Редуктор зубчато-червячный
Кинематический расчет и выбор электродвигателя. Выбор материалов и определение допускаемых напряжений. Расчет тихоходной ступени привода. Проверочный расчет по контактным напряжениям. Проверочный расчет зубьев на изгиб и быстроходной ступени привода.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 18.05.2009 |
Размер файла | 997,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
ФЕДЕРАЛНОЕ АГЕНСТВО ПО КУЛЬТУРЕ И КИНЕМАТОГРАФИИ
САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ КИНО И ТЕЛЕВИДЕНИЯ
Кафедра механики
Расчетно-пояснительная записка к курсовому проекту
на тему «Редуктор зубчато-червячный»
Санкт-Петербург 2009г.
Содержание
Техническое задание на курсовое проектирование
1 Кинематический расчет и выбор электродвигателя
2 Выбор материалов и определение допускаемых напряжений
3 Расчет тихоходной ступени привода
3.1 Проектный расчет
3.2 Проверочный расчет по контактным напряжениям
3.3 Проверочный расчет зубьев на изгиб
4 Расчет быстроходной ступени привода
5 Проектный расчет валов редуктора
5.1 Расчет тихоходного вала редуктора
5.2 Расчет быстроходного вала редуктора
5.3 Расчет промежуточного вала редуктора
6 Подбор и проверочный расчет шпонок
6.1 Шпонки быстроходного вала
6.2 Шпонки промежуточного вала
6.1 Шпонки тихоходного вала
7 Проверочный расчет валов на статическую прочность
8 Выбор и проверочный расчет подшипников
9 Выбор масла, смазочных устройств
Список использованной литературы
Техническое задание на курсовое проектирование
Механизм привода
1- электродвигатель;
2- муфта упругая;
3- редуктор зубчатый цилиндро-червячный;
4- передача зубчатая цилиндрическая;
5- передача червячная;
6- муфта;
7- исполнительный механизм.
Вариант 10
Потребный момент на валу исполнительного механизма (ИМ) Тим=11Нм;
Угловая скорость вала ИМ щим=12с-1.
Разработать:
1- сборочный чертеж редуктора;
2- рабочие чертежи деталей тихоходного вала: зубчатого колеса, вала, крышки подшипника.
1 Кинематический расчет и выбор электродвигателя
Исходные данные:
- потребный момент на валу исполнительного механизма (ИМ) Тим=11Нм;
- угловая скорость вала ИМ щим=12с-1;
Определяем мощность на валу ИМ Nим= Тимх щим=11х12=132Вт.
Определяем общий КПД привода по схеме привода
зобщ=ззп зчп зм зп(1.1)
где [1, с.9,10]: ззп=0,97- КПД зубчатой цилиндрической передачи;
зчп=0,8- КПД червячной передачи;
зм=0,982 - потери в муфтах;
зп=0,994- коэффициент, учитывающий потери на трение в подшипниках 4-х валов.
Сделав подстановку в формулу (1.1) получим:
зобщ.=0,97*0,85*0,982*0,994=0,7
Определяем потребную мощность электродвигателя [1,с.9]
Nэд?Nим/зобщ.(1.2)
где Nэд - требуемая мощность двигателя:
Nэд=132/0,7=188,6Вт
Выбираем электродвигатель [1,с.18,табл.П2]
Пробуем двигатель АИР56В2:
Nдв.=0,25кВт;
Синхронная частота вращения nдв=3000об/мин;
S=8%.
Определяем номинальную частоту вращения электродвигателя по формуле (5) [1,c.11]:
nном=nдв·(1-S/100);nном=3000·(1-0,08);
nном=2760 об/мин
Определяем угловую скорость вала двигателя
щдв=рnдв/30=р*2760/30=289рад/с;
Определяем общее передаточное число привода
U=щдв./щим=289/12=24,1
Производим разбивку передаточного числа по ступеням. По схеме привода
Uобщ.=U1· U2;(1.3)
Назначаем по рекомендации [1,табл.2.3]:
U2=10;
тогда
U1= Uобщ./U2;
U1=2,4. Принимаем U1=2,5. Тогда Uобщ.=25
Принимаем окончательно электродвигатель марки АИР56В2.
Угловые скорости определяем по формуле
щ=рn/30(1.4)
Рис.1 Схема валов привода
1 - быстроходный вал; 2 - промежуточный вал; 3 - тихоходный вал.
По схеме валов (рис.1) и формуле (1.4) определяем частоты вращения и угловые скорости каждого вала
n1= nном.
щ1= щдв=289рад/с;
n2= nном/U1=2760/2,5=1104об/мин;
щ2=рn2/30=р*1104/30=115,6 рад/с;
n3= n2/U2=1104/10=110,4 об/мин;
щ3=рn3/30=р*110,4/30=11,5 рад/с.
Определяем мощность на каждом валу по схеме привода
N1=Nдв зм=0,25*0,98=245Вт;
N2=N1 ззп зп2=245*0,97*0,992=233Вт;
N3=N2 зчп зп =233*0,8*0,99=184,5Вт;
Nим=N3 зм =224*0,98=181Вт.
Определяем вращающие моменты на каждом валу привода по формулам [1,с.12,14]:
; Т2=Т1*U1; Т3=Т2*U2; (1.5)
Т1=245/289=0,85 Н*м;
Т2=0,85*2,5=2,1 Н*м;
Т3=2,1*10=21 Н*м.
Все рассчитанные параметры сводим в табл.1.
Параметры кинематического расчетаТаблица 1
№ вала |
n, об/мин |
щ, рад/с |
N, Вт |
Т, Нм |
U |
|
Дв |
2760 |
289 |
250 |
0,85 |
||
1 |
2760 |
289 |
245 |
0,85 |
2,5 |
|
2 |
1104 |
115,6 |
233 |
2,1 |
||
10 |
||||||
3 |
110,4 |
11,5 |
184,5 |
21 |
||
ИМ |
110,4 |
11.,5 |
181 |
21 |
2 Выбор материалов и определение допускаемых напряжений
Выбираем материал для шестерни, червяка и колеса по табл.3.2 [4,c.52]:
шестерня и червяк- сталь 40Х, термообработка - улучшение 270НВ,
колесо - сталь 40Х, термообработка - улучшение 250НВ.
Для выбора марки материала червячного колеса рассчитаем скорость скольжения
,(2.1)
где Т - вращающий момент на валу червячного колеса,
щ - угловая скорость тихоходного вала,
U - передаточное число.
Подставив значения в формулу 2.1 получим:
;
vs=2,2 м/с.
В соответствии с табл. 3.5 [4] для червячного колеса примем бронзу БрА9Ж3Л, отлитую в кокиль с ув=500Н/мм2 и ут=230Н/мм2.
Определяем допускаемое контактное напряжение для стальных деталей по формуле [4,c.53]:
(2.2)
где уHlimb - предел контактной выносливости при базовом числе циклов;
КHL - коэффициент долговечности;
[SH] - коэффициент безопасности;
по [1,c.33]:КHL =1; [SH] =1,1.
Определяем уHlimb по табл.3.1[4,c.51]:
уHlimb =2НВ+70;(2.3)
уHlimb1 =2270+70; уHlimb1 =610МПа;
уHlimb2 =2250+70; уHlimb1 =570МПа.
Сделав подстановку в формулу (2.1) получим
;МПа;
;МПа.
Определяем допускаемое расчетное напряжение по формуле [4,c.53]:
(2.4)
;
МПа.
Определяем допускаемые напряжения по по табл.3.1[4,c.51]:
[у]Fo =1,03НВ;
[у]Fo1 =1,03x270=281МПа;
[у]Fo2 =1,03x250=257МПа.
Определяем допускаемое контактное и изгибное напряжения для червячного колеса по формулам табл. 3.6 [4,c.58]:
[у]Н =250-25vs, [у]F =(0,08ув+0,25 ут)(2.5)
[у]Н =250-25•2,2=195Н/мм2;
[у]F =(0,08•500+0,25•230)=97,5Н/мм2.
3 Расчет тихоходной ступени привода
3.1 Проектный расчет
Определяем межосевое расстояние передачи по формуле [4,c.74]:
(3.1)
гдеТ - вращающий момент на колесе ,Т3 =21 Нм (см. табл.1).
Подставив значения в формулу (3.1) получим:
Принимаем окончательно по ГОСТ6636-69 [4,табл.13.15]
Число витков червяка Z1 принимаем в зависимости от передаточного числа.
При U = 10 принимаем Z1 = 4.
Число зубьев червячного колеса Z2 = Z1 x U = 4 x 10 = 40.
Определяем модуль [4,c.74]:
mn=(1,5…1,7)?аw/z2;(3.2)
mn=(1,5…1,7)?50/40.
Принимаем модуль mn=2мм .
Из условия жесткости определяем коэффициент диаметра червяка [4,c.75]:
q=(0,212…0,25) z2;
Принимаем модуль q=8.
Определяем основные размеры червяка и червячного колеса по формулам [4,c.76]:
Делительный диаметр червяка
Диаметры вершин и впадин витков червяка
Длина нарезной части шлифованного червяка :
Принимаем b1=28мм .
Делительный угол подъема
г=arctg(z1/q);
г=arctg(4/8);
г=26°33'54''.
Делительный диаметр червячного колеса
Диаметры вершин и впадин зубьев червячного колеса
Наибольший диаметр червячного колеса
Ширина венца червячного колеса
Принимаем b2=28мм
Окружная скорость
червяка -
колеса -
Определяем силы в зацеплении [4, табл.6.1]:
- окружные
(3.7)
- радиальные
; где г=26°33'54'' - угол подъема витка;(3.8)
-осевые
(3.9)
Все вычисленные параметры заносим в табл.2.
Таблица 2 Параметры червячной передачи тихоходной ступени
Параметр |
Червяк |
Колесо |
|
m,мм |
1 |
||
q |
8 |
||
z |
4 |
40 |
|
d,мм |
16 |
80 |
|
dа,мм |
20 |
84 |
|
df,мм |
11,2 |
75,2 |
|
b, мм |
28 |
28 |
|
Ft, Н |
262,5 |
525 |
|
Fr, Н |
262,5 |
262,5 |
|
Fа, Н |
525 |
262,5 |
3.2 Проверочный расчет по контактным напряжениям
Проверку контактных напряжений производим по формуле [4, c.77]:
;(3.10)
где: К - коэффициент нагрузки, при окружной скорости колеса менее 3м/с К=1.
Определяем ?уН
;
;недогрузки, что допускается.
3.3 Проверочный расчет зубьев на изгиб
Расчетное напряжение изгиба в основании ножки зубьев колеса [4,с.78]:
;(3.11)
где: YF- коэффициент формы зуба колеса, YF =1,55 [4,табл.4.10].
Подставив значения в формулу получим:
;
Прочность зубьев на изгиб обеспечивается.
Определяем ?уF
;
Все вычисленные параметры проверочных расчетов заносим в табл.3.
Таблица 3 Параметры проверочных расчетов
Параметр |
Обозн. |
Допускаемое |
Расчетное |
Недогрузка(-) или перегрузка(+) |
|
Контактное напряжение, МПа |
уН |
195 |
154 |
-20% |
|
Напряжение изгиба, МПа |
уF1 |
97,5 |
10,1 |
-79% |
4 Расчет быстроходной ступени привода
Межосевое расстояние для быстроходной ступени для того, чтобы корпус редуктора был разъемным по осям валов принимаем равным 50мм.
а=50мм.
Определяем модуль [2,c.36]:
mn=(0,01…0,02)?50;
mn=0,5…1;
Принимаем mn=1.
Определяем суммарное число зубьев по формуле (3.12) [1,c.36]:
zУ=2а/mn;
zУ=2?50/1; zУ=100
Принимаем zУ=100.
Определяем число зубьев шестерни и колеса по формулам (3.13) [2,c.37]:
z1= zУ/(U1+1);z1=100/(2,5+1);z1=28,5; принимаем z1=28.
Тогда z2= zУ-z1=100-28=72
Фактическое передаточное соотношение U1=72/28=2,57
Отклонение передаточного числа от номинального незначительное.
Определяем делительные диаметры шестерни и колеса по формуле (3.17) [2,c.37]:
d1=mn?z1=1х28=28мм;
d2=mn?z2=1х72=72мм;
Определяем остальные геометрические параметры шестерни и колеса по формулам [2,c.37]:
;;
;;;
мм;
;мм;
;мм;
;мм;
;мм;
;мм;
;мм
; мм;
;мм;
Определяем окружные скорости колес
;м/с.
Назначаем точность изготовления зубчатых колес - 7А [2,c.32].
Определяем силы в зацеплении [4, табл.6.1]:
- окружная
;Н;
- радиальная
; где б=20° - угол зацепления;
;Н;
Осевые силы в прямозубой передачи отсутствуют.
Все вычисленные параметры заносим в табл.4.
Таблица 4 Параметры зубчатой передачи быстроходной ступени
Параметр |
Шестерня |
Колесо |
|
mn,мм |
1 |
||
ha,мм |
1 |
||
ht,мм |
1,25 |
||
h,мм |
2,25 |
||
с, мм |
0,25 |
||
z |
28 |
72 |
|
d,мм |
28 |
72 |
|
dа,мм |
30 |
74 |
|
df,мм |
25,5 |
69,5 |
|
b, мм |
15 |
18 |
|
аW,мм |
50 |
||
v, м/с |
4 |
||
Ft, Н |
58.3 |
||
Fr, Н |
21,2 |
5 Проектный расчет валов редуктора
По кинематической схеме привода составляем схему усилий, действующих на валы редуктора по закону равенства действия и противодействия. Для этого мысленно расцепим шестерни и колеса редуктора, при этом дублирующий вал не учитываем.
Схема усилий приведена на рис.1.
Рис.2 Схема усилий, действующих на валы редуктора.
Из табл.1,2,4 выбираем рассчитанные значения:
Т1=0,85 Нм;Т2=2,1 Нм;Т3=21 Нм;
Ft1= Ft2=58,3 Н; Ft3=262,5 Н;Ft4=525 Н;Fr1= Fr2=21,2 Н;Fr3= Fr4=262,5 Н; d1=28мм;d2=72мм;d3=16мм;d4=80мм.
Fm1 и Fm1 - консольные силы от муфт, которые равны [4, табл.6.2]:
;;
Н;Н.
Rx и Ry - реакции опор, которые необходимо рассчитать.
Так как размеры промежуточного вала определяются размерами остальных валов, расчет начнем с тихоходного вала.
5.1 Расчет тихоходного вала редуктора
Схема усилий действующих на валы редуктора представлена на рис.2.
Назначаем материал вала. Принимаем сталь 40Х, для которой [2, табл.8.4] ув=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.
Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение [2,c.161]:
где [фк]=(20…25)МПа
Принимаем [фк]=20МПа.
;мм.
Принимаем окончательно с учетом стандартного ряда размеров Rа20 (ГОСТ6636-69):
мм.
Намечаем приближенную конструкцию ведомого вала редуктора (рис.3), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.
Рис.3 Приближенная конструкция тихоходного вала
мм;
мм - диаметр под уплотнение;
мм - диаметр под подшипник;
мм - диаметр под колесо;
мм - диаметр буртика;
b4=28мм.
Учитывая, что осевые нагрузки на валу имеются предварительно назначаем подшипники шариковые радиально-упорные однорядные серии диаметров 2 по мм подшипник №46205, у которого Dп=52мм; Вп=15мм [4,табл.К27]. Выбираем конструктивно остальные размеры:
W=20мм; lм=20мм; l1=35мм; l=60мм; с=5мм.
Определим размеры для расчетов: l/2=30мм;
с=W/2+ l1+ lм/2=55мм - расстояние от оси полумуфты до оси подшипника.
Проводим расчет тихоходного вала на изгиб с кручением.
Заменяем вал балкой на опорах в местах подшипников (см. рис.4). Назначаем характерные точки 1,2, 3 и 4. Определяем реакции в подшипниках в вертикальной плоскости.
УМ2y=0;RFy·0,06-Fr4·0,03=0
RFy= 262,5·0,03/ 0,06;
RЕy= RFy=131Н.
Определяем изгибающие моменты в характерных точках:
М1у=0;
М2у=0;
М3у= RЕy·0,03;
М3у =4Нм2;
М3у=0;
Строим эпюру изгибающих моментов Му, Нм2 (рис.3)
Определяем реакции в подшипниках в горизонтальной плоскости.
УМ4x=0;Fm2·0,115- RЕx·0,06+ Ft4·0,03=0;
RЕx=( 1145·0,115+ 525·0,03)/ 0,06;
RЕx=4820Н;
УМ2x=0;-Fm2·0,055+ Ft4·0,03+ RFx·0,06=0;
RFx= (1145·0,055- 525·0,03)/ 0,06;
RFx=787Н.
Определяем изгибающие моменты:
М1х=0;
М2= -Fr4·0,03
М2х=-262,5·0,03;
М2х=-8Нм;
М3хслева=-Fm2·0,085-RЕх ·0,055;
М3хслева==-1145·0,085-787·0,03;
М3хслева=-121Нм;
М3х=- REх ·0,055;
М3х=- 4820 ·0,03;
М3х=- 144;
М4х=0;
Строим эпюру изгибающих моментов Мх.
Рис.4 Эпюры изгибающих моментов тихоходного вала
Крутящий момент
Т1-1= Т2-2= Т3-3= T3=21Нм;
T4-4=0.
Определяем суммарные радиальные реакции [4,рис 8.2]:
;;
;Н;
;Н.
Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:
; ; Нм2.
Эквивалентный момент:
;; Нм2.
5.2 Расчет быстроходного вала редуктора
Схема усилий, действующих на быстроходный вал представлена на рис.2.
Назначаем материал вала. Принимаем сталь 40Х, для которой [2, табл.8.4] ув=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.
Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение [2,c.161]:
где [фк]=(20…25)Мпа
Принимаем [фк]=20Мпа.
;мм.
Принимаем окончательно с учетом стандартного ряда размеров Rа10 (ГОСТ6636-69):
мм.
Намечаем приближенную конструкцию быстроходного вала вала редуктора (рис.5), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.
мм;
мм - диаметр под уплотнение;
мм - диаметр под подшипник;
мм - диаметр под ступицу шестерни;
мм - диаметр буртика;
b1=15мм.
Учитывая, что осевых нагрузок на валу нет предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по мм подшипник №100, у которого Dп=26мм; Вп=8мм [4,табл.К27].
Выбираем конструктивно остальные размеры:
W=14мм; lм=16мм; l1=25мм; l=60мм.
Определим размеры для расчетов:
l/2=30мм;
с=W/2+ l1+ lм/2=40мм - расстояние от оси полумуфты до оси подшипника.
Проводим расчет быстроходного вала на изгиб с кручением.
Рис.5 Приближенная конструкция быстроходного вала
Заменяем вал балкой на опорах в местах подшипников (см. рис.6). Назначаем характерные точки 1,2, 3 и 4. Определяем реакции в подшипниках в вертикальной плоскости.
УМ2y=0;RАy·0,06-Fr1·0,03=0
RАy= 21,2·0,03/ 0,06;
RАy= RВy=10,6Н.
Определяем изгибающие моменты в характерных точках:
М1у=0;
М2у=0;
М3у= RАy·0,03;
М3у =0,5Нм2;
М3у=0;
Строим эпюру изгибающих моментов Му, Нм2 (рис.6).
Определяем реакции в подшипниках в горизонтальной плоскости.
УМ4x=0;Fm1·0,1- RАx·0,06+ Ft1·0,03=0;
RАx= (64,5·0,1+ 58,3·0,03)/ 0,06;
RАx=137Н;
Рис.6 Эпюры изгибающих моментов быстроходного вала
УМ2x=0;Fm1·0,02- Ft1·0,03+ RВx·0,06=0;
RВx= (58,3·0,03- 64,5·0,02)/ 0,06;
RВx=7,7Н
Определяем изгибающие моменты:
М1х=0;
М2= -Fm1·0,04
М2х=-64,5·0,04;
М2х=-2,6Нм;
М3хсправа=-Fm1·0,1+RВх ·0,03;
М3хсправа==-64,5·0,1+7,7 ·0,03;
М3хсправа=-6,2Нм;
М3х=- RАх ·0,03;
М3х=- 137 ·0,03;
М3х=- 4,1;
М4х=0;
Строим эпюру изгибающих моментов Мх.
Крутящий момент
Т1-1= Т2-2= Т3-3= T1=0,85Нм;
T4-4=0.
Определяем суммарные радиальные реакции [4,рис 8.2]:
;;
;Н;
;Н.
Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:
; ; Нм2.
Эквивалентный момент:
;; Нм2.
5.3 Расчет промежуточного вала - червяка
Назначаем материал вала. Принимаем сталь 40Х, для которой [1, табл.8.4] ув=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.
Определяем диаметр выходного конца червяка из расчёта на чистое кручение
;
где [фк]=(20…25)Мпа[1,c.161]
Принимаем [фк]=20Мпа.
;мм.
Принимаем dв=8мм.
Принимаем диаметр вала под подшипник 10мм.
Намечаем приближенную конструкцию червяка (рис.7), увеличивая диаметр ступеней вала на 5…6мм
Рис.7 Приближенная конструкция промежуточного вала
х=8мм;
W=20мм;
r=2,5мм;
b2=18мм;
b3=28мм.
Расстояние l определяем из суммарных расстояний тихоходного и быстроходного валов с зазором между ними 25…35мм.
l=60+30+30=120мм.
l1=30мм;l2=30мм.
Учитывая, что осевые нагрузки на валу имеются предварительно назначаем подшипники шариковые радиально-упорные однорядные серии диаметров 1 по мм подшипник №36100К6, у которого Dп=26мм; Вп=8мм [4,табл.К27].
Заменяем вал балкой на опорах в местах подшипников.
Рассматриваем вертикальную плоскость (ось у) Определяем реакции в подшипниках в вертикальной плоскости.
МСу=0;
-RDу·0,09+Fr3·0,03+Fr2?0,12=0
RDy=(262,5·0,03+21,2?0,12)/ 0,09;
RDy==116Н.
МDу=0;
RCy·0,09- Fr3?0,06+ Fr2·0,03=0;
RCy=(262,5·0,06-21,2?0,03)/ 0,09;
RCy=168Н.
Назначаем характерные точки 1, 2, 3, и 4 и определяем в них изгибающие моменты:
М1у=0;
М2у=-RCy·0,03;
М2у=-5Нм;
М3услева=-RCy·0,09+Fr3·0,06;
М3услева=0,6Нм
М3усправа= Fr2·0,03;
М3усправа= 0,6Нм
М4у=0;
Строим эпюру изгибающих моментов Му, Нм (рис.8).
Определяем реакции в подшипниках в горизонтальной плоскости.
МСх=0; RDx·0,09-Ft3·0,03-Ft2?0,12=0;
RDx=( 262,5·0,03+ 58,3?0,12)/0,09;
RDx=87,5Н;
МDх=0;
RCx·0,09- Ft3?0,06-Ft2·0,03=0;
RCx=(262,5·0,03+58,3?0,06)/ 0,09;
RCx=126Н.
Назначаем характерные точки 1, 2, 3 и 4 и определяем в них изгибающие моменты:
М1x=0;
М2x=-RCx·0,03;
М2x=-3,8Нм;
М3xслева= -RCx·0,09-Ft3·0,06;
М3xслева=-27Нм;
М3xсправа= Ft2·0,03;
М3xсправа=1,7Нм;
М4у=0.
Строим эпюру изгибающих моментов Му, Нм (рис.8)
Рис.8 Эпюры изгибающих и крутящих моментов промежуточного вала.
Крутящий момент Т1-1=0;
Т2-2=-Т3-3=- T2=-2,1Нм;
Т4-4=0.
Определяем суммарные радиальные реакции [4,рис 8.2]:
;;
;Н;
;Н.
Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:
; ; Нм.
Эквивалентный момент:
;; Нм.
Все рассчитанные значения сводим в табл.5.
Параметры валов Таблица 5
R1, H |
R2, H |
MИ, Нм |
MИэкв, Нм |
||
Тихоходный вал |
4821 |
798 |
144 |
146 |
|
Быстроходный вал |
137,4 |
13,1 |
6,2 |
6,3 |
|
Промежуточный вал - червяк |
1419 |
405 |
92,5 |
93 |
6 Подбор и проверочный расчет шпонок
Выбор и проверочный расчет шпоночных соединений проводим по [4]. Обозначения используемых размеров приведены на рис.9.
Рис.9 Сечение вала по шпонке
6.1 Шпонки быстроходного вала
Для выходного конца быстроходного вала при d=6 мм подбираем призматическую шпонку со скругленными торцами по ГОСТ23360-78 bxh=2x2 мм2 при t=1,2мм (рис.9).
При длине ступицы полумуфты lм=16 мм выбираем длину шпонки l=14мм.
Материал шпонки - сталь 40Х нормализованная. Напряжения смятия и условия прочности определяем по формуле:
(6.1)
где Т - передаваемый момент, Нмм; Т1=0,85 Нм.
lр - рабочая длина шпонки, при скругленных концах lр=l-b,мм;
[]см - допускаемое напряжение смятия.
С учетом того, что на выходном конце быстроходного вала устанавливается полумуфта из ст.3 ([]см=110…190 Н/мм2) вычисляем:
Условие выполняется.
Для зубчатого колеса вала при d=15 мм подбираем призматическую шпонку со скругленными торцами bxh=5x5 мм2 при t=3мм, t1=2,3мм. Т1=0,85Нм.
При длине ступицы шестерни lш=15 мм выбираем длину шпонки l=12мм.
Материал шпонки - сталь 45 нормализованная. Проверяем напряжение смятия, подставив значения в формулу (6.1):
Условие выполняется.
6.2 Шпонки промежуточного вала
Для зубчатого колеса вала при d=8 мм подбираем призматическую шпонку со скругленными торцами bxh=2x2 мм2 при t=1,2мм, t1=1мм. Т2=2,1Нм.
При длине ступицы шестерни lш=18 мм выбираем длину шпонки l=14мм.
Материал шпонки - сталь 45 нормализованная. Проверяем напряжение смятия, подставив значения в формулу (6.1):
Условие выполняется.
6.3 Шпонки тихоходного вала
Передаваемый момент Т3=21Нм.
Для выходного конца вала при d= 18мм подбираем призматическую шпонку со скругленными торцами bxh=6x6 мм2 при t=3,5мм.
При длине ступицы полумуфты lМ=20 мм выбираем длину шпонки l=16мм.
Для червячного колеса тихоходного вала при d=30 мм подбираем призматическую шпонку со скругленными торцами bxh=8x7мм2 при t=4мм.
При длине ступицы шестерни lш=28 мм выбираем длину шпонки l=22мм.
С учетом того, что на ведомом валу устанавливается колесо из бронзы ([]см=70…90 Н/мм2) вычисляем по формуле (6.1):
условие выполняется.
Таблица 6
Параметры шпонок и шпоночных соединений
Параметр |
тих.вал- полум |
тих.вал- колесо |
промвал-шестерня |
быстр вал-шестер. |
быстр. вал-полум. |
|
Ширина шпонки b,мм |
6 |
8 |
2 |
5 |
2 |
|
Высота шпонки h,мм |
6 |
6 |
2 |
5 |
2 |
|
Длина шпонки l,мм |
16 |
22 |
14 |
12 |
14 |
|
Глубина паза на валу t,мм |
3,5 |
4 |
1,2 |
3 |
1,2 |
|
Глубина паза во втулке t1,мм |
2,8 |
3,3 |
1 |
2,3 |
1 |
7. Проверочный расчет валов на статическую прочность
В соответствии с табл.5 наиболее опасным является сечение 3-3 тихоходного вала, в котором имеются концентраторы напряжений от посадки зубчатого колеса с натягом, шпоночного паза и возникают наибольшие моменты.
Исходные данные для расчета:
МИэкв= 146Нм;
МИ=144Нм;
Т3-3=21Нм;
dв=30мм;
в=8мм - ширина шпонки,
t=4мм - глубина шпоночного паза,
l=22мм - длина шпонки.
При расчете принимаем, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения - по отнулевому циклу.
Определяем диаметр вала в рассчитываемом сечении при допускаемом напряжении при изгибе [у-1]и=60МПа:
мм; 30>23.
Условие соблюдается.
Определяем напряжения изгиба:
уи=Ми/W;
где W - момент сопротивлению изгибу. По [4,табл.11.1]:
;
мм3;
уи=144000/32448=4,4Н/мм2.
При симметричном цикле его амплитуда равна:
уа= уи =4,4Н/мм2.
Определяем напряжения кручения:
фк=Т3-3/Wк;
где Wк - момент сопротивлению кручению. По [4,табл.22.1]:
;
мм3;
фк=21000/64896=0,3Н/мм2.
При отнулевом цикле касательных напряжений амплитуда цикла равна:
фа= фк /2=0,3/2=0,15Н/мм2.
Определяем коэффициенты концентрации напряжении вала [4, с.258]:
(Ку)D=( Ку/Кd+ КF-1)/ Кy;(Кф)D=( Кф/Кd+ КF-1)/ Кy;(7.1)
где Ку и Кф - эффективные коэффициенты концентрации напряжений, по табл.11.2 [4] выбираем для шпоночных пазов, выполненных концевой фрезой Ку =1,6, Кф =1,4;
Кd - коэффициент влияния абсолютных размеров поперечного сечения, по табл.11.3 [4] выбираем Кd =0,75;
КF- коэффициент влияния шероховатости, по табл.11.4 [4] выбираем для шероховатости Rа=1,6 КF=1,05;
Кy - коэффициент влияния поверхностного упрочнения, по табл.11.4 [4] выбираем для закалки с нагревом ТВЧ Кy =1,5.
Подставив значения в формулы (7.1) получим:
(Ку)D=( 1,6/0,75+ 1,05-1)/ 1,5=1,45;
(Кф)D=( 1,4/0,75+ 1,05-1)/ 1,5=1,28.
Определяем пределы выносливости вала [4, c263]:
(у-1)D=у-1/(Ку)D;(ф-1)D=ф-1/(Кф)D;(7.2)
где у-1 и ф-1 - пределы выносливости гладких образцов при симметричном цикле изгиба и кручения, по табл.3. [4] у-1 = 380Н/мм2 , ф-1 ?0,58 у-1 =220Н/мм2;
(у-1)D=380/1,45=262Н/мм2; (ф-1)D=220/1,28=172 Н/мм2.
Определяем коэффициенты запаса прочности по нормальным и касательным напряжениям 4, c263]:
sу=(у-1)D/ уа;sф=(ф-1)D/ фа.(7.3)
sу=262/ 4,4=59;sф=172/ 0,15=1146.
Определяем общий коэффициент запаса по нормальным и касательным напряжениям [4, c263]:
(7.4)
где [s]=1,6…2,1 - допускаемый коэффициент запаса прочности.
Сопротивление усталости вала в сечении 3-3 обеспечивается, расчет остальных валов не проводим, т.к. расчет проведен на самом опасном сечении, и коэффициент запаса прочности значительно превышает допустимый.
8 Выбор и проверочный расчет подшипников
Предварительно выбранные подшипниками с действующими на них радиальными нагрузками приведены в табл.7.
Таблица 7 Параметры выбранных подшипников
Быстроходный вал |
Промежуточный вал |
Тихоходный вал |
||
№ |
100 |
36100 |
46205 |
|
d, мм |
10 |
10 |
25 |
|
D, мм |
26 |
26 |
52 |
|
В, мм |
8 |
8 |
15 |
|
С, кН |
4,62 |
5,03 |
15,7 |
|
Со, кН |
1,96 |
2,45 |
8,34 |
|
RА, Н |
137,4 |
1419 |
4821 |
|
RБ, Н |
13,1 |
405 |
798 |
Подшипники устанавливаем по схеме «враспор». Пригодность подшипников определяем по условиям [4, c.129]:
Ср?С;Lр?Lh;
где Ср - расчетная динамическая грузоподъемность;
Lh - требуемая долговечность подшипника, для зубчатых редукторов Lh =10000ч.
;[4, c.129](8.1)
где щ - угловая скорость соответствующего вала (см. табл.1);
m=3 для шариковых подшипников;
RЕ - эквивалентная динамическая нагрузка, при отсутствии осевых усилий [4, табл.9.1]:
RЕ=VRАКдКф(8.2)
где K - коэффициент безопасности; K =1,1…1,2 [4, табл.9.4]. Принимаем K =1,1.
V - коэффициент вращения, при вращении внутреннего кольца V=1
Kф - температурный коэффициент; Kф =1 (до 100єС) [4, табл.9.4].Определяем расчетную долговечность подшипников в часах [4, c.129]:
(8.3)
Подставив значения в формулы (8.1)-(8.3) проверяем подшипники.
Для быстроходного вала:
RЕ=137,4х1,1=151Н;
- условие выполняется;
- условие выполняется.
Для промежуточного вала:
RЕ=1419х1,1=1560Н;
- условие выполняется;
- условие выполняется.
Для тихоходного вала:
RЕ=4821х1,1=5300Н;
- условие выполняется.
- условие выполняется.
Окончательные параметры подшипников приведены в табл.7.
9 Выбор масла, смазочных устройств
Используем картерную систему смазывания. В корпус редуктора заливаем масло так, чтобы червяк был в него погружен на глубину hм (рис.10): hм max =(0,1…0,5)d1 = 2…8мм;
hм min = 2,2m = 21 = 2,2мм.
При вращении колеса масло будет увлекаться его зубьями, разбрызгиваться, попадать на внутренние стенки корпуса, откуда стекать в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которым покрываются поверхности расположенных внутри корпуса деталей, в том числе и подшипники.
Рис.10 Схема определения уровня масла в редукторе
Объем масляной ванны принимаем из расчета 0,5 л на 1кВт передаваемой мощности V = 0,5Nдв = 0,50,25 = 0,125 л.
Контроль уровня масла производится круглым маслоуказателем, который крепится к корпусу редуктора при помощи винтов. Для слива масла предусмотрена сливная пробка. Заливка масла в редуктор производится через съемную крышку в верхней части корпуса.
Выбираем смазочный материал. Для этого ориентировочно рассчитаем
необходимую вязкость:
где н50 - рекомендуемая кинематическая вязкость смазки при температуре 50°С;
н1 =170мм2/с - рекомендуемая вязкость при v=1м/с для зубчатых передач с зубьями без термообработки;
v=4м/с - окружная скорость в зацеплении
Принимаем по табл.10.29 [4] масло И-220А.
Для обоих валов выберем манжетные уплотнения типа 1 из ряда 1 по ГОСТ 8752-79. Установим их рабочей кромкой внутрь корпуса так, чтобы обеспечить к ней хороший доступ масла.
Список использованной литературы
1. Основы конструирования: Методические указания к курсовому проектированию/ Сост. А.А.Скороходов, В.А Скорых.-СПб.: СПбГУКиТ, 1999.
2. Дунаев П.Ф., Детали машин, Курсовое проектирование. М.: Высшая школа, 1990.
3. Скойбеда А.Т., Кузьмин А.В., Макейчик Н.Н., Детали машин и основы конструирования, Минск: «Вышейшая школа», 2000.
4. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб. пособие. - М.: Высш. шк., 1991
5. Анурьев В.И. Справочник конструктора-машиностроителя: В 3 т. -8-е изд. перераб. и доп. Под ред. И.Н.Жестковой. - М.: Машиностроение, 1999
Размещено на Allbest.ru
Подобные документы
Кинематический расчет и выбор электродвигателя. Выбор материалов и определение допускаемых напряжений. Расчет тихоходной ступени привода. Подбор и проверочный расчет шпонок. Выбор масла, смазочных устройств. Проектный и проверочный расчет валов редуктора.
курсовая работа [2,4 M], добавлен 13.05.2009Энергетический и кинематический расчеты привода. Расчет редуктора. Выбор материалов и расчет допускаемых напряжений для зубчатых передач. Расчет геометрии передачи тихоходной ступени. Проверочный расчет тихоходного вала. Смазка редуктора. Выбор муфт.
курсовая работа [64,4 K], добавлен 01.09.2010Проектирование и кинематический расчет электродвигателя редуктора двухступенчатого соосного двухпоточного с внутренним зацеплением тихоходной ступени. Расчет быстроходной ступени привода, валов редуктора, подбор и проверочный расчет шпонок, подшипников.
курсовая работа [1,6 M], добавлен 22.05.2009Определение общего КПД привода. Выбор материала и определение допускаемых напряжений, проектный расчет закрытой цилиндрической передачи быстроходной ступени. Выбор материала и определение допускаемых напряжений тихоходной ступени. Сборка редуктора.
курсовая работа [1,2 M], добавлен 26.07.2009Кинематический расчет механизма привода электродвигателя. Материалы и определение допускаемых напряжений. Тихоходная ступень привода, вал редуктора. Шпонки быстроходного, промежуточного и тихоходного вала. Подшипники: выбор масла и смазочных устройств.
курсовая работа [1008,4 K], добавлен 26.05.2009Проект привода цепного транспортера. Выбор электродвигателя и кинематический расчет. Частота вращения тяговой звездочки и валов. Выбор материалов шестерен и колес и определение допускаемых напряжений. Расчет третьей ступени редуктора, окружная скорость.
курсовая работа [1,2 M], добавлен 29.07.2010Выбор электродвигателя и кинематический расчет привода, быстроходной и тихоходной ступени. Ориентировочный расчет валов редуктора, подбор подшипников. Эскизная компоновка редуктора. Расчет клиноременной передачи. Проверка прочности шпоночных соединений.
курсовая работа [1,2 M], добавлен 05.10.2014Выбор электродвигателя и определение его требуемой мощности; кинематический и силовой расчет привода по валам. Расчет тихоходной ступени, выбор материала и допускаемых напряжений. Эскизная компоновка редуктора. Смазка зубчатых зацеплений и подшипников.
курсовая работа [859,3 K], добавлен 06.05.2012Расчет моментов, частот вращения, мощностей на валах привода и передаточных чисел для быстроходной и тихоходной передач. Кинематическая схема узла привода. Расчет зубьев на контактную выносливость. Выбор и проверочный расчет подшипников качения.
курсовая работа [824,4 K], добавлен 07.12.2010Общая характеристика и внутреннее устройство, выбор электродвигателя и кинематический расчет привода. Выбор материала и допускаемых напряжений червячного редуктора, усилия в зацеплении, параметры вала и передачи. Выбор конструкции и расчет валов.
курсовая работа [2,8 M], добавлен 16.02.2016