглеродните оксиди се осъществява с висока ско-рост върху катализатори изготвени на основа на метали от VІІІ група, но при производството на водород метанирането се извършва на никелов катализатор. В състава на катализатора влизат също носител (различни форми на алуминиеви и силициеви оксиди) и промотиращи добавки (нап-ример МgO, Cr2O3). В повечето случаи се използва катализатор във вид на таблетки.
Кинетическите закономерности на реакцията на метаниране на СО са изучени по-обстойно от метанирането на СО2. Предложено е уравнение за скороста на метаниране на СО в отцъствие на СО2.
w = k. (pH2)1/2.(pCO)3/2
(pCH4)
,където k - скоростна константа.
По други данни реакцията е от първи порядък по въглеродния оксид. Забелязано е, че при провеждане на реакция на метаниране скоростта на хидриране на СО2 е по-ниска отколкото при отсъствие на СО. Затова обик-новено в газа след метаниране остатъчното съдържание на СО2 е по-високо от съдържанието на СО. В реални условия провеждането на про-цеса, скоростта на тези реакции се забавя от дифузията и нейната зависи-мост от общото налягане на процеса се изразява с формулата:
w = k.P0,3…0,5
Табл. 15 Характеристика на катализаторите за метаниране
Състав на катализатора |
Относи-телна плътност, кг/м3 |
Относи-телна повърх-ност, м2/гр |
Пори-стост, % |
Граница на издръж-ливост при натиск, N |
||
Съдър-жание на Ni,% |
оксиди |
|||||
50 50 40 18 50 50 50 40 - 50 |
Cr2O3 Al2O3 MgO Al2O3 +MgO SiO2 Al2O3 + SiO2 Cr2O3 + Al2O3 CaO + SiO2 + Al2O3 |
1200 1100 1000 1200 1000 1300 1200 900 |
145 140 140 15 150 130 140 100 |
50 55 52 53 50 45 50 57 |
44 98 284 147 196 167 88 196 |
След нискотемпературната конверсия на въглеродния оксид, газът постъпващ за метаниране не съдържа вредни за катализатора примиси. Действието на различните абсорбенти върху катализатора за метаниране е следното:
Адсорбент Действие
Воден разтвор на калиев Блокира порите на катали-
карбонат затора за метаниране при
изпарение на разтвора
Воден разтвор на калиев Същото действие, но ди-
карбонат + 3% диетанол етаноламина е безвреден
амин
Сулфолан, вода, диизо- Сулфоланът се разлага и
Пропаноламин предизвиква сярно отравяне
Моно- и диетаноламина Няма отровно действие
във воден разтвор
Метанол Същото
Друга причина за дезактивация на катализатора може да бъде него-вото прегряване от попадане на големи количества въглеродни оксиди вследствие от нарушаване на работния режим на стадия конверсия на оксидите на въглерода и промивка на конвертирания газ от СО2. Ако част от газа постъпващ за метаниране байпасира стадия на конверсия на СО е възможно отравяне на катализатора за метаниране със серни съединения. То е аналогично на отравянето на катализатора от частична-та конверсия.
2. Газификация на въглеводороди и нефтени остатъци
Процесът на газификация (частично окисление с кислород) на газо-образни и течни горива се осъществява във факел при температура 1300 - 1600 0С и налягане 3,0 - 10,2 MРa в стоманени реактори, футировани с огнеопорни материали. Газообразни и течни горива, кислород и пара се подават в реактора през горелка, където става разпрашаване на течното гориво на малки капчици и смесването им с окислителя. Капките гориво се изпаряват в атмосферата на горещия газ и взаимодействат с кислорода, образувайки факел. При частично окисление на пари и газове се изключва само стадия на разпрашаване и изпарение.
Процесът на газификация се осъществява при недостиг на кислород с образуване на горещ газ. В качество на окислител служи кислорода. Участието на другия окислител - водните пари - в процеса на газифика-ция на въглеводородите е малко. Сярата се превръща в сероводород в повече от 90%. Около 0,5 - 3% от въглеродното гориво се превръща в сажди.
Полученият газ на 90 - 95% се състои от СО и Н2. В него се съдържа също въглероден диоксид, метан, азот, сероводород, органични съедине-ния на сярата, а също и непрореагирали водни пари. Необходимата дъл-бочина на превръщане без използване на катализатор се достига за сметка на провеждането на процеса при висока температура. Процесът се води при автотермични условия; топлината се получава за сметка на екзо-термичните реакции на газификация с образуване на СО и СО2.
Състава и добива на газа в процеса на паро-кислородна газифика-ция на алифатните въглеводороди се определя от условията на равнове-сие на същите реакции на парова конверсия на метана и конверсия на СО, които определят състава и добива на газ от ПК. Разликата е в това, че в реактора заедно с пара се подава и кислород, в който, макар и в неголеми количества се съдържа и азот. Уравненията на материалния баланс са дадени в таблица 16.
Газифията на алифатни въглеводороди с паро-кислородно подаване в производство на водород се използва рядко, тъй като е икономически неефективно в сравнение с паро-каталитичната конверсия. Практически интерес за производство на водород представлява газификацията на неф-тените остатъци - мазут, гудрон и др.
В състава на нефтените остатъци влизат не само високомолекулни парафинови въглеводороди, но и ароматни, хетероциклени и други съеди-нения. За технологични пресмятания на процеса на газификация е доста-тъчно да се знае елементния състав на суровината. Технологичните прес-мятания се улесняват и от това, че процеса се води при високотемперату-рни условия, когато съдържанието на метан в газа според условията на ТД равновесие е ниско и се определя основно от емпирични данни и лежи в границите 0,3 - 0,5% от газа.
При въвеждане на 0,5 м3 водна пара и 1 м3 кислород и достигане на равновесие не става отлагане на въглерод, но в действителност при про-цеса на газификация се отлага въглерод във вид на сажди. Затова в тех-нологичните изчисления се взема предвид саждообразуването в размер на 2 - 3%. За опростяване на технологичните изчисления се пренебрегва уравнието за равновесие на ПК на метана, а се отчита само равновесната реакция на конверсия на СО с водна пара.
Съдържанието на сяра в нефтените остатъци може да достигне 6 - 7%. ТД изчисления за преобразуването на сяра в условията на паро-кислородна газификация на нефтените остатъци са показали, че 90% от сярата се превръща в сероводород, около 7% - в карбамил-сулфид и 2% - във СS и неголямо количество - около 1% става на сажди.
Кислородът, съдържащ се в нефтените остатъци в количества не повече от 0,5 - 0,7 %, в процеса на газификация се превръща в кислород-съдържащи компоненти - Н2О, СО2 и СО. Не е нужно да се отчита вли-яние на кислорода в техническите изчисления, тъй като неговото присъст-вие практически не влияе на разхода на техническия кислород, нито на добива на газовите компоненти. Същото се отнася и за азота в суровината, съдържанието на който може да достигне до 1%. Азотът от суровината преминава основно в газа, но при газификация се образуват също в малки количества амоняк, азотни оксиди и цианиди. Трудно е да се определи за-висимостта на добива на тези съединения от съдържанието на азота в суровината. Технологичните изчисления, определящи разхода на кисло-род за газификация, добива и състава на газа за 1 кг суровина, се свежда до следното. Да обозначим елементния състав на 1 кг от суровината:
Въглерод............................. С Азот + кислород............ N
Водород.............................. Н Влага.............................. W
Сяра.................................... S Зола................................ А
Разходът на пара - „а” кг/кг от суровината, концентрацията на кисло-род в техническия кислород СО2, м3/м3, а концентрацията на азот, аргон и други благородни газове в техническия кислород тогава е 1 - СО2. Обема на кислорода в м3, изразходван за изгаряне на водорода - д, а степента на ПК на СО с образуване на Н2 и СО2 - в.
За отределяне на въглерода, участващ в процеса на газификация с О2 и Н2О с образуване на СО + СО2, трябва от въглеродното гориво за извадим въглерода, превръщащ се в сажди (0,02 кг), и въглерод, израз-ходван за получаване на метан. Приемайки съдържанието на метана в га-за 0,5% и добива на газ - 3 м3 за 1 кг суровина, получаваме разхода на въглерод за образуване на метан равно на 0,008 кг. Количеството на гази-фицирания въглерод С` е равно на:
Подобные документы
Водород в сплавах на основе железа. Способы определения содержания водорода в металле. Техника производства стали. Технология плавки. Исследования в условиях сталеплавильного производства. Струйно-кавитационное рафинирование.
дипломная работа [171,1 K], добавлен 13.09.2006Получение водорода–будущая технология. Как и из чего в настоящее время получают водород. Сколько его получают и для каких целей. Роль водорода и водородной технологии в кругообороте веществ в природе. Проблемы получения энергии. Водородные двигатели.
реферат [32,9 K], добавлен 11.12.2007Нефть как природная маслянистая горючая жидкость. Углеводороды как основные компоненты нефти и природного газа. Анализ технологии добычи и переработки нефти. Первичный и вторичный процесс. Термический крекинг, каталитический реформинг, гидроочистка.
презентация [2,5 M], добавлен 29.09.2013Определение выхода целевого и побочного продуктов, расхода водорода на гидроочистку, потерь водорода с отдувом, составление материального баланса установки. Объемный баланс по водороду и углеводородным газам. Гидрирование олефинов и диеновых углероводов.
лабораторная работа [499,4 K], добавлен 12.11.2022Измерение рН как один из наиболее важных методов непрерывного анализа, применяемых в химической промышленности. Работа с прибором, проверка его технического состояния рН-метров типа рН-4110. Измерение активности ионов водорода и температуры водных сред.
курсовая работа [1,1 M], добавлен 07.01.2015Предварительный тепловой расчет турбины, значение теплоперепада в ней. Расчет газовой турбины. Описание спроектированной паротурбинной установки. Система газификации угля. Производство чистого водорода. Экономическая эффективность проектируемой турбины.
дипломная работа [3,8 M], добавлен 17.09.2011Возможности образования в отливке дефектов, обусловленных взаимодействием сплава с водородом, кислородом и другими газами. Определение содержания водорода в сплаве методом первого пузырька. Анализ процессов формирования кристаллического строения отливки.
курсовая работа [466,1 K], добавлен 21.01.2011Физико-химические расчет по равновесию C-O, C-FeO. Растворимость азота и водорода в металле по стадиям технологического процесса. Расчет степени дефосфорации и десульфурации стали. Оценка себестоимости жидкой стали и точки безубыточности ее производства.
презентация [144,4 K], добавлен 24.03.2019Описание и основные характеристики изделия: рН-метр со стеклянным электродом, предназначенного для измерения показателя активности ионов водорода, температуры водных растворов и электродвижущей силы. Изучение принципа работы, мер безопасности, упаковки.
курсовая работа [306,7 K], добавлен 23.03.2010Гидрирование композитов, сплавов на основе магния. Равноканальное угловое прессование. Изменение свойств веществ после обработки методами ИПД. Микроструктурный анализ. Устройство растрового микроскопа и физико-химические основы метода. Анализ изображения.
курсовая работа [561,1 K], добавлен 27.10.2016