Разработка структурной схемы производства безнапорных железобетонных труб

Технологические характеристики безнапорных железобетонных труб и сырьевого материала. Особенности технологии получения труб. Основные стадии технологического процесса. Выбор оборудования технологических линий и структурной схемы производства изделия.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 21.11.2012
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РЕСПУБЛИКИ КАЗАХСТАН

Рудненский индустриальный институт

Кафедра строительства и строительного материаловедения

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

Тема: "Разработка структурной схемы производства безнапорных железобетонных труб "

Дисциплина: Процессы и аппараты

Рудный 2011г.

Содержание

  • Введение
  • 1. Характеристика изделия
  • 2. Характеристика сырьевых материалов
  • 2.1 Вяжущие вещества
  • 2.2 Заполнители
  • 3. Основы теории элементарных процессов и закономерности отдельных стадий технологического процесса
  • 3.1 Кинематика смешения
  • 3.2 Формование центрифугированием
  • 3.3 Тепловлажностная обработка
  • 4. Расчет состава
  • 4.1 Расчет потребностей сырьевых материалов
  • 5. Выбор структурнойсхемы производства
  • 6. Технологическая схема производства безнапорных труб методом центрифугирования
  • 7. Выбор оборудования технологической линий
  • 8. Расчет процесса центрифугирования труб
  • 9. Техника безопасности
  • Заключение
  • Список использованой литературы

Введение

Рост производства сборного железобетона вызывается непрерывным расширением объемов капитального строительства.

В связи с этим, перед строителями и работниками промышленности строительных материалов поставлена задача совершенствования технологии производства железобетонных изделий и конструкций.

Промышленность сборного железобетона в настоящее время изготовляет почти целиком перекрытия для промышленных, гражданских и жилых зданий, более 30% фундаментов зданий, более 30% стен зданий и сооружений, более 60% каркасов промышленных зданий.

Расход сборного железобетона за последние годы в жилищном, гражданском и промышленном строительстве быстро растет за счет увеличения удельного веса полносборных домов.

В нашей стране разработана система унификации объемно-планировочных решений промышленных зданий, сооружений и объектов жилищно-гражданского строительства. Изданы единые каталоги бетонных и железобетонных изделий для промышленного и жилищно-гражданского строительства. Унифицированные изделия составляют около 80% общего объема железобетона.

Основным направлением развития сборных железобетонных конструкций являются снижение материалоемкости и металлоемкости изделий и конструкций, повышение степени заводской готовности, снижение энергетических затрат.

Однотипные изделия различают по типоразмерам, если конструкции и размеры различны, а также по маркам, если изделия одного типоразмера имеют различные армирование, закладные детали или технологические отверстия.

Выбор технологии изготовления определяется формой изделий, их габаритами, массой, видом бетона и принятым армированием.

В промышленности сборного ж/б в зависимости от номенклатуры и вида изготовляемой продукции различают следующие типы предприятий: специализированные - домостроительные комбинаты (ДСК); заводы и цехи крупнопанельного домостроения (КПД); заводы объемно-блочного домостроения (ОБД); заводостроительные комбинаты (ЗСК); сельские строительные комбинаты (ССК); узкоспециализированные заводы и цехи по строительству труб, шпал, опор ЛЭП и других изделий специального назначения; универсальные заводы ж/б изделий; комбинаты промышленных предприятий; полигоны ж/б изделий.

Домостроительные комбинаты выпускают комплекты изделий и конструкций для различных типов жилых домов - панели наружных и внутренних стен, плиты перекрытий и покрытий, санитарно-технические кабины, лестничные марши и доборные элементы, а также производят их монтаж.

В промышленном и гражданском строительстве нашей страны около 90% сборного ж/б составляют типовые унифицированные конструкции, при разработке которых определяющим является требование заводской технологичности изделий. Это требование обуславливает предельную массу изделий, их форму и размеры, вид армирование и т.п.

Сборные железобетонные изделия производят, в основном, линейными, плоскостными, блочными и объемными. К линейным относят колонны, фермы, ригели, балки, прогоны; к плоскостным - плиты покрытий и перекрытий, панели стен и перегородок, стенки бункеров и резервуаров; к блочным - массивные фундаменты, стены подвалов и прочее; к объемным - санитарно-технические кабины, блок-комнаты, коробчатые элементы силосов, кольца колодцев.

По условиям транспортного оборудования длина элементов, как правило, не превышает 25 м, ширина 3 м и масса 25 т. Армируют изделия в большинстве случаев сварными сетками, каркасами и укрупненными арматурными блоками.

Для сборным ж/б конструкций применяют бетоны в широком диапазоне плотности, прочности, морозостойкости и водонепроницаемости. Для несущих ж/б конструкций широко используют тяжелый бетон марок М 150 - М 800, плотностью 2200-2500 кг/м3, конструкционные бетоны на пористых заполнителях марок М 150 - М 500, плотностью 1200-2200 кг/м3; для ограждающих конструкций используют легкие бетоны марок М 50 - М 100 плотностью 700-1000 кг/м3.

Основными направлениями в совершенствовании железобетонных конструкций (снижение стоимости при одновременном повышении качества) являются:

1) удовлетворение требований непрерывно развивающихся "Технических правил но экономному расходованию строительных материалов" (ТП-101-81);

2) применение конструктивных решений, снижающих массу конструкций и позволяющих наиболее полно использовать: физико-механические свойства исходных материалов, местные строительные материалы, бетоны высоких классов (40 и выше), лёгкие бетоны, холодную пропитку бетонов мономерами и высокопрочную арматуру (1000 МПа и выше), механизированное и автоматизированное изготовление конструкций;

3) повышение долговечности, надежности и технологичности конструкций, снижение их приведённых затрат, материалоёмкости, энергоёмкости, трудоемкости изготовления и монтажа;

4) разработка новых, уточнение и упрощение существующих методов расчета конструкций, особенно пространственных, тонкостенных и с предварительным напряжением арматуры;

5) развитие методов расчета с использованием ЭВМ и высокопроизводительных методов конструирования (САПР), технологии изготовления и возведения конструкций сборных, сборно-монолитных и монолитных;

6) повышение качества, упрочнение и удешевление стыков сборных и сборно-монолитных конструкций;

7) изучение физико-химических и механических процессов взаимодействия стальной арматуры с бетоном в целях наиболее эффективной борьбы с появлением и раскрытием трещин в конструкциях;

8) совершенствование методов подбора и изготовления бетона (особенно легкого и ячеистого), с тем чтобы получать железобетон с заранее заданными свойствами;

9) повышение сейсмической и динамической стойкости конструкций;

10) увеличение долговечности конструкций в зданиях с агрессивными средами, а также при эксплуатации в низких и высоких температурах.

Основным направлением технической политики в области строительства являются снижение его стоимости, энергоемкости и трудоемкости при высокой долговечности и надежности зданий, повышение технологичности как отдельных элементов, так и конструкций в целом. К настоящему времени наибольшее распространение в жилищно-гражданском строительстве получили полносборные каркасные и бескаркасные многоэтажные здания и здания из объемных элементов.

Целью курсовой работы является разработка структурной схемы производства безнапорных железобетонных труб.

Основные задачи курсовой работы:

привести технологические характеристики безнапорных железобетонных труб и сырьевого материала;

изучить технологию получения труб;

описать теории элементарных процессов и общие закономерности

отдельных стадий технологического процесса;

выполнить технологические расчеты;

произвести расчет основного оборудования.

1. Характеристика изделия

В основу классификации сборных ж/б изделий и конструкций положены следующие признаки: вид бетона, его плотность, вид армирования, внутреннее строение и назначение.

По виду бетонов и применяемых вяжущих различают изделия из цементных бетонов - тяжелых на обычных плотных заполнителях, особо тяжелых бетонов и легких бетонов на пористых заполнителях, ячеистых бетонов и специальных бетонов - жаростойких, химически стойких, декоративных. По плотности применяемых бетонов изделия могут быть из особо тяжелых бетонов плотностью более 2500 кг/м3, тяжелых бетонов плотностью 1800-2500 кг/м3, легких бетонов плотностью 500-1800 кг/м3, особо легких (теплоизоляционных) бетонов плотностью менее 500 кг/м3.

По виду армирования ж/б изделия делят на предварительно напряженные и с обычным армированием.

По внутреннему строению изделия могут быть сплошными и пустотелыми, изготовленными из бетона одного вида, - однослойные, двухслойные, многослойные, изготовленными из разных видов бетона или с применением различных материалов (например, теплоизоляционных).

Ж/б изделия одного вида могут также отличаться типоразмерами, например, блок стеновой, угловой, подоконный. Изделия одного типоразмера могут разделяться по маркам.

Выбор метода изготовления различных изделий и конструкций зависит от номенклатуры, технологических особенностей каждого метода и объема производства. При этом решающее значение имеют технико-экономические показатели производства конкретных изделий тем или иным методом.

Номенклатура железобетонных изделий составляет сотни наименований. Важнейшим условием экономичного производства является максимальное сокращение их типов.

Ж/б конструкции, как указано выше, классифицируют: по области применения - для промышленного, жилищно-гражданского и других видов строительства; по назначению в зданиях и сооружениях - на элементы фундаментов, перекрытий, стен и т.п.; по геометрической форме - на линейные, плитные, блочные, решетчатые и др.; по форме и структуре поперечного сечения - на сплошные, пустотные, ребристые, слоистые, массивные и др.; по характеру армирования - на бетонные (неармированные) и железобетонные (с обычной или предварительно напряженной арматурой); по виду бетона - из тяжелого, легкого, ячеистого.

Изделия должны иметь максимальную степень заводской готовности. Составные или комплексные изделия поставляют потребителю, как правило, в законченном виде, не требующем (если это не предусмотрено проектом) дополнительной отделки.

Железобетонные трубы безнапорные предназначены для прокладки подземных трубопроводов, транспортирующих самотеком бытовые жидкости и атмосферные сточные воды, а также подземные воды и производственные жидкости, не агрессивные к железобетону.

Производство железобетонных труб осуществляют из тяжелого бетона. Их изготавливают по технологии виброгидропрессования. Такие железобетонные трубы имеют более высокие технические характеристики по сравнению с известными аналогами. Более высокие показатели по прочности и трещиностойкости, морозостойкости (не менее F200) и водонепроницаемости (не менее W6).

Качество поверхностей внутренней части раструба позволяет обеспечивать быстроту и технологичность монтажа, а также достигать практически абсолютной герметичности трубопровода, т.к. поверхность обработана методом шлифования.

Трубы предназначены для прокладки подземных трубопроводов, транспортирующих самотеком бытовые жидкости и атмосферные сточные воды, а также подземные воды и производственные жидкости, не агрессивные к железобетону и уплотняющим резиновым кольцам.

Трубы имеют диаметр условного прохода 400, 500, 800, 1000, 1200 и 1500 мм. и полезную длину - 5 м.

Трубы подразделяются на три группы несущей способности:

первую - при расчетной высоте засыпки грунтом 2м;

вторую - при расчетной высоте засыпки грунтом 4м;

третью - при расчетной высоте засыпки грунтом 6м;

Рис.1 Объемный эскиз трубы

Прочностные характеристики труб должны обеспечивать их эксплуатацию при расчетной высоте засыпки грунтом в следующих усредненных условиях укладки:

- основание под трубой - грунтовое плоское для труб диаметром условного прохода 400-500 мм. или грунтовое профилированное с углом охвата 90 градусов для труб, диаметром условного прохода 800-1500 мм;

- засыпка грунтом, плотностью 16,7 кН/куб. м. (1,7 тс/куб. м.) с углом внутреннего трения - 30 градусов и нормальной (неконтролируемой) степенью уплотнения для труб диаметром условного прохода 400-800 мм. и повышенным уплотнением для труб, диаметром условного прохода 1000-1500 мм.;

временная нагрузка на поверхности земли класса НК-80 по СНи12.05.03-84.

Трубы обозначаются марками в соответствии с ГОСТ 23009 и ГОСТ 6482-88. Марка труб состоит из буквенно-цифровых групп, разделенных дефисом.

Первая группа содержит обозначение трубы, ее диаметр условного прохода в сантиметрах и полезную длину в дециметрах. Во второй группе указывается несущая способность, обозначаемую арабской цифрой.

Пример:

- диаметр условного прохода 1000 мм., полезной длиной 5 м. с подошвой 3-й группы по несущей способности: ТСП-150.50-3.

Трубы - водонепроницаемые и выдерживают испытательное гидравлическое давление, равное 0,05 МПа (0,5 кгс/кв. см.).

Трубы удовлетворяют ГОСТ 13015-200:

- по показателям фактической прочности;

- по морозостойкости бетона;

- по отклонению защитного слоя бетона до арматуры;

- по маркам стали для арматурных изделий.

Трубы изготовлены из тяжелого бетона по ГОСТ 26633-91* класса по прочности при сжатии не ниже В30.

Качество материалов, применяемых при изготовлении бетона, обеспечивает выполнение технических требований, установленных ТУ, и удовлетворяют требованиям следующих стандартов:

- цемент - ГОСТ 10178-85*;

- заполнители - ГОСТ 8267-93 и ГОСТ 8736-93* (наибольшая крупность зерен

- крупного заполнителя - 10 мм.);

- вода - ГОСТ 23732-79.

Качество применяемых при изготовлении бетона добавок соответствует требованиям ГОСТ и ТУ на эти добавки.

Таблица 1. Характеристика выбранной железобетонной трубы

Марка бетона

Размер, мм

Масса, кг

Расход

D

d

L

Бетон,

Арматура, кг

300

1000

800

5000

1105

0,46

47

2. Характеристика сырьевых материалов

Качество бетона в большей степени зависит от используемых материалов. Правильный выбор материалов для бетона, учитывающий как требования к бетону, так и свойства самих материалов, имеет важное значение в технологии бетона. При этом должна достигаться максимальная экономия цемента и трудовых затрат на производство бетона.

2.1 Вяжущие вещества

Для приготовления бетона строительных конструкций наиболее широко используют неорганические вяжущие вещества. Различают вяжущие неорганические вещества водного (цементы) и воздушного (известь, гипс и др.) твердения.

Наиболее широкое применение в производстве бетона получил портландцемент (ПЦ). ПЦ - гидравлическое вяжущее вещество, твердеющее в воде (лучше всего) или на воздухе. Это порошок серого цвета, получаемый тонким помолом клинкера с добавкой гипса. Для получения цемента высокого качества необходимо, чтобы его химический состав, а следовательно, и состав сырьевой смеси были устойчивы. При помоле к цементному клинкеру можно добавлять 10-20% гранулированных доменных шлаков или активных минеральных добавок. ПЦ называют цемент, не содержащий в своем составе минеральных добавок, кроме гипса. Чисто клинкерный ПЦ без добавок применяют для высокопрочных бетонов, в производстве сборного ж/б, особенно предварительно напряженных конструкций, при строительстве в особых условиях (на Севере и в районах с сухим и жарким климатом). Наиболее распространенными цементами являются ПЦ с добавками (составляют около 60% всех выпускаемых цементов). Они могут применяться для большинства монолитных и сборных ж/б конструкций, если к последним не предъявляются особые требования.

Основное влияние на качество цемента оказывает содержание трехкальциевого силиката (С3S), т.е. алита, который обладает свойствами быстротвердеющего гидравлического вещества высокой прочности. Двухкальциевый силикат (С2S), белит, - медленно твердеющее гидравлическое вяжущее средней прочности. Трехкальциевый алюминат (С3А) твердеет быстро, но имеет низкую прочность. Изменяя минералогический состав цемента, можно варьировать его качество.

Цементы высоких марок и быстро твердеющие изготовляют с повышенным содержанием С3S (алитовые цементы). Цементы с высоким содержанием белита (белитовые) - медленно твердеющие, однако прочность их нарастает в течение длительного времени и в возрасте нескольких лет может оказаться достаточно высокой.

Основное свойство, характеризующее качество любого цемента - это его прочность (марка). Прочность цемента при сжатии составляет 30-60 МПа, соответственно прочность балочек на изгиб - 4,5-6,5 МПа. Растворная смесь должна иметь расплыв конуса на встряхивающем столике 106-115 мм. У большинства цементов это достигается при В/Ц=0,4.

Действительную прочность цемента называют его активностью. Так, при проектировании состава бетона лучше использовать активность цемента, т.к. это обеспечивает более точные результаты и экономию цемента.

Цементная промышленность выпускает в основном цементы марок 400-550, а по особому заказу - марки 600. прочность цемента высоких марок нарастает быстрее, чем у цементов низких марок.

Помимо требований к прочности к цементам предъявляются и другие требования, причем наиболее важными из них являются нормальная густота и сроки схватывания.

Нормальная густота ПЦ составляет 22-27%. Нормальная густота увеличивается при введении в цемент при помоле тонкомолотых добавок. Наименьшую густоту имеют чисто клинкерные цементы.

безнапорная труба железобетонная сырьевой

Сроки схватывания определяют начало и конец процесса превращения материала в твердое тело. По стандарту требуется, чтобы начало схватывания при температуре 200С наступало не ранее 45 минут, а конец схватывания - не позднее 10 часов с момента затворения цемента водой. Сроки схватывания можно регулировать путем добавления в бетонную смесь при ее приготовлении различных химических добавок. Сроки схватывания уменьшаются с повышением температуры бетона и уменьшением В/Ц.

ПЦ имеет, как правило, тонкий помол: через сито № 008 должно проходить не менее 85% общей массы цемента. Средний размер частиц цемента составляет 15-20 мкм. Тонкость помола цемента характеризуют также удельной поверхностью зерен, содержащихся в 1 г цемента. Цемент среднего качества имеет удельную поверхность 2000-2500 см2/г, высокого качества - 3500 см2/г и более.

Истинная плотность ПЦ без добавки составляет 3,05-3,15 г/см3. Плотность ПЦ при расчете состава бетона условно принимают в уплотненном состоянии - 1100 кг/м3, а истинная 3,1 г/см3.

2.2 Заполнители

Заполнители занимают в бетоне до 80% объема и оказывают определенное влияние на свойства бетона, его долговечность и стоимость. Введение в бетон заполнителей позволяет резко сократить расход цемента, являющегося наиболее дорогим и дефицитным компонентом бетона. Кроме того, заполнители улучшают технические свойства бетона. Жесткий скелет из высокопрочного заполнителя несколько увеличивает прочность и модуль деформации бетона - уменьшает деформации конструкций под нагрузкой, а также уменьшает ползучесть бетона - необратимые деформации, возникающие в бетоне при длительном действии на него нагрузки. Заполнитель уменьшает осадку бетона, способствуя получению более долговечного материала. Усадка цементного камня при его твердении достигает 1-2 мм/м.

Пористые естественные и искусственные заполнители, обладая малой плотностью, уменьшают плотность легкого бетона, улучшают его теплотехнические свойства.

Стоимость заполнителя составляет 30-50% (а иногда и более) стоимости бетонных и ж/б конструкций, поэтому применение более дешевых и доступных заполнителей в ряде случаев позволяет снизить стоимость строительства, уменьшает объем транспортных перевозок, обеспечивает сокращение сроков строительства.

Правильный выбор заполнителей для бетона, их разумное использование - одна из важнейших задач технологии бетона. К заполнителям для бетона предъявляются требования, учитывающие особенности их влияния на свойства бетона. наиболее существенное влияние на свойства бетона оказывают зерновой состав, прочность и чистота заполнителя.

В бетоне применяют крупный и мелкий заполнители. Крупный заполнитель, зерна которого крупнее 5 мм, подразделяют на гравий и щебень. Мелким заполнителем в бетоне является естественный или искусственный песок.

Щебень из горных пород - неорганический зернистый сыпучий материал с зернами крупностью св. 5 мм, получаемый дроблением годных пород, гравия и валунов, попутно добываемых вскрышных и вмещающих пород или некондиционных отходов горных предприятий по переработке руд (черных, цветных и редких металлов металлургической промышленности) и неметаллических ископаемых других отраслей промышленности и последующим рассевом продуктов дробления. Щебень из гравия должен содержать дробленые зерна в количестве не менее 80 % по массе. Допускается по согласованию изготовителя с потребителем выпуск щебня из гравия с содержанием дробленых зерен не менее 60 %. Гравий и щебень должны быть морозостойкими и обеспечивать требуемую марку легкого бетона по морозостойкости. Потеря массы после 15 циклов попеременного замораживания и оттаивания не должна превышать 8%.

Щебень и гравий по морозостойкости подразделяют на следующие марки: F15; F25; F50; F100; F150; F200; F300; F400. Показатели морозостойкости щебня и гравия при испытании замораживанием и оттаиванием или насыщением в растворе сернокислого натрия и высушиванием должны соответствовать указанным ГОСТ 3344

Искусственные гравий, щебень и песок (далее гравий, щебень и песок) следует изготовлять в соответствии с требованиями настоящего стандарта по технологическим регламентам, утвержденным в установленном порядке.

При расчете состава бетона условно принимают в уплотненном состоянии - 1500 кг/м3, а истинная 2,7 г/см3.

По согласованию изготовителя с потребителем допускается изготовление гравия и щебня от 2,5 до 10 мм и смеси фракций от 5 до 20 мм и для теплоизоляционных засыпок - от 5 до 40 мм.

Песок представляет собой рыхлую смесь мелких зерен, образовавшуюся в результате выветривания изверженных (реже осадочных) горных пород. Иногда песок получают дроблением горных пород, но такой песок гораздо дороже естественного и применяется только для специальных целей.

Песок, в зависимости от зернового состава, подразделяют на три группы:

1 - для конструкционно-теплоизоляционного бетона;

2 - для конструкционного бетона;

3 - для теплоизоляционного бетона.

2.3 Вода для приготовления бетона

Для приготовления бетонной смеси используют водопроводную питьевую воду, а также любую воду, имеющую водородный показатель pH не менее 4 (т.е. некислую, не окрашивающую лакмусовую бумагу в красный цвет). Вода не должна содержать сульфатов более 2700 мг/л (в пересчете на SO4) и всех солей более 5000 мг/л. В сомнительных случаях пригодность воды для приготовления бетонной смеси необходимо проверять путем сравнительных испытаний образцов, приготовленных на данной воде и на обычной водопроводной.

Для приготовления бетонной смеси можно применять морскую и другие соленые воды, удовлетворяющие приведенным выше условиям. Исключением является лишь бетонирование внутренних конструкций жилых и общественных зданий и надводных ж/б сооружений в жарком и сухом климате, т.к. морские соли могут выступить на поверхности бетона и вызвать коррозию стальной арматуры.

Для поливки бетона следует использовать воду такого же качества, как и для приготовления бетонной смеси.

Таблица 2. Характеристика сырьевых материалов

щебень

портландцемент

песок

вода

кг/м3

г/см3

Кг/шт

кг/м3

г/см3

Кг/шт

кг/м3

г/см3

Кг/шт

В/Ц

Кг/шт

1500

2,7

657,1

1100

3,1

153,3

1300

2,5

207,4

0,57

87,4

3. Основы теории элементарных процессов и закономерности отдельных стадий технологического процесса

3.1 Кинематика смешения

Смешение (перемешивание) - это процесс образования однородных систем путем приведения в тесное соприкосновение сыпучих тел, жидкостей или газов. Смешение сыпучих тел, жидких, вязко-пластичных и других сред осуществляется механическим, гидравлическим (поточным), пневматическим и другими способами. Наиболее распространен из них механический способ. Машины, применяемые для перемешивания, называются смесителями.

Механизм действия процесса перемешивания является весьма сложным, зависит от большого количества факторов и главным образом от конструкции смесителя и режима его работы. Смешение (рисунок 2) складывается из следующих механических операций: перемешивание групп частиц из одного места в другое, так называемое конвективное смешивание (I); перераспределение частиц при их перемешивании, так называемое диффузионное смешивание (II); сосредоточение частиц в отдельных местах (III) смесителя, так называемое сегрегация частиц.

Рисунок 2 - Зависимость коэффициента неоднородности от времени смешения

Идеально в результате смешения должна получиться такая смесь материала, что в любой её точке (пробе) к каждой частичке одного из компонентов примыкают частицы другого компонента в количествах, определяемых заданным соотношением. Например, если материал состоит из трех компонентов, массы которых относится как числа А: В: С, то в любом достаточно малом объёме, взятом в случайной точке смесителя, после смешения массы компонентов тоже должны относится как числа А: В: С. Однако такое идеальное расположение частиц в смеси в реальных условиях не наблюдается. Чтобы оценивать качество смешения одной случайной величиной, смесь (материал) условно считают двухкомпонентной. Для этого из смеси выделяют какой-либо один компонент, называемый основным, остальные компоненты объединяют во второй условный компонент. По степени распределения ключевого компонента в смеси, то есть втором условном компоненте, судят о качестве смешения. Разработано довольно много формул для расчёта критерия качества смешения. Например, при непрерывном увеличении поверхности раздела между компонентами за сёт внедрения (диффузии) процесс смешения представляется в следующем виде:

S=S (1-e)

где

S - текущая величина поверхности раздела; S - максимальная возможная поверхность раздела; е - основание натурального логарифма; к - коэффициент пропорциональности; t - время смешения.

Иногда процесс смешения связывают с влиянием размера и плотности частиц отдельных компонентов, то есть с влиянием сегрегации (расслоения). Степень перемешивания без учета расслоения (содержание данного компонента в контрольных пробах в долях от теоретического):

M=1-e

где А - постоянный коэффициент, учитывающий свойства материала, тип и режим работы смесительной машины; t - время перемешивания.

Современное производство строительных материалов, потребляющее многокомпонентные сырьевые смеси, предъявляет повышение требования к процессу смешения, поскольку качество готовых изделий во многом зависит от однородности и качества сырья.

Наибольшее распространение для оценки качества смешения получил коэффициент неоднородности (вариации), %:

где - среднее квадратичное отклонение концентрации ключевого компонента в пробах, %; С - среднеарифметическое значение концентрации ключевого компонента в пробах, %; С - значение концентрации ключевого компонента в i-й пробе; n - число анализируемых (отработанных для анализа) проб. При приготовлении бетонов и растворов качество смешения обычно оценивают по коэффициенту вариации прочности случайных образцов (кубиков). При модернизации или создании нового бетоносмесителя эффективность смешения оценивается сопоставлением кубиков прочности бетона и коэффициента вариации прочности, получаемых после испытания машин до и после модернизации.

Под кинетикой смешения понимается закономерность протекания процесса во времени. Закономерность изменения концентрации вещества в потоке при смешении описывается уравнением:

Где,

Q - расход компонентов, м/с; С, С - концентрация индикатора соответственно на входе в смеситель и на выходе из него, кг/м; d - время; V - объём рабочего органа смесителя, м

Среднее время пребывания частиц в ячейках (зонах) смесителя:

где g (n) - вероятность нахождение ключевого компонента в m-й ячейке при идеальном его расположении по объёму смесителя; n - количество переходов; - интервал времени (времени скачка).

Среднее время пребывание частиц в условных ячейках (зонах) смесителя, определяет качество смешения, зависит от конструкции и режима работы смесителя и технологических свойств перемешиваемых компонентов смеси и определяется экспериментально.

В большинстве промышленных смесителей получают смеси с качеством смешением ниже 20%.

3.2 Формование центрифугированием

Рисунок 3 - Расчетная I и принципиальная II схемы центрифуг

а - роликовой; б - ременной; в - осевой.

Под центрифугированием (труб, опор для линий электропередач и т.д.) в промышленности строительных материалов понимают процесс уплотнения неоднородных смесей в поле центробежных сил.

Центробежная сила инерции, действующая на частицу смеси:

где m - ее масса; - угловая скорость вращения; r - радиус вращения центра тяжести частицы; G - вес частицы; g - ускорение силы тяжести; n - число оборотов.

Существует понятие о критической окружной скорости, начиная с которой частицы под действием силы тяжести не будут отрываться от внутренней поверхности формы в верхнем положении (рис.3, I). Для этого должно быть соблюдено условие Fц?G, тогда:

nкр?

Уплотнение смеси следует проводить при такой скорости вращения, которая обеспечивает необходимую начальную прочность изделия, достаточную для распалубки его и дальнейшей транспортировки.

Обычно начальная прочность свежеотформованной трубы характеризуется величиной уплотняющей силы на наружной поверхности:

Fнар==

где Fц - центробежная сила; Анар - наружная поверхность трубы; - плотность смеси (усредненная); - угловая скорость; g - ускорение свободного падения; R - наружный радиус изделия; r - внутренний радиус изделия.

Зная необходимую прочность наружной поверхности трубы R', можно рассчитать требуемое число оборотов центрифуги:

nтр =

Внутреннее давление, развивающееся в формуемой массе в результате действия центробежных сил, непосредственно воспринимается жидкой фазой. В результате этого возникает избыточное гидростатическое давление, под влиянием которого жидкость фильтруется. Фильтрация будет проходить до тех пор, пока сопротивление движению жидкости в поровых каналах формуемой смеси за счет ее уплотнения не сравняется с избыточным гидростатическим давлением. Гидростатическое давление изменяется по толщине изделия неравномерно. Оно минимально на внутренней поверхности и максимально на внешней. Поэтому вначале жид - кость наиболее полно отжимается из наружных слоев массы и все в меньших количествах по мере приближения к внутренней поверхности. Отсюда и водосодержание массы неравномерно - оно больше во внутренних слоях и меньше во внешних. Так, для бетонных изделий из-за неравнопрочности внутренних и внешних слоев (в результате разного В/Ц) это имеет первостепенное значение.

Неравноплотность центрифугированной массы выражается не только структурной неоднородностью гидратированного связующего за счет отжатия из него воды к уменьшения толщины гидрат - ных оболочек, но и в характере распределения зерен заполнителя по толщине изделия. Более крупные зерна за счет большей центробежной силы прижимаются к наружной поверхности, а мелкие зерна концентрируются ближе к внутренним слоям. Поэтому центрифугированные массы в отличие от вибрированных имеют меньшую однородность распределения зерен заполнителя по толщине изделия. Этот органический недостаток центрифугированных масс может быть устранен при послойном уплотнении.

При малых толщинах последовательно загружаемых и уплотняемых слоев отдельные фракции заполнителя распределяются в них более равномерно. В процессе уплотнения последующего слоя крупные зерна заполнителя внедряются во внутреннюю часть предыдущего слоя и вытесняют более дисперсную часть связующего во внешнюю часть второго слоя. Аналогичные явления происходят и при уплотнении последующих слоев. В результате достигается более равномерная структура смеси по толщине изделия. Число слоев при раздельном их уплотнении при прочих равных условиях зависит от толщины стенки: чем она больше, тем больше должно быть уплотняемых слоев. Послойный способ формования целесообразно применять к смесям, имеющим большую разницу в массах отдельных частиц (например, бетонные смеси) и нежелательно для смесей, масса отдельных частиц которых близка по величине.

Уплотнение смеси методом центрифугирования производят в специальных машинах, называемых центрифугами. По способу закрепления форм различают центрифуги роликовые со свободным вращением форм, ременные с подвеской формы на бесконечных ремнях, огибающих холостые и приводные шкивы, и осевые или шпиндельные (рис.6, II).

Осевые центрифуги имеют высокие скорости вращения и позволяют уплотнять более жесткие смеси. Недостаток их - сложность конструкции и трудность загрузки смеси в форму. Применяются они для производства относительно коротких изделий.

Роликовые центрифуги проще в изготовлении, однако их недостаток - значительный шум при работе. Кроме того, они требуют высокой степени сбалансированности формы, в противном случае возможно сбрасывание формы со станка. Ременные центрифуги менее чувствительны к балансировке форм, менее шумны при работе, но требуют повышенного ухода из-за износа ремней.

3.3 Тепловлажностная обработка

Тепловлажностной (или гидротермальной) обработкой называют процесс одновременного воздействия на материал теплоты и влаги. В производстве строительных материалов тепловлажностной обработке как основной технологической операции подвергают бетонные изделия, силикатный кирпич, некоторые виды безобжиговых огнеупоров, композиции на основе полистирола и поливинилхлорида. Тепловая обработка минеральных строительных материалов ускоряет силикатное твердение составляющих, а полимерных материалов - вспенивание соответствующих композиций.

В качестве теплоносителей для тепловлажностной обработки применяют водяной пар, горячую воду и нагретый воздух с повышенной относительной влажностью. В последнем случае за счет выделения влаги из материала теплоноситель представляет паровоздушную смесь с большим или меньшим содержанием влаги. Тепловлажностная обработка может осуществляться при атмосферном давлении в камерах, формах, шнеках и при повышенном давлении в автоклавах и герметических формах.

Процесс обработки, как правило, делят на три периода: нагрев материала до температуры греющей среды, выдержка при максимальной температуре, охлаждение. Окончанием периода нагрева считают время, при котором поверхность материала нагреется до температуры теплоносителя. Второй период часто условно называют периодом изотермической выдержки. Условность названия связана с тем, что центральные слои материала в начале периода продолжают нагреваться, так как их температура отстает от температуры поверхности. Период охлаждения протекает без подачи теплоносителя в установку.

При тепловлажностной обработке полимерных материалов в горячей воде окончанием процесса является прекращение вспучивания материала.

Механизм тепло - и массопереноса при тепловлажностной обработке. Если при тепловлажностной обработке изделий греющей средой является пар или паровоздушная смесь с высокой относительной влажностью, а температура поверхности материала ниже температуры точки росы, то на поверхности изделия образуется пленка влаги. Для выяснения процессов, проходящих в материале, рассмотрим бесконечную пластину и проанализируем направление составляющих потока массы qm. Величина и направление составляющей потока qmuпри прочих равных условиях будет определяться временем, прошедшим с момента формования изделия до помещения его в тепловую установку. Если оно значительно, то в толще пластины за счет испарения влаги с поверхности успеет установиться пораболический характер распределения влаги. При внесении пластины в паровую среду на ее поверхности образуется пленка конденсата и влагосодержание поверхности Unстанет больше влагосодержания центра Ј/ц. Через некоторый промежуток времени за счет диффузии влаги от поверхностных слоев к центру влагосодержание в пластине будет характеризоваться кривой, сплошной линией.

Таким образом, в начале процесса пропарки влага движется от центра и от поверхности изделия к плоскости х, причем сама эта плоскость постепенно перемещается от поверхности к центру.

Механизм тепло - и массообмена при тепловлажностной обработке в случае отсутствия пленки конденсата на поверхности материала принципиально не отличается от механизма, разобранного при сушке изделий. Знание этого механизма позволяет регулировать технологические параметры тепловой обработки таким образом, чтобы исключить возможность "пересушки" бетона, особенно его поверхностных слоев, и в то же время снизить общую влажность изделий. Так, при пропарке керамзитобетона в щелевых камерах, оборудованных ТЭНами, в течение всего периода тепловой обработки из бетона уделяется 50.70 кг влаги, что вполне безопасно, так как оставшейся воды с избытком хватает на гидратацию цемента. Конечная влажность бетона при этом составляет 10.13% против 18.20% при обогреве паром. А это значит, что такие панели в течение нескольких лет в процессе эксплуатации будут иметь большее термическое сопротивление, чем панели, прошедшие термическую обработку в камерах обогрева паром. Поэтому пониженная влажность стеновых панелей приводит к значительной экономии теплоты на отопление и улучшает санитарно-гигиенические условия жилья.

Рассмотрим теперь механизм тепло - и массообмена при обогреве материала горячей водой. Пусть неограниченная пластина помещена в емкость с циркулируемой водой. Известно, что на поверхности твердого тела имеется неподвижный пограничный слой. Тогда температура воды в емкости /в будет выше температуры пограничного слоя, который отдает часть своей теплоты материалу, а температура материала tMниже температуры этого слоя, т.е. будет выполняться неравенство

K>ta>tM.

В этом случае направление частных потоков влаги qmu, qmtи qmpдля всех трех периодов аналогично разобранному выше при обогреве материала паром.

В заключение необходимо отметить, что приведенные механизмы тепло - и массообмена (в том числе и при сушке материала) справедливы только для тепло - и влагоизолированной бесконечной пластины с двумя противоположными открытиями поверхностями.

Характер описанных процессов будет изменяться в зависимости от конфигурации обрабатываемого изделия (куб, тело вращения и т.д.), методов нагрева (всесторонний, двусторонний, односторонний), расположения открытой поверхности (горизонтальное, вертикальное), конструкции формы и ряда других факторов, которые могут существенно изменить величину и направление соответствующих градиентов. Эти процессы специфичны не только для отдельных производств - керамики, бетона, пластмасс, но и технологических особенностей тепловой обработки одного и того же материала. Например, механизм тепло - и массообмена при тепловой обработке бетона в кассетах будет отличаться от механизма при обогреве бетона в термоформах.

Под режимами тепловлажностной обработки обычно подразумевают длительность отдельных периодов обработки, максимальную температуру обработки, а также параметры греющего теплоносителя - его температуру, относительную влажность и скорость перемещения относительно обрабатываемого материала. Для минеральных вяжущих материалов длительность периода изотермической выдержки и максимальная температура этого периода определяется требуемой степенью завершенности силикатного твердения вяжущего и допустимой температурой нагрева данного конкретного вяжущего.

Известно, например, что тепловая обработка, как правило, в той или иной степени снижает показатели физико-механических свойств бетона по сравнению с его твердением во влажных условиях при обычной температуре. Причем это снижение тем больше чем интенсивнее и жестче режимы тепловой обработки. Жесткость режимов прежде всего определяется интенсивностью роста и снижения температуры на первом и последнем этапе тепловлажностной обработки, которые вызывают возникновение в материале напряженного состояния. Определяющим условием возникновения в материале напряжений является тепло - и массоперенос.

Как показано ранее, возникновение градиентов температуры, влагосодержания и давления вызывает движение влаги в материале и, следовательно, различные по величине деформации усадки и набухания коллоидного капиллярно-пористого тела. Ни усадка, ни набухание сами по себе не вызывают напряженного состояния материала. Напряжения появляются за счет недопущенных деформаций.

Принципиальным отличием рассматриваемого процесса является смена знаков возникающих напряжений. В отличие от сушки при обогреве паром поверхностные слои испытывают напряжение сжатия, а центральные слои - растяжения.

Поскольку сам процесс тепло - и массопереноса в каждом конкретном случае зависит от величины и характера пористости, тепло - и массопроводности материала, формы и размеров изделия и множества других факторов, попытки ряда исследователей рассчитать режим пропаривания исходя из допустимой скорости нагрева (в первооснове - из величины возникающих напряжений) пока не увенчались успехом. Поэтому основным остается принцип экспериментального подбора режимов обработки по оценке физико-механических свойств полученных изделий. Однако ряд серьезных практических выводов качественного характера все-таки можно сделать, если хорошо представлять себе механизм процессов тепло - и массообмена. Например, ранее было показано, как формируется перепад давлений внутри материала и было отмечено, что он образуется за счет нахождения в материале газовой фазы. Поэтому если массу во время формования подвергнуть вакуумированию, то количество воздуха в ней резко понизится. Совмещая этот процесс с одновременным предварительным разогревом смеси, можно значительно снизить возникающие на первой стадии тепловой обработки внутренние напряжения в материале. Следовательно, можно увеличить допустимую скорость нагрева изделия, сократив, тем самым, длительность общего цикла пропаривания.

Период изотермической выдержки с точки зрения нарушений в структуре материала является наиболее спокойным, поскольку Vi° и VP сначала уменьшаются, а затем практически исчезают.

Период охлаждения для материалов, набирающих прочность за счет гидратационного твердения, является самым ответственным. Если в первый период частичные нарушения структуры могут залечиваться вследствие углубления реакций гидратации, то в третий период этих залечиваний в большом объеме происходить не может.

4. Расчет состава

Исходные данные:

марка бетона - 300;

удобоукладываемость - 2см,Rсж = 30МПа;

Физические свойства материалов:

цемента сн=1100кг/мі,сист = 3,1г/смі, ПЦ400;

щебня сн=1500кг/мі,сист = 2,7г/смі.

Решение:

1) Водоцементное отношение:

В/Ц=А1Rц/ (Rб-0,5А1Rц)

В/Ц=0,60*400/ (300-0,5*0,60*400) =0,57

2) Расход воды

Расход воды определяют в зависимости от заданной подвижности бетонной смеси и наибольшей крупности зерен крупного заполнителя.

В=190 мі

3) Расход цемента

Ц=,

Ц==333,3

4) Расход заполнителей

+ В ++= 1000

5) Расход щебня

Щ = = 1428,5

6) Расход песка

П = = 450,9

7) Расчетная плотность бетонной смеси составит:

pбс=Ц+В+П+Щ

pбс=333,3+190+450,9+1428,5=2402,7

Таблица 2 - Расход компонентов бетонной смеси

Наименование

компонентов

Расход компонентов

на 1 м3 бетонной смеси, кг

Цемент

333,3

Песок

450,9

Щебень

1428,5

Вода

190

4.1 Расчет потребностей сырьевых материалов

Таблица 3 - количество рабочего времени

Наименование цеха

Количество

Годовой фонд времени (ч)

Рабочих дней в году

Смен в сутки

Часов в смене

Бетоносмесительный

253

1

8

4048

1. В год необходимо:

1) Бетонной смеси=2402,7•10000=24027000 кг=24027 т

2) Портландцемента=333,3•10000=3333000 кг=3333 т

3) Воды=190•10000=1900000 кг=1900 т

4) Щебня=1428,5•10000=14285000 кг=14285 т

5) Песка=450,9•10000=4509000 кг=4509 т

2. Расчет на сутки:

1) Бет. см=24027: 253=94,97 т

2) ПЦ=3333: 253=13,17 т

3) В=1900: 253=7,5 т

4) Щ=14285: 253=56,46 т

5) П=4509: 253=17,8 т

3. Расчет на час:

1) Бет. см=94,97: 8=11,87 т, 2) ПЦ=13,17: 8=1,65 т

3) В=7,5: 8=0,94 т, 4) Щ=56,46: 8=7,06 т

5) П=17,8: 8=2,23 т

Таблица 4 Потребности в сырьевых материалах

Сырье и полуфабрикаты

Единица измерения

Потребность

час

смена

сутки

год

Бетонная смесь

т

11,87

94,97

94,97

24027

Цемент

т

1,65

13,17

13,17

3333

Вода

т

0,94

7,5

7,5

1900

Щебень

т

7,06

56,46

56,46

14285

Песок

т

2,23

17,8

17,8

4509

5. Выбор структурнойсхемы производства

При заводском изготовлении железобетонных изделий широкое распространение нашли три основных способа производства:

- агрегатно-поточный;

- конвейерный;

- стендовый (кассетный).

Агрегатно-поточныйспособ изготовления конструкций характеризуется расчленением технологического процесса на: отдельные операции или их группы; выполнением нескольких разнотипных операций на универсальных агрегатах; наличием свободного ритма в потоке; перемещением изделия от поста к посту; формы и изделия переходят от поста к посту с произвольным интервалом, зависящим от длительности операции на данном рабочем месте, которая может колебаться от нескольких минут (например, смазка форм) до нескольких часов (пост твердения отформованных изделий). Агрегатно-поточный способ отличается также тем, что формы и изделия останавливаются не на всех постах поточной линии, а лишь на тех, которые необходимы для данного случая. Агрегатно-поточный способ организации производства характеризуется возможностью закрепления за одной поточной линией изделий, различных не только по типоразмерам, но и по конструкции. Эта возможность создается наличием на поточной линии универсального оборудования. Межоперационная передача изделий на таких линиях осуществляется подъемно-транспортными и транспортными средствами. Для ускоренного твердения бетона при агрегатно-поточном способе обычно применяются камеры периодического или непрерывного действия. Небольшой объем каждой секции камеры позволяет затрачивать минимум времени на загрузку и выгрузку изделий, а большое число таких секций создает условия для непрерывной подачи отформованного изделия в камеру твердения.

Рис. 3 Схема производства, труб по поточно-агрегатной технологии

1 - форма для труб диаметром 1000 мм; 2 - рама; 3 - форма для труб диаметром 1200 мм; 4, 5 - мостовые краны; 6 - автоматический захват грузоподъемностью 8 т для труб длиной 4120 мм; 7 - стенд для гидроиспытания железобетонных труб диаметром до 1000 мм; 8 - стенд для гидроиспытаний железобетонных труб диаметром 1200 и 1500 мм; 9 - бетонораздатчик; 10 - стенд для бетонирования; 11 - поддон; 12 - промежуточный склад труб; 13 - участок хранения форм; 14 - формы для труб диаметром 1500 мм.

Агрегатно-поточная технология отличается большой гибкостью и маневренностью в использовании технологического и транспортного оборудования, в режиме тепловой обработки, что важно при выпуске изделий большой номенклатуры.

Конвейерный способ характеризуется следующими признаками: максимальное расчленение технологического процесса на операции, выполняемые на отдельных рабочих постах; перемещение форм и изделий от поста к посту с регламентированным ритмом. Изделия в процессе обработки передаются конвейерным устройством пульсирующего действия, автоматически при этом создаются условия более полной синхронизации. Конвейерный метод организации производства характеризуется принудительным ритмом, т.е. перемещение формуемых изделий осуществляется в строгой последовательности через одни и те же формовочные посты, с определенной заданной скоростью передвижения. Это требует в качестве важнейшего условия комплексную механизацию операции с применением автоматического технологического оборудования. Обычно для межоперационного транспорта применяют механизированные транспортные средства линейного типа - тележечные конвейеры, состоящие из определенного числа поддонов-тележек, которые перемещаются тяговой цепью по рельсовым путям. Параллельно линии формования, но обычно в обратном направлении, осуществляется термовлажностная обработка изделий. [8]. В зависимости от вида устройства для тепловой обработки изделий конвейерные линии выполняют с камерами многоярусного, щелевого и ямного типов, а также с пакетирующими устройствами для бескамерной тепловой обработки изделий в термоформах. Линии также могут различаться в зависимости от формовочного оборудования. Как правило, каждая конвейерная линия специализируется на выпуске одного вида изделия. Конвейерный метод производства железобетонных изделий позволяет добиться комплексной механизации и автоматизации технологических процессов изготовления изделий, значительного повышения производительности труда и увеличения выпуска готовой продукции при наиболее полном и эффективном использовании технологического оборудования. Применение этого метода рационально при массовом выпуске изделий по ограниченной номенклатуре с минимальным числом типоразмеров.

Стендовый способ производства железобетонных изделий характеризуется следующими основными признаками: весь процесс производства осуществляется в неподвижных формах или на специальных стендах; изделия в процессе обработки остаются неподвижными, а рабочее и технологическое оборудование перемещается от одной формы к другой; за каждым стендом или формой закрепляется одно или несколько технологически однородных изделий. В основе классификации разновидностей стендового производства лежит ряд факторов: число типоразмеров изделий, закрепленных за стендом; способ расположения конструкций на стенде; конструктивные особенности стендовой установки; длительность производственного цикла [8]. По числу закрепленных типоразмеров изделий стендовые установки делятся на специализированные (кассеты для изготовления лестничных маршей и площадок, стенды для производства подкрановых балок, полигональных ферм и т.д.) и универсальные (изготовление различных технологически однородных изделий). На стенде изделия могут располагаться вертикально, горизонтально, последовательно, поштучно, пакетами, что влияет на конструктивные особенности стендовых установок. По своему устройству стендовые установки могут быть стационарными и разборными. Стационарные установки выполняются в виде металлических форм, железобетонных и бетонных форм-матриц с гладкой шлифованной поверхностью. Разборные металлические и железобетонные формы бывают в виде разъемных групповых кассет и форм-стендов. Лотковый стенд отличается от напольного некоторым заглублением по отношению к уровню пола, что дает возможность перекрывать его крышками для прогрева изделий. Заглубление стенда принимается в зависимости от толщины формуемых изделий. По способу армирования стенды бывают двух типов: пакетные и протяжные. Для пакетных стендов арматуру (пучки-пакеты с зажимами на концах) собирают на отдельной установке, а затем переносят и укладывают в захваты стендов или форм. На протяжных стендах арматурную проволоку сматывают с бухт, установленных в одном конце стенда, и протягивают по всей длине до другого упора непосредственно на линии формования. На пакетных стендах целесообразно изготавливать изделия со сравнительно небольшими поперечными размерами и компактным расположением арматуры по сечению. Линейные изделия большой высоты или ширины, имеющие большое поперечное сечение и требующие поштучного или группового заполнения сечения арматурной проволокой, целесообразно изготавливать на протяжных стендах. При стендовом производстве для формования изделий применяют следующие виды оснастки: формы стационарные металлические и железобетонные, предназначенные для формования криволинейных и плоских крупноразмерных тонкостенных конструкций; металлические и железобетонные разборные и неразборные формы; групповые формы-стенды, собранные в пакеты значительной протяженности, служат для производства напряженно-армированных балок, ребристых плит, шпал и т.д.; бетонные стенды с отшлифованной поверхностью для формования разнотипных крупноразмерных конструкций в формах, как с обычным армированием, так и с напряжением арматуры. Длинномерные линейные изделия с напряженным армированием формуют на длинных стендах длиной 75 м и более, а также на коротких стендах, имеющих длину, равную одному изделию, а ширину - двум и более. Длинные стенды применяют для одновременного изготовления нескольких одинаковых изделий в формах, располагаемых одна за другой и образующих единую формовочную линию. На этой линии укладку и натяжение арматуры, а также бетонирование и твердение изделий осуществляют сразу по всей длине стенда.


Подобные документы

  • Классификация железобетонных конструкций, характеристика исходных материалов, цемента, вяжущих веществ и заполнителей. Центробежный прокат, производство безнапорных труб, транспортирование бетонной смеси. Технологические расчеты бетоносмесительного цеха.

    дипломная работа [947,0 K], добавлен 20.09.2010

  • Технологические операции, используемые в процессе производства полимерных труб. Базовые марки полиэтилена и полипропилена, рецептуры добавок, печатных красок, лаков для производства полимерных труб. Типы труб и их размеры. Основные формы горлышка трубы.

    контрольная работа [71,3 K], добавлен 09.10.2010

  • Изучение технологического процесса производства полипропиленовых труб методом экструзии. Контроль процесса по стадиям. Виды брака, пути его предотвращения. Материальный баланс производства. Расчет и выбор основного и вспомогательного оборудования.

    дипломная работа [1,0 M], добавлен 08.09.2015

  • Основные стадии технологической схемы производства полиэтиленовых труб. Особенности подготовки и загрузки сырья, приготовление композиций. Экструзия полиэтилена с формированием трубной заготовки. Вакуумная калибровка, вытяжка, охлаждение и разрезка.

    реферат [29,8 K], добавлен 07.10.2010

  • Разработка композиционного материала для изготовления труб с матрицей из фторопласта и хаотично ориентированными керамическими волокнами. Выбор метода формообразования и тепловой обработки изделия. Расчет параметры технологического процесса оснастки.

    курсовая работа [954,0 K], добавлен 01.05.2015

  • Анализ материального баланса, норм расхода материалов и энергоресурсов, технологические потери, контроль производства и управления технологическим процессом производства полимерных труб. Особенности хранения и упаковки возвратных технологических отходов.

    контрольная работа [24,0 K], добавлен 09.10.2010

  • Особенности изготовления тонкостенных труб. Состав оборудования стана. Расчет калибровки и энергосиловых параметров. Назначение детали в узле, анализ ее технологичности. Трудоемкость изготовления конструкции. Защита производства в чрезвычайных ситуациях.

    дипломная работа [1,3 M], добавлен 26.10.2014

  • Общие сведения о трубах, их виды, размеры и особенности установки. Оборудование для производства современных труб водоснабжения и газоснабжения, основные материалы для их изготовления. Технология и установки для производства полиэтиленовых труб.

    реферат [27,2 K], добавлен 08.04.2012

  • Основные понятия и способы сварки трубопроводов. Выбор стали для газопровода. Подготовка кромок труб под сварку. Выбор сварочного материала. Требования к сборке труб. Квалификационные испытания сварщиков. Технология и техника ручной дуговой сварки.

    дипломная работа [2,9 M], добавлен 25.01.2015

  • Датчики физических величин в строительной технологии. Создание микроэлектронных устройств со встроенными функциональными элементами. Ознакомление с технологическими процессами изготовления, формования и тепловлажной обработки железобетонных труб.

    реферат [68,4 K], добавлен 09.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.