Разработка математической модели подмногообразия конфигурационных пространств сборки в соединении типа "отверстие-вал-отверстие"
Моделирование, расчет и анализ заданных допустимых отклонений размеров деталей в современных системах автоматизированного проектирования в системе ГеПАРД. Пространственный размерный анализ с использованием подмногообразий конфигурационных пространств.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 21.05.2014 |
Размер файла | 5,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МД. .ПЗ |
||||||||
Изм. |
Лист |
№Док. |
Подпись |
Дата |
||||
Разраб. |
Векшина А.С. |
Размерный анализ в CAD-системах |
Лит. |
Лист |
Листов |
|||
Провер. |
Гаер М.А. |
1 |
-- |
|||||
Кафедра ТМ гр.ТМм-11-1 |
||||||||
Утвердил |
Журавлев Д.А. |
Оглавление
Введение
Глава 1. Моделирование, расчет и анализ заданных допустимых отклонений размеров в современных САПР
1.1 Классические методы расчета размерных цепей
1.1.1 Основные соотношения и порядок расчета размерных цепей
1.1.2 Метод полной взаимозаменяемости
1.1.3 Метод неполной взаимозаменяемости
1.1.4 Метод групповой взаимозаменяемости
1.1.5 Метод регулировки
1.1.6 Метод подгонки
1.1.7 Модель векторного контура
1.2 Обзор САПР, реализующих размерный анализ
1.2.1 CATIA
1.2.2 CETOL 6 Sigma
1.2.3 NX 7.5
1.2.3.1 Линейный размерный анализ модели сборки
1.2.3.2 Модуль Tolerance Stackup Validation
1.2.3.3 Процедура Tolerance Stackup Validation
1.2.3.4 Симуляция размерных цепочек
1.2.3.5 Проставление допусков и задание измерений
1.2.3.6 Анализ в Tolerance Stackup Validation
Выводы
Глава 2. Возможности проведения пространственного размерного анализа в системе ГеПАРД
2.1 Импорт геометрической информации в формате Step
2.2 Задание параметров для реализации анализа собираемости
2.2.1 Задание условий сопряжения деталей
2.2.2 Задание ссылочных баз и допусков
2.3 Задание этапов имитации
Выводы
Глава 3. Пространственный размерный анализ с использованием подмногообразий конфигурационных пространств
3.1 Понятие конфигурационного пространства сборки в системе ГеПАРД
3.2 Разработка и реализация математической модели подмногообразия конфигурационных пространств сборки в соединение типа "отверстие-вал-отверстие"
Выводы
деталь проектирование конфигурационный пространство
Введение
Размерный анализ в CAD системах является необходимым этапом проектирования конструирования, производства и эксплуатации широкого класса изделий (машин, механизмов, приборов, аппаратов и т.п.).
Полный размерный анализ выполняется в процессе разработки рабочего проекта детали, предварительные расчеты следует производить еще при конструктивной отработке технического проекта.
Изготовление изделий высокого качества в сжатые сроки и оптимизация прибыли требуют точных и эффективных аналитических инструментальных средств, которые тесно интегрированы с CAD-системами твердотельного моделирования.
Точность является важным показателем детали (узла, агрегата), определяющим ее способность выполнять свои рабочие функции. От точности зависят надежность не только самой детали, но и экономичность, производительность, уровень вибраций и шума всей конструкции, что в совокупности характеризует качество продукции.
С развитием технологий и инструментов точность деталей увеличивалась, уменьшался квалитет. Это стало возможно достигнуть за счет разумного подхода к проектированию, разработки новых алгоритмов расчетов, развития возможностей электронно-вычислительной техники.
На сегодняшний день обработать деталь так, чтобы получить номинальный размер, практически невозможно, так как при обработке неизбежны погрешности. Нельзя также изготовить несколько деталей с абсолютно одинаковыми размерами.
Размерный анализ в CAD-системах помогает оценить влияния размеров и их допусков на собираемость конструкции и на отдельные детали, распознание минимальных и максимальных условий сопряжения деталей. Подобный анализ помогает выявить возможные проблемы собираемости сборки и отдельных деталей на этапе проектирования. Однако в настоящее время весь размерный анализ проходит в плоскости, относительно одной координатной лини. Развитие компьютерных ресурсов позволяет производить более емкие вычисления, работать с более сложными программными комплексами. На сегодняшний день рассматривать размерные цепи линейно уже не достаточно. Однако уже просматривается тенденция рассматривать допуски на размер деталей в трехмерном пространстве а не линейно, как это практикуется сейчас.
В настоящее время задачи проектирования деталей и узлов должны решаться на основе широкого применения вычислительной техники. При конструировании механизмов, машин, приборов и других изделий, проектировании технологических процессов, выборе средств и методов измерений возникает необходимость в проведении размерного анализа, с помощью которого достигается правильное соотношение взаимосвязанных размеров и определяются допустимые ошибки (допуски). Подобные геометрические расчеты выполняются с использованием теории размерных цепей в специализированных модулях систем автоматизированного проектирования. Автоматизация проектирования и создание CAD-программ для расчета размерных цепей позволяют сократить сроки подготовки производства к выпуску новой продукции, уменьшить издержки и повысить качество проектных работ.
В настоящее время переход от линейного размерного анализа к пространственному только начал осуществляться. Вопрос пространственного размерного анализа изучен крайне мало. Так же еще на рынке нет программного продукта, который реализует пространственный размерный анализ. Такой программный комплекс необходим. Он позволит не только сократить время анализа корректности сборочных единиц на этапе проектирования но и проводить анализ в пространстве, учитывая все отклонения как размеров, так и формы и расположения. В связи с этим необходимо изучить допуски и размерный анализ в пространстве.
Глава 1. Моделирование, расчет и анализ заданных допустимых отклонений размеров в современных САПР
1.1 Классические методы расчета размерных цепей
Размерные цепи отражают объективные размерные связи в конструкции машины при сборке, а также размерные связи в технологических процессах обработки или измерения деталей.
Размерные цепи позволяют составить метрическую модель изделия и оптимизировать требования к точности геометрических параметров, с целью обеспечения показателей качества функционирования в заданных пределах при установленных затратах на производство.
Размерная цепь -- совокупность взаимосвязанных размеров, образующих замкнутый контур и непосредственно участвующих в решении поставленной задачи.
В общем случае размерная цепь может быть представлена в виде зависимости параметров X1, X2, …, Xm-1, влияющих на параметр Y.
Метрическая модель описывается уравнением:
Y= F (X1, X2, …, Xm-1) (1.1)
Уравнение, связывающее отклонения размеров в размерной цепи:
(1.2)
Размерная цепь состоит из составляющих и замыкающего размеров.
Замыкающим называется размер, получающийся последним в результате обработки или сборки изделия. Замыкающий размер получается как результат действий, связанных с обработкой или сборкой изделий.
Составляющими называют все остальные размеры. Составляющие размеры получаются в процессе обработки деталей.
На рисунке 1.1. показана деталь, размеры которой получены в процессе обработки в одной из следующих последовательностей: A1, A2, A3; A1, A3, A2 или A2, A1, A3. Для любой из указанных последовательностей обработки размерная цепь будет состоять из четырёх (m=4) размеров (рис. 1.1). Размеры A1, A2, A3 являются независимыми и поэтому называются составляющими.
Размер A4 специально не изготовляется и не контролируется в процессе обработки детали, а получается результирующим после того, как с заданной точностью будут выполнены размеры A1, A2, A3. Такой размер является замыкающим.
При обозначении составляющих размеров A1, A2,…, Am-1 замыкающий размер обозначается A0. В сборочной размерной цепи замыкающий размер - это всегда размер между осями или поверхностями разных деталей (зазор, натяг, отклонение от соосности и т.п.).
По отношению к замыкающему все составляющие размеры делятся на увеличивающие и уменьшающие. Увеличивающим называют размер, с увеличением которого замыкающий размер увеличивается (т.е. для которого ). Уменьшающим называется размер, с увеличением которого замыкающий размер уменьшается (т.е. передаточная функция отрицательна ).
Размерные цепи, для которых , называют линейными. К нелинейным относят плоские и пространственные цепи с произвольно направленными размерами.
Для обозначения размеров обычно применяют прописные буквы латинского алфавита: A1, A2,…, Am-1 или любые другие.
Рис. 1.1. Обозначение размерной цепи на чертеже.
При расчёте размерных цепей применяются следующие условные обозначения:
Aj -- номинальный размер любого составляющего размера;
A0 -- замыкающий размер;
Т Aj , ТA0 -- допуски составляющего и замыкающего размеров;
Е - обозначение отклонения;
E5 -- верхнее отклонение, например E5(Aj), E5(A0);
Ej -- нижнее отклонение, например Ej(Aj), Ej(A0).
В размерных цепях применяют отличные от системных обозначений( в которой, как известно, ES, EI - отклонения отверстий; es, ei - отклонения валов), так как многие размеры размерных цепей не подходят под понятия "отверстие" или "вал".
Ec -- среднее отклонение, определяющее середину поля допуска, например Ec(Aj), Ec(A0).
Ajmax, Ajmin, Ajc-- наибольший, наименьший предельные и средний размеры составляющего звена;
A0max, A0min, A0c -- наибольший, наименьший предельные и средний размеры замыкающего размера.
-- передаточное отношение (или передаточная функция j - го размера).
1.1.1 Основные соотношения и порядок расчета размерных цепей
На основании свойства замкнутости размерной цепи существует зависимость, которая связывает номинальные размеры звеньев. Для плоских размерных цепей с номинальными звеньями она имеет следующий вид:
, (1.1.1)
где n, m - число увеличивающих и уменьшающих звеньев размерной цепи.
Для определения зависимости, связывающей допуски звеньев в размерной цепи (), определим наибольшее и наименьшее значения замыкающего звена:
, (1.1.2)
, (1.1.3)
Вычтем уравнение (1.1.3) из уравнения (1.1.2):
, (1.1.4)
Окончательно можем записать
, (1.1.5)
где k - количество звеньев размерной цепи, включая замыкающее звено.
Из формулы (1.1.5) следует, что допуск размера замыкающего звена равен сумме допусков размеров составляющих звеньев. Поэтому для обеспечения наибольшей точности замыкающего звена размерная цепь должна состоять по возможности из меньшего числа звеньев.
Аналогичным образом определяются верхние и нижние отклонения замыкающего звена:
, (1.1.6)
. (1.1.7)
Координата середины поля допуска замыкающего звена определяется выражением
. (1.1.8)
Таким образом, если известны размеры и поля допусков составляющих звеньев размерной цепи, то по формулам (1.1.1) - (1.1.8) можно определить все параметры замыкающего звена.
Расчет размерных цепей при решении прямой задачи состоит из следующих этапов:
1. Выявляется замыкающее звено и определяются его номинальный размер, допуск и координата середины поля допуска.
2. Выявляются составляющие звенья и определяются по рабочим чертежам деталей их номинальные размеры. Производится проверка правильности установления номинальных размеров по формуле (1.1.1).
3. Если в изделии несколько размерных цепей, связанных друг с другом, то составляется таблица с указанием для каждой цепи среднего значения номинальных размеров и среднего значения допуска для составляющих звеньев.
4. По среднему значению допуска на составляющие звенья и по величине допуска на замыкающее звено выбирается метод достижения точности замыкающего звена и устанавливается очередность расчета размерных цепей.
Дальнейший порядок расчета размерных цепей зависит от выбранного достижения точности замыкающего звена. При решении обратной задачи порядок расчета размерных цепей будет несколько иным. При этом следует различать теоретические и производственные расчеты. Теоретические расчеты используются технологами сборщиками при внедрении в производство новых изделий с целью установления методов сборки. Производственные расчеты выполняются в условиях, когда изделие уже находится в производстве, и цель их заключается в проверке правильности назначения допусков на составляющие звенья, а при расчете по вероятностному методу и в уточнении принятых значений коэффициентов относительного рассеивания и относительной асимметрии.
Порядок теоретического расчета:
1. Выявляется замыкающее звено и составляющие звенья размерной цепи по сборочному чертежу изделия. По рабочим чертежам деталей устанавливаются номинальные размеры, допуски и предельные отклонения на все составляющие звенья размерной цепи. Составляется схема размерной цепи и определяются типы составляющих звеньев.
2. Выбирается метод расчета размерных цепей.
3. Производится вычисление номинального размера, допуска и координаты середины поля допуска замыкающего звена в зависимости от принятого метода расчета размерных цепей.
При производственном расчете также определяются предельные отклонения замыкающего звена, и выполняется сравнение полученных результатов с теоретическими расчетами. Вносятся соответствующие коррективы.
Основной целью расчета размерных цепей является критический анализ правильности простановки размеров, допусков и предельных отклонений на размеры составляющих звеньев, а также выбора метода достижения точности замыкающего звена и выбора метода сборки.
Практика показывает, что нередко в рабочих чертежах деталей допуски на ответственные размеры либо отсутствуют, либо установлены слишком жесткими, либо наоборот - очень широкими. В данном случае допуски должны быть изменены и согласованы с конструктором.
1.1.2 Метод полной взаимозаменяемости
Сущность данного метода заключается в том, что требуемая точность замыкающего звена достигается на сборке без какого-либо выбора, подбора или дополнительной обработки деталей, размеры которых включаются в размерную цепь. Точность замыкающего звена рассчитывают по методу максимума и минимума.
Основными преимуществами этого метода являются простота процесса сборки, сводящегося к выполнению различных соединений без пригоночных и регулировочных работ, обеспечение предпосылок для организации поточной сборки и ее автоматизации и простое решение вопроса об обеспечении изделия запасными частями. Недостаток же этого метода в том, что он ужесточает допуски на составляющие звенья, что приводит к увеличению их трудоемкости и себестоимости изготовления, так как основывается на расчете по крайним предельным отклонениям допусков цепи при невыгодном их сочетании. Например, вал изготовлен по минимальному диаметру, а втулка, соединяемая с ним, по максимальному размеру. Именно по этой причине данный метод достижения точности замыкающего звена используется тогда, когда допуск на его размер установлен достаточно широким, что позволяет назначать на составляющие звенья размерной цепи выполнимые в производственных условиях допуски.
Прямая задача. Прямая задача размерной цепи встречается на практике чаще. После определения размеров составляющих звеньев в результате конструирования механизма необходимо рассчитать допуски на эти размеры при заданной точности сборки, т. е. заданном допуске исходного звена. Точность составляющих размеров должна быть такой, чтобы гарантировалась заданная точность исходного звена. Эту задачу можно решать одним из рассмотренных далее способов.
Способ равных допусков применяют, когда все размеры цепи входят в один интервал диаметров и могут быть выполнены с примерно одинаковой точностью, т. е. можно принять
T1 = T2 = …= Tср.
Тогда, используя уравнение (1.1.5), запишем формулу для определения среднего допуска на звено:
.
Этот допуск корректируют для некоторых составляющих размеров в зависимости от их значений, конструктивных требований и технологических возможностей изготовления, но с обязательным выполнением условий по уравнениям (1.1.5)-(1.1.7). При этом выбирают стандартные поля допусков предпочтительного применения.
Способ равных допусков прост, но поскольку корректировка допусков составляющих звеньев произвольна, он недостаточно точен.
Способ допусков одного квалитета применяют, если все составляющие цепь размеры могут быть выполнены с допуском одного квалитета и допуски составляющих размеров зависят от их номинального значения. При решении задач этим способом условно принимают, что возрастание допуска линейных размеров при возрастании номинального размера имеет ту же закономерность, что и возрастание допуска диаметра. Эта закономерность выражена формулой для единицы допуска i. Для размеров от 1 до 500 мм
,
где D - средний геометрический размер для интервала диаметров, к которому относится данный линейный размер.
Таким образом, в общем виде имеем
, (1.1.9)
где a j - число единиц допуска, содержащееся в допуске данного размера.
Количество единиц допуска i в допусках 5 - 16 квалитетов (величина a*i) приведена в таблице 1.1.1.
Табл. 1.1.1. Значение допусков
Обозначение допуска |
IT5 |
IT6 |
IT7 |
IT8 |
IT9 |
IT10 |
IT11 |
IT12 |
IT13 |
IT14 |
IT15 |
IT16 |
|
Значение допуска |
7i |
10i |
16i |
25i |
40i |
64i |
100i |
160i |
250i |
400i |
640i |
1000i |
Значения i для основных интервалов в диапазоне до 400 мм приведены в таблице 1.1.2.
Табл. 1.1.2. Значение единицы допуска i
Интервалы номинальных размеров, мм |
3 |
36 |
610 |
1018 |
1830 |
3050 |
5080 |
80120 |
120180 |
180250 |
250315 |
315400 |
|
Значение i, мкм |
0,55 |
0,73 |
0,90 |
1,08 |
1,31 |
1,56 |
1,86 |
2,17 |
2,52 |
2,90 |
3,23 |
3,54 |
Подставив выражение (1.1.9.) в выражение (1.1.5) и решив его относительно a , получим
. (1.1.10)
Величины, стоящие в знаменателе, выбирают из таблицы 1.1.2, величина T?? задана по условиям задачи. Величина aср, полученная по формуле (1.1.10), путем сравнения с величинами таблицы 1.1.2 показывает, по кА
кому примерно квалитету следует обрабатывать размеры, составляющие цепь. Допуски выбирают из таблицы допусков на диаметры. Полученное значение aср может не совпадать ни с одним из стандартных значений, приведенных в таблице 1.1.2, поэтому можно использовать допуски различных квалитетов, учитывая технологические условия. Критерием правильности выбора служит уравнение (1.1.5), которое должно удовлетворяться. Допустимо, чтобы T ??превышало T i на 5-6%, если необходимо назначить допуски, взятые из стандарта, и не изменять их. Допуски для охватывающих размеров рекомендуется определять, как для основного отверстия, а для охватываемых - как для основного вала.
Определив допуски, находят значения и знаки верхних и нижних отклонений составляющих размеров так, чтобы они удовлетворяли уравнениям (1.1.6), (1.1.7).
Решение прямой задачи способом назначения допусков одного квалитета более обосновано, чем решение способом равных допусков.
Обратная задача. При необходимости определения номинального размера, допуска и предельных отклонений замыкающего звена по установленным номинальным размерам, допускам и предельным отклонениям составляющих звеньев решается обратная задача.
1.1.3 Метод неполной взаимозаменяемости
При расчете размерных цепей методом максимума-минимума предполагается, что в процессе обработки или сборки возможно одновременное сочетание наибольших увеличивающих и наименьших уменьшающих размеров или обратное их сочетание. Оба случая - наихудшие в смысле получения точности замыкающего звена, но они маловероятны, т. к. отклонения размеров в основном группируются около середины поля допуска. На этом положении и основан теоретико-вероятностный метод расчета размерных цепей.
Применение теории вероятностей позволяет расширить допуски составляющих размеров и тем самым облегчить изготовление деталей при практически отсутствующем риске несоблюдения предельных значений замыкающего размера.
Обратная задача. В результате совместного влияния систематических и случайных погрешностей центр группирования может не совпадать с серединой поля допуска, а зона рассеяния - с величиной допуска. Величина такого несовпадения, выраженная в долях половины допуска на размер, называется коэффициентом асимметрии
,
где M(Aj) - математическое ожидание, т. е. средний арифметический размер j-го звена;
Cj - размер, соответствующий середине поля допуска.
В этом случае уравнение размерной цепи по средним размерам будет иметь вид
.
Учитывая случайный характер сочетаний действительных размеров деталей в изделии, можно воспользоваться уравнением для определения дисперсии суммы независимых случайных величин
. (1.1.11)
Для перехода от средних квадратичных отклонений ? к допускам или полям рассеяния используют коэффициент относительного рассеяния ??j . Он является относительным средним квадратичным отклонением (при поле рассеяния wj =?Tj)
; (1.1.12)
для закона:
- нормального распределения (при Tj =?6s--j)
;
- равной вероятности (при )
;
- треугольника (Симпсона) (при )
.
Подставив выражение (1.1.12) в выражение (1.1.11), получим
, (1.1.13)
где t - коэффициент, зависящий от процента риска, .
Определив TD?? по формуле (1.1.13), вычисляют по формуле (1.1.8) среднее отклонение замыкающего звена и его предельные отклонения:
; (1.1.14)
. (1.1.15)
Эти же формулы можно использовать для определения Tj.
Прямая задача. Допуски составляющих размеров цепи при заданном допуске исходного размера можно рассчитать четырьмя способами.
При способе равных допусков принимают, что величины Tj, Cj и l?j для всех составляющих размеров одинаковы.
По заданному допуску TD, используя уравнение (3.3), определяют средние допуски звеньев
.
Найденные значения Tcj и Cj корректируют, учитывая требования конструкции и возможность применения процессов изготовления деталей, экономическая точность которых близка к требуемой точности размеров. Правильность решения задачи проверяют по формуле (1.1.13).
При способе назначения допусков одного квалитета расчет аналогичен решению прямой задачи методом полной взаимозаменяемости.
При этом среднее количество единиц допуска определяется по формуле
. (1.1.16)
Способ прямых расчетов заключается в том, что допуски на составляющие размеры назначают экономически целесообразными для условий предстоящего вида производства с учетом конструктивных требований, опыта эксплуатации имеющихся подобных механизмов и проверенных для данного производства значений коэффициентов l. Правильность расчета проверяют по формуле (1.1.13).
Способ равного влияния применяют при решении плоских и пространственных размерных цепей. Он основан на том, что допускаемое отклонение каждого составляющего размера должно вызывать одинаковое изменение исходного размера.
Расчет по методу Монте-Карло
Этот метод можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений.
Сущность метода Монте-Карло: Х математическое ожидание которой равно:
М(Х)=а.
Оценка погрешности метода Монте-Карло.
Пусть для получения оценки a* математического ожидания "а" случайной величины Х было произведено n независимых испытаний, и по ним была найдена выборочная средняя случайная величина , которая принята в качестве искомой оценки: . Если повторить опыт, то будут получены другие возможные значения Х, следовательно, другая средняя, а значит, и другая оценка a*. Отсюда следует, что получить точную оценку математического ожидания невозможно. Ограничимся отысканием лишь верхней границы допускаемой ошибки с заданной вероятностью (надёжностью) :
.
Верхняя грань ошибки -- "точность оценки" математического ожидания по выборочной средней при помощи доверительных интервалов. Рассмотрим следующие три случая.
1. Случайная величина Х распределена нормально и её среднее квадратичное отклонение известно.
В этом случае с надёжностью верхняя граница ошибки
, (1.1.17)
где n число испытаний (разыгранных значений Х); t - значение аргумента функции Лапласа, при котором,
-- известное среднее квадратичное отклонение Х.
2. Случайная величина Х распределена нормально, причём её среднее квадратичное отклонение неизвестно.
В этом случае с надёжностью верхняя граница ошибки
, (1.1.18)
где n - число испытаний; s - "исправленное" среднее квадратичное отклонение, находят по таблице распределения случайных чисел.
3. Случайная величина Х распределена по закону, отличному от нормального.
В этом случае при достаточно большом числе испытаний (n>30) с надёжностью, приближённо равной , верхняя граница ошибки может быть вычислена по формуле (1.1.17), если среднее квадратичное отклонение случайной величины Х известно; если же неизвестно, то можно подставить в формулу (1.1.17) его оценку s - "исправленное" среднее квадратичное отклонение либо воспользоваться формулой (1.1.18). Заметим, что чем больше n, тем меньше различие между результатами, которые дают обе формулы. Это объясняется тем, что при распределение Стьюдента стремится к нормальному.
Среди других вычислительных методов, метод Монте-Карло выделяется своей простотой и общностью. Медленная сходимость является существенным недостатком метода, однако, могут быть указаны его модификации, которые обеспечивают высокий порядок сходимости при определённых предположениях. Правда, вычислительная процедура при этом усложняется и приближается по своей сложности к другим процедурам вычислительной математики.
1.1.4 Метод групповой взаимозаменяемости
Методом групповой взаимозаменяемости называют метод решения размерной цепи, при котором точность замыкающего звена достигается путем включения в нее составляющих звеньев, принадлежащих одной группе, на которые они были предварительно рассортированы.
Сущность метода заключается в изготовлении деталей со сравнительно широкими технологически выполнимыми допусками, выбираемыми из соответствующих стандартов, сортировке деталей на равное число групп с более узкими групповыми допусками и сборке их (после комплектования) по одноименным группам. Такую сборку называют селективной.
Метод групповой взаимозаменяемости применяют, когда средняя точность размеров цепи очень высокая и экономически неприемлемая.
При селективной сборке (в посадках с зазором и натягом) наибольшие зазоры и натяги уменьшаются, а наименьшие увеличиваются, приближаясь с увеличением числа групп сортировки к среднему значению зазора или натяга для данной посадки, что делает соединения более стабильными и долговечными. В переходных посадках наибольшие натяги и зазоры уменьшаются, приближаясь с увеличением числа групп сортировки к значению натяга или зазора, которое соответствует серединам полей допусков деталей.
Для установления числа групп n сортировки деталей необходимо знать требуемые предельные значения групповых зазоров или натягов, которые находят из условия обеспечения наибольшей долговечности соединения, либо допускаемое значение группового допуска TDгр или Tdгр, определяемое экономической точностью сборки и сортировки деталей, а также возможной погрешностью их формы. Отклонения формы не должны превышать группового допуска, иначе одна и та же деталь может попасть в разные (ближайшие) группы в зависимости от того, в каком сечении она измерена при сортировке.
При селективной сборке изделий с посадкой, в которой TD =Td, групповой зазор или натяг остаются постоянными при переходе от одной группы к другой. При TD >Td групповой зазор (или натяг) при переходе от одной группы к другой не остается постоянным, следовательно, однородность соединений не обеспечивается, поэтому селективную сборку целесообразно применять только при TD =Td.
Селективную сборку применяют не только в сопряжениях гладких цилиндрических деталей, но и более сложных по форме деталях (например, резьбовых). Селективная сборка позволяет в n раз повысить точность сборки (точность соединения) без уменьшения допусков на изготовление деталей или обеспечить заданную точность сборки при расширении допусков до экономически целесообразных величин.
Преимуществом этого метода расчета размерной цепи является то, что можно увеличить точность замыкающего звена, не увеличивая точности обработки составляющих звеньев.
Вместе с тем селективная сборка имеет следующие недостатки: усложняется контроль, что приводит к увеличению числа контролеров и обеспечение более точными измерительными средствами; повышается трудоемкость процесса сборки в результате создания сортировочных групп; возможно увеличение незавершенного производства вследствие разного числа деталей в парных группах.
1.1.5 Метод регулировки
Под методом регулирования понимают расчет размерных цепей, при котором требуемая точность исходного (замыкающего) звена достигается преднамеренным изменением без удаления материала (регулированием) одного из заранее выбранных составляющих размеров, называемого компенсирующим. Роль компенсатора обычно выполняет специальное звено в виде прокладки, регулируемого упора, клина и т. п. При этом по всем остальным размерам цепи детали обрабатывают по расширенным допускам, экономически приемлемым для данных производственных условий. С учетом номинального размера компенсирующего звена уравнение (1.1.1) можно записать
.
Значение AK берут с положительным знаком, если размер является увеличивающим, и с отрицательным - для уменьшающих размеров.
Допуск замыкающего звена
,
где VK - наибольшее возможное расчетное отклонение, выходящее за пределы поля допуска исходного звена и подлежащее компенсации.
Замыкающий размер изменяют (регулируют) с помощью компенсаторов, которые могут быть неподвижными и подвижными. Неподвижные компенсаторы чаще всего выполняют в виде промежуточных колец, набора прокладок и других сменных деталей. Толщина t каждой сменной прокладки должна быть меньше допуска исходного размера TD? и определяется формуле
t =?(VK/N)<?TD?,
N -- количество прокладок. Необходимо, чтобы N >?(VK /TD).
Для условий, когда допуском на изготовление компенсатора TK можно пренебречь, принимают
. (1.1.19)
Если этого сделать нельзя, то используют зависимость вида
. (1.1.20)
Округляя значение t до ближайшего меньшего нормального размера, получают окончательное число сменных прокладок
N =VK / t.
1.1.6 Метод подгонки
При этом методе требуемая точность замыкающего звена размерной цепи достигается изменением размера компенсирующего звена путем снятия с компенсатора слоя металла. Допуски на составляющие звенья назначаются по экономически приемлемым квалитетам, например по 12-14-му квалитетам. Получающийся после этого у замыкающего звена избыток поля рассеяния при сборке устраняют за счет компенсатора.
Смысл расчета заключается в определении припуска на пригонку, достаточного для компенсации величины превышения предельных значений замыкающего звена и вместе с тем наименьшего для сокращения объема пригоночных работ.
1.1.7 Модель векторного контура
В модели векторного контура размеры представляются в виде векторов, а значением назначенного на данный размер допуска является длина этого вектора.
Все векторы соединяются между собой и формируют контур, показывая, как детали собираются в конечную сборку.
Для анализа необходимых функциональных характеристик конечной сборки составляются математические уравнения, включающие все элементы (векторы) данного векторного контура.
Эти уравнения затем решаются с помощью разных подходов.
Отклонения, описываемые с помощью модели векторного контура, делят на три типа [32]: линейные размерные, кинематические и геометрические.
Для включения в векторный контур линейных размерных отклонений длину соответствующего вектора варьируют в пределах назначенного допуска.
Кинематические отклонения описывают возможные движения соединяемых между собой деталей, т.е. небольшие смещения, возникающие во время сборки под влиянием линейных размерных и геометрических отклонений. Кинематические отклонения моделируются с использованием т.н. кинематических соединений[21].
Для двухмерных сборок авторы выделят 6 типов соединений, а для трехмерных - 12.
Соединение характеризуется своими степенями свободы. Для каждого такого соединения необходимо указать свою локальную систему координат.
Рис. 1.8.1. Виды кинематических соединений
Геометрические отклонения относятся к допускам формы и расположения. Они моделируются путем добавления дополнительных степеней свободы к кинематическим соединениям, описанным выше. Хотя геометрические отклонения фактически влияют на изменение всей поверхности, в модели векторного контура они представляют отклонения размеров в точках сопряжений и только в тех направлениях, которые указаны для данного соединителя. В зависимости от назначенного типа допуска выявляются возможные вектор сдвига и матрица поворота и добавляются в качестве дополнительных степеней свободы для данного соединения.
Таким образом, для анализа допусков с применением модели векторного контура необходимо провести следующие операции:
1. Создать граф сборки. Граф сборки содержит в себе информацию о сборке деталей, их размерах, условия сопряжений и функциональные требования.
2. Определить локальные системы координат для каждой детали.
3. Определить кинематические соединения и создать базовые пути. Каждое условие сопряжения между деталями трансформируется в соответствующее ему кинематическое соединение. Базовые пути - это геометрические ограничения, определяющие направление и ориентацию векторов, входящих в состав векторного контура.
4. Создать векторный контур. Контур создается по соединяемым поверхностям на основе графа сборки и базовых путей. Каждый векторный контур может быть замкнутым или разомкнутым. Разомкнутый контур оканчивается функциональным требованием, измеряемым в конечной сборке (например, значение зазора между деталями в сборке). Замкнутый контур обозначает наличие регулируемых компонентов в сборке.
5. Получить уравнения. Сборочные ограничения, определенные с помощью модели векторного контура, можно представить математически через матрицы сдвигов и поворотов:
(1.1.21) |
где - матрица поворота для i-го вектора в контуре;-матрица сдвига для i-го вектора в контуре; - замыкающая матрица поворота;H-результирующая матрица.
6. Провести анализ допусков. Каждая деталь представлена вектором собственных размеров x (линейных отклонений) и вектором дополнительных (геометрических) отклонений б. Когда детали собирают, конечное изделие (узел) будет характеризоваться вектором и отклонений сборки и вектором функциональных требований. Число замкнутых контуров L = J - P + 1, где J - количество сопряжений между деталями; P-количество деталей. Для каждого замкнутого контура
(1.1.22) |
а для каждого разомкнутого контура
(1.1.23) |
Уравнение (1.1.23)позволяет определить значение после решения системы уравнений(1.1.21). Как правило, такие уравнения являются нелинейными и могут быть решены разными способами, например, методом прямой линеаризации:
(1.1.24) (1.1.25) (1.1.26) |
Представим
, , , , , .
Из уравнений 1.1.24 - 1.1.25:
где и
называют "матрицами чувствительности". Когда матрицы чувствительности известны, есть возможность найти решение по методу худшего случая:
а с применением статистического метода:
где k - число линейных отклонений; l-количество геометрических отклонений, влияющих на функциональное требование gi; -матрица коэффициентов чувствительности линейных размеров для i-го узла контура; - матрица коэффициентов чувствительности геометрических отклонений для i-го узла контура, а и - векторы соответствующих отклонений.
1.2 Обзор САПР, реализующих размерный анализ
Одной из основных задач технолога-машиностроителя является проектирование процессов механообработки. При этом подразумевается, что разработанный технологический процесс (ТП) должен обеспечивать изготовление в производственных условиях детали с теми параметрами точности размеров, которые заданы конструктором. Выполнение этого требования является непростой задачей, поскольку существует множество вариантов маршрута обработки одной и той же детали. Помимо того, точность выполнения конкретного размера оказывает влияние на точность других технологических размеров; и связь эта не очевидна, а может быть установлена только путем выявления контуров специфических технологических размерных цепей.
Изготовление изделий высокого качества в сжатые сроки и оптимизация прибыли требуют точных и эффективных аналитических инструментальных средств, которые тесно интегрированы с CAD-системами твердотельного моделирования.
Точность является важным показателем детали (узла, агрегата), определяющим ее способность выполнять свои рабочие функции. От точности зависят надежность не только самой детали, но и экономичность, производительность, уровень вибраций и шума всей конструкции, что в совокупности характеризует качество продукции.
Одним из инструментов создания качественных изделий, способных с высокой надежностью функционировать в течение всего срока эксплуатации, является размерный анализ. Он позволяет обеспечить требуемую точность функциональных параметров изделий и увязать между собой многие основные характеристики разных этапов жизненного цикла конструкции. При этом размерный анализ также является связующим звеном между конструкторскими и технологическими этапами подготовки производства к выпуску новой продукции. Такой анализ является универсальным средством, пригодным для расчета любой конструкции или отдельного узла [33].
Рис.2. 1Общая схема формирования качества изделия
В настоящее время задачи проектирования деталей и узлов должны решаться на основе широкого применения вычислительной техники. Автоматизация проектирования и создание CAD-программ для расчета размерных цепей позволяют сократить сроки подготовки производства к выпуску новой продукции, уменьшить издержки и повысить качество проектных работ.
Для управления допусками размеров требуется переход от концептуальных функциональных интерфейсов и необходимой справочной информации к точным и четким критериям для деталей, процессов монтажа и проверки изделий.
Рассмотрим наиболее известные на сегодняшний день САПР.
1.2.1 CATIA
Рис. 1.2.1.
CATIA (Computer Aided Three-dimensional Interactive Application) -- система автоматизированного проектирования (САПР) французской фирмы DassaultSystemes (рис 1.2.1.).
Это комплексная система автоматизированного проектирования (CAD), технологической подготовки производства (CAM) и инженерного анализа (САЕ), включающая в себя передовой инструментарий трёхмерного моделирования, подсистемы программной имитации сложных технологических процессов, развитые средства анализа и единую базу данных текстовой и графической информации.
Система позволяет эффективно решать все задачи технической подготовки производства - от внешнего (концептуального) проектирования до выпуска чертежей, спецификаций, монтажных схем и управляющих программ для станков с ЧПУ.
Данная система позволяет пользователям корректно назначать и анализировать допуски. Для этого необходимо выбрать поверхность и система сама предложит тип допуска по одному из стандартов (ISO, ASME/ANSI). Для представления допусков в системе используется модель однородных матриц трансформаций, использующая критерий TTRS. Анализ допусков реализован с помощью матричной модели.
Система позволяет проводить размерный анализ методом максимума-минимума. Для этого после назначения пользователем параметров допусков автоматически создаются системы уравнений, которые затем решаются относительно заданных ограничений. Результат вычисления показывает значения максимума и минимума для указанного размера или собираемость изделия.
1.2.2 CETOL 6 Sigma
Система автоматизированного размерного анализа CE/TOL 6 Sigmaот компании SigmetrixLLCполностью интегрирована в Pro-ENGINEER и программный комплекс SolidWorks.
Благодаря функционалу данных приложений пользователь имеет возможность управления допусками размеров через систему размерного анализа, которая позволяет надежно осуществлять разработку новой продукции от стадии 3D-модели до изготовления и монтажа. При этом упрощается процесс моделирования отклонений форм и размеров и появляется возможность получить ответы на вопросы по допускам и посадкам на ранних этапах в процессе проектирования. Применение инструментов TolAnalyst и CETOL 6 Sigma позволяет сократить путь конечного продукта от стадии эскизного проекта до подготовки производства и изготовления прототипа на 50-75% [33], что приводит к сокращению количества последующих изменений в конструкции, которые, как правило, являются очень дорогостоящими.
Создание инженерной модели сборки (содержащей допуски и условия сопряжений между деталями) состоит из двух шагов. Сначала пользователь выбирает сборку (CAD-модель, созданную в Pro-E), базы, кинематические соединения и допуски. Затем вручную создаются векторные контуры, представляющие кинематические ограничения и отклонения сборки. Система состоит из двух модулей: Modeler (для автоматической генерации векторных контуров и отображения) и Analyzer (для создания и решения систем уравнений из векторных контуров).
В системе доступны три типа анализа: 1) метод худшего случая (WC); 2) метод корня суммы квадратов (RSS); 3) метод 6 сигма.
Анализ допусков реализован с помощью модели векторного контура.
1.2.3 NX 7.5
В САПР NX7.5 внедрен модуль, позволяющий моделировать, рассчитывать и анализировать заданные отклонения размеров. Модуль позволяет предсказывать и управлять ключевыми источниками отклонений размеров, чтобы гарантировать, что сборочный агрегат выполнен с заданной посадкой, формой и в соответствии с заданной функциональностью. Отклонение - это разность между номинальным (заданным) размером детали и фактическим (изготовленным) размером детали. Анализ размерных цепочек предсказывает минимальное и максимальное отклонение размеров при сборке с учетом заданных допусков, установления последовательности сборки и условий сопряжения деталей в сборке. Он также рассчитывает вклад каждого допуска в отклонение.
Некоторые из наиболее важных достоинств при использовании Анализа размерных цепочек (Quick Stack):
· Проверка правильности простановки и применения размеров и допусков.
· Оценка влияния размеров и их допусков на собираемость конструкции и на отдельные детали, распознание минимальных и максимальных условий сопряжения деталей.
· Обеспечивает способ, который позволяет выявить возможные проблемы собираемости сборки и отдельных деталей на этапе проектирования.
· Позволяет проверить собираемость и ослабить допуски, таким образом, это приводит к снижению себестоимости производства.
· Уменьшает объем инженерных изменений, улучшает качество деталей, улучшает собираемость деталей и их крепления и улучшает качество сборки агрегатов, которые собираются впервые.
Анализ размерных цепочек (Quick Stack) может использоваться в процессе концептуальной разработки проекта (когда происходит проработка концепции изделия и создаются твердые тела для проработки концепции без уточнения геометрии):
· Проверка и сравнение вариантов проекта
· Определение, соответствует ли концепция требуемым критериям связей и ограничений
· Сравнивается новая концепция с существующей конструкцией
· Выбирается оптимальный вариант проекта.
Это может использоваться в процессе разработки модели для:
· Выполнения проверки первого уровня допусков
· Поиска деталей и размеров, которые вносят наибольший вклад в отклонения и принятие мер по их доработке и уменьшения зависимости, если это необходимо
· Распознавание деталей, которые влияют на собираемость изделия
· Установка верхних пределов допусков и снижение объема инженерных изменений в будущем.
Анализ размерных цепочек может так же использоваться в процессе проектирования инструмента, когда прижимы и фиксаторы, используемые при изготовлении детали, собираются в сборку.
А так же в процессе разработки модели для:
· Проверки схемы задания допусков
· Определения элементов, которые вносят наибольший вклад в отклонение
· Минимизации отклонения прижимов
· Оптимизации позиции прижима, значения допусков, последовательности сборки
· Снижения затрат на производство наборов инструмента и время сборки.
Для выполнения анализа размерных цепочек необходимо:
1. Создать сборку, добавить допуски и условия сопряжения, которые необходимы.
2. Создать измерения для граней, отклонения которых нужно проверить. Измерение может быть или расстоянием между двумя гранями, или углом между двумя гранями. Можно определять несколько измерений для двух граней.
3. Задать тип симуляции для выполнения анализа (Предельная симуляция или Симуляция Монте-Карло) в меню Настройки анализа размерных цепочек.
4. Выполнить симуляцию.
5. Проанализировать результаты.
6. Изменить входные параметры, если это необходимо (то есть, изменить допуски, условия сопряжения или последовательность сборки). Можно использовать электронную таблицу, чтобы быстро изменять допуски и выполнять дополнительное моделирования. Измененные значения допуска в электронной таблице могут быть сохранены в первоначальном состоянии.
Проведем анализ сборки, которая состоит из четырех деталей: двух плит, соединенных двумя стержнями (рис. 1.2.3.1). Для этой модели сначала составим и рассчитаем линейную размерную цепь классическим способом [16]. А затем проведем размерный анализ с помощью программного модуля Tolerance Stackup Validation (анализ размерных цепочек) в системе NX. Этим экспериментом продемонстрируем, что при линейных взаимосвязях допустимых отклонений в обоих случаях результаты размерного анализа получаются одинаковыми. Далее, на этой же сборке покажем работу модуля, когда кроме линейных присутствуют еще и пространственные взаимосвязи допусков.
Модель сборки, выбранная для проведения размерного анализа, состоит из 4 деталей (рис. 1.2.3.1). Обозначим плиту (рис. 1.2.3.1, а) как д1, стержень (рис. 1.2.3.1, в) как д2, стержень (рис. 1.2.3.1, г) как д3, плиту (рис. 1.2.3.1, б) как д4.
В плиту д1 с натягом вставляются стержни (д2 и д3), назовем получившуюся подсборку-подсборкой1(рис. 1.2.3.1, д). Затем подсборку1 собирают с плитой д4. При этом назначены посадки с зазором в сопряжениях стержней д2 и д3 с соответствующими отверстиями плиты д4 (обозначим эти сопряжения соответственно и ). Отметим, что эти зазоры должны компенсировать погрешности, возникающие в связи с позиционными отклонениями, назначенными на отверстия плиты д1 и плиты д4. А поскольку д2 и д3 вставлены в плиту д1, то при анализе собираемости будем учитывать позиционные отклонения именно этих стержней, а не отверстий плиты д1.
1.2.3.1 Линейный размерный анализ модели сборки
Проведем линейный размерный анализ данной сборки, используя теорию размерных цепей [16]. Составим размерные цепи для подсборки1 (рис. 1.2.3.1, д) и плиты д4 (рис. 1.2.3.2).
Рис. 1.2.3.1
Заметим, что линейные размерные цепи были выбраны таким образом, чтобы замыкающие звенья цепи 1 (рис. 1.2.3.2, а) и цепи 3 (рис. 1.2.3.2, в) соотнести с замыкающими звеньями цепи 2 (рис. 1.2.3.2, б) и цепи 4 (рис. 1.2.3.2, г) соответственно.
Рис. 1.2.3.2
Замыкающим звеном первой цепи (рис. 1.2.3.2, а) является расстояние между осями стержней плюс значения радиусов. Это звено выбрано специально, чтобы при расчете учесть допуски на диаметры стержней. Запишем значения составляющих звеньев первой цепи:
; ; .
Во второй размерной цепи (рис. 1.2.3.2, б) в качестве замыкающего звена выбрано расстояние между осями отверстий плюс значения радиусов. Аналогично это сделано для учета допусков на диаметры отверстий. Составляющие звенья второй цепи:
; ; .
В третьей и четвертой цепи (рис. 1.2.3.2, б, в) замыкающими размерами и являются расстояния между стержнями (отверстиями) минус радиусы. Запишем значения составляющих звеньев третьей и четвертой цепей:
; ;
; ; .
Рассчитаем значения отклонений для замыкающего звена цепи 1:
(мкм);
(мкм).
Т.е. замыкающее звено
.
Далее найдем значения отклонений для замыкающего звена цепи 3 и сравним со значениями, полученными для замыкающего звена цепи 1:
(мкм);
(мкм).
Т.е. замыкающее звено
.
Чтобы сравнить полученные значения отклонений замыкающих звеньев цепи 1 и цепи 3, укажем эти значения на координатной прямой (рис. 1.2.3.3).
Рис. 1.2.3.3
Как видно из рис. 1.2.3.3, при значениях замыкающих звеньев и будет пересечение поверхностей в сопряжениях. При этом суммарное значение этого пересечения составит:
Эта величина показывает, на сколько необходимо увеличить зазор одного из отверстий плиты 2, распределить это значение между зазорами отверстия 1 и отверстия 2, или ужесточить позиционные допуски на отверстия.
Далее проведем аналогичные расчеты для цепи 2 и цепи 4. Для этого рассчитаем значения отклонений для замыкающих звеньев и :
(мкм);
(мкм);
(мкм);
(мкм).
Т.е. замыкающее звено
,
а звено
.
Сравним полученные результаты (рис. 1.2.3.4).
Рис. 1.2.3.4
При значениях замыкающих звеньев и также будет пересечение поверхностей, равное:
Далее продемонстрируем расчет этой же сборки (используя эти же исходные данные) с помощью программного модуля Tolerance Stackup Validation (анализ размерных цепочек).
1.2.3.2 Модуль Tolerance Stackup Validation
Модуль Tolerance Stackup Validation (анализ размерных цепочек) позволяет предсказывать и управлять ключевыми источниками отклонений размеров, чтобы гарантировать, что сборочный агрегат выполнен с заданной посадкой, формой и в соответствии с заданной функциональностью. Отклонение -- это разность между номинальным (заданным) размером детали и фактическим (изготовленным) размером детали. Анализ размерных цепочек предсказывает минимальное и максимальное отклонение размеров при сборке с учетом заданных допусков, установления последовательности сборки и условий сопряжения деталей в сборке. Он также рассчитывает вклад каждого допуска в отклонение.
1.2.3.3 Процедура Tolerance Stackup Validation
Для выполнения анализа размерных цепочек необходимо:
1. Создать сборку, добавить допуски и условия сопряжения, которые необходимы;
2. Создать измерения для граней, отклонения которых нужно проверить. Измерение может быть или расстоянием между двумя гранями, или углом между двумя гранями. Можно определять несколько измерений для двух граней;
3. Задать тип симуляции для выполнения анализа (Предельная симуляция или Симуляция Монте-Карло) в меню Настройки анализа размерных цепочек;
4. Выполнить симуляцию;
5. Проанализировать результаты;
6. Изменить входные параметры, если это необходимо (то есть, изменить допуски, условия сопряжения или последовательность сборки). Можно использовать электронную таблицу, чтобы быстро изменять допуски и выполнять дополнительное моделирования. Измененные значения допуска в электронной таблице могут быть сохранены в первоначальном состоянии.
Подобные документы
Расчет параметров посадки с зазором в системе отверстия. Предельные размеры, допуски отверстия и вала. Числовые значения предельных отклонений. Обозначение размеров на рабочих чертежах. Схема расположения полей допусков. Условное обозначение допусков.
курсовая работа [1,5 M], добавлен 30.06.2013Определение технических требований к сборочной единице, назначению и обоснованию посадок для соединений. Размерный анализ сборочной единицы. Построение и расчет размерной цепи. Выбор универсальных измерительных средств для контроля размеров деталей.
курсовая работа [4,3 M], добавлен 17.09.2010Анализ соединений зубчатого колеса с валом. Определение предельных отклонений посадочных поверхностей, шероховатости посадочных отверстий. Расчет исполнительных размеров калибров для контроля деталей заданного соединения. Размерный анализ узла редуктора.
контрольная работа [1,1 M], добавлен 30.10.2013Расшифровка посадки по буквенному написанию или другим параметрам. Обозначение системы, в которой обозначены отверстие и вал. Буквенное обозначение размеров вала и отверстия. Расчет предельного размера вала и отверстия S(N) max и min допуск посадки.
лабораторная работа [112,3 K], добавлен 06.10.2010Особенности применения САПР "Comtence" и "Еleandr"с целью построения базовых основ деталей швейных изделий с использованием методик конструирования. Сравнение программных компонентов изучаемых промышленных систем автоматизированного проектирования.
контрольная работа [1,3 M], добавлен 08.12.2011Назначение и анализ посадок для шпоночного соединения. Выбор посадок для соединения подшипника качения с валом и корпусом. Соединение зубчатого колеса с валом. Расчёт исполнительных размеров калибров для контроля отверстия и вала, образующих посадку.
курсовая работа [177,7 K], добавлен 20.11.2012Определение числовых значений предельных отклонений на радиальные размеры деталей, которые образуют сопряжения (посадки), а также на осевые размеры вала. Разработка схемы эскиза узла, с указанием на нем заданных радиальных и осевых размеров детали.
контрольная работа [165,0 K], добавлен 24.05.2012Разработка циклограммы: описание датчиков, исполнительных устройств и циклограммы. Разработка математической модели. Описание входов и выходов системы. Разработка функциональной модели. Построение дерева процедур. Разработка аппаратных модулей ввода.
курсовая работа [159,7 K], добавлен 15.06.2011Служебное назначение изделия - закрепление двух заготовок при одновременном выполнении расточки отверстия и его развертывания. Анализ технологичности конструкции. Расчет размерной цепи, выбор оснастки. Режимы нормирования сборки, конструкция детали.
курсовая работа [763,5 K], добавлен 22.01.2011Построение эскиза корпусной детали авиадвигателя. Анализ топографии заданных размеров детали и определение её возможных размерных цепей по координатам замыкающих звеньев. Определение значения номинальных размеров, допусков и предельных отклонений детали.
лабораторная работа [1,0 M], добавлен 23.02.2015