Абсорбционные методы очистки отходящих газов

Теоретические основы абсорбции. Растворы газов в жидкостях. Обзор и характеристика абсорбционных методов очистки отходящих газов от примесей кислого характера, оценка их преимуществ и недостатков. Технологический расчет аппаратов по очистке газов.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 02.04.2015
Размер файла 834,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1 Теоритические основы абсорбции
  • 2 Растворы газов в жидкостях
  • 3 Абсорбционные методы очистки отходящих газов от примесей кислого характера
    • 3.1 Очистка газов от диоксида серы
      • 3.1.1 Абсорбция водой
      • 3.1.2 Известняковые и известковые методы
      • 3.1.3 Магнезитовый метод
    • 3.2 Очистка газов от сероводорода
      • 3.2.1 Вакуум - карбонатные методы
      • 3.2.2 Фосфатный процесс
      • 3.2.3 Щелочно - гидрохиновый метод
    • 3.3 Очистка газов от оксидов азота
      • 3.3.1 Абсорбция водой
      • 3.3.2 Абсорбция щелочами
      • 3.3.3 Селективные абсорбенты
  • 4 Технологический расчет аппаратов
  • 5 Преимущества и недостатки абсорбционных методов очистки отходящих газов
  • 6 Заключение
  • 7 Список литературы

Введение

Многие технологические процессы на предприятиях металлургической, химической, нефтехимической промышленности, в ряде цехов машиностроительных заводов, на многих других производствах сопровождаются поступлением вредных газов и паров в атмосферный воздух. Активным загрязнителем атмосферного воздуха является транспорт, в первую очередь, автомобильный. Газовые загрязнения, как и аэрозольные, загрязняя атмосферный воздух, значительно ухудшают его качество, а в ряде случаев делают его непригодным для нахождения в нем людей. Санитарные нормы ограничивают концентрацию вредных паров и газов в воздухе населенных пунктов, однако эти требования не всегда соблюдаются. Это наносит значительный ущерб здоровью людей, проживающих в местностях, подверженных воздействию вредных газов и паров, ведению сельского хозяйства в данном районе, организации отдыха людей, приводит к повреждению архитектурных сооружений, памятников истории и культуры и т.д.

Под очисткой газового потока понимают отделение от него или превращения в безвредную форму загрязняющих веществ, выбрасываемых в атмосферу вместе с газовым потоком. Воздушными массами загрязнения могут переноситься на большие расстояния и существенно влиять на состояние атмосферы и здоровья человека.

Цель данной работы - рассмотреть и изучить абсорбционные методы очистки отходящих газов.

1 Теоретические основы абсорбции

Абсорбцией называется перенос компонентов газовой смеси в объем соприкасающейся с ней конденсированной фазы. При абсорбции происходит избирательное поглощение одного или нескольких компонентов из газовой смеси жидкими поглотителями.

Вещество, которое содержится в газовой фазе и при абсорбции не переходит в жидкую фазу, называют газом-носителем, вещество, в котором происходит растворение абсорбируемых компонентов, называют растворителем (поглотителем или абсорбентом), вещество, которое содержится в газовой фазе и при абсорбции переходит в жидкую фазу, т.е. поглощаемый компонент, называют абсорбтивом, поглощаемое вещество в объеме поглотителя - абсорбатом. Абсорбат удерживаются в абсорбенте, равномерно распределяясь среди его молекул, вследствие растворения или химической реакции.

Процесс, завершающийся растворением абсорбата в поглотителе, называют физической абсорбцией. При физической абсорбции происходит физическое растворение абсорбируемого компонента в растворителе, при этом молекулы абсорбента и молекулы абсорбтива не вступают между собой в химическое взаимодействие.

Иногда растворяющийся газ вступает в химическую реакцию непосредственно с самим растворителем. Процесс, сопровождающийся химической реакцией между поглощаемым компонентом и абсорбентом, называют химической абсорбцией (хемосорбция). При хемосорбции абсорбируемый компонент вступает в химическую реакцию с поглотителем, образуя новые химические соединения в жидкой фазе.

Абсорбция представляет процесс химической технологии, включающей массоперенос между газообразным компонентом и жидким растворителем, осуществляемый в аппарате для контактирования газа с жидкостью. Аппараты, в которых осуществляют процесс абсорбции, называют абсорберы. Абсорбция -- наиболее распространенный процесс очистки газовых смесей во многих отраслях, например, в химической промышленности.

Абсорбцию широко применяют для очистки выбросов от сероводорода, других сернистых соединений, паров соляной, серной кислот, цианистых соединений, органических веществ (фенола, формальдегида и др.).

Рис. 1. Схема абсорбционной установки: 1 - вентилятор (газодувка); 2-абсорбер; 3-брызгоотбойник; 4,6-оросители; 5-холодильник; 7-десорбер; 8-куб десорбера; 9,13-ёмкость для абсорбента; 10,12-насосы; 11-теплообменникрекуператор

Абсорбционная система может быть простой, в которой жидкость применяется только один раз и удаляется из системы без отделения абсорбированного загрязнения. В другом варианте загрязнение отделяют от абсорбирующей жидкости, выделяя её в чистом виде. Затем абсорбент вновь подают на стадию абсорбции, снова регенерируют и возвращают в систему.

Регенерацию поглотителей проводят физическими методами: повышением температуры, снижением давления либо сочетанием указанных параметров.

2 Растворы газов в жидкостях

Растворение газа в жидкости называют абсорбцией газа жидкостью. По своей природе и свойствам растворы газов в жидкости ничем не отличаются от других жидких растворов.

Влияние давления при не слишком высоких его значениях достаточно хорошо выражается законом Генри: при постоянной температуре растворимость газа в растворителе прямо пропорциональна давлению этого газа над раствором.

Как правило, растворение газов в воде происходит с выделением тепла и с уменьшением объема, поэтому в соответствии с принципом Ле Шателье при повышении температуры их растворимость снижается. Это иллюстрируют данные (табл. 1.) по содержанию (в нормальных литрах) некоторых газов в 1 л воды при 760 мм рт. ст.:

Таблица 1

Газ

0°C

20°C

60°C

100°C

Н2

0,021

0,018

0,016

0,016

CO2

1,713

0,88

0,36

-

NH3

1176

702

-

-

При хемосорбции в качестве абсорбента используют водные растворы солей, органические вещества и водные суспензии различных веществ. При использовании воды абсорбируемый газ должен достаточно хорошо растворяться в ней при данной температуре в системе газ-жидкость. Для абсорбции газообразных загрязнителей с ограниченной растворимостью в воде, таких как SO2 или бензол, необходимы очень большие количества воды. Вода обладает высокой эффективностью при удалении кислых растворимых газов, таких как HCl, HF и SiF4 при использовании слабощелочной воды, для улавливания NH3 подкисленной водой. Газы с меньшей растворимостью, например SO2, Cl2 и H2S, легче абсорбируются не чистой водой, а щелочными растворами, в частности, разбавленным NaOH или водным раствором (суспензией) извести, т.е. в последнем случае более приемлема хемосорбция.

Нецелесообразно использовать воду для очистки выбросов с нерастворимыми в ней органическими примесями. Подобные загрязнители как правило хорошо поглощаются органическими жидкостями, среди которых могут использоваться как абсорбенты высококипящие вещества, такие как этаноламины и тяжелые предельные углеводороды (минеральные масла). Абсорбция органическим растворителем наиболее эффективна для удаления органических газообразных загрязнителей, поскольку в этом случае обеспечивается хорошая растворимость. В качестве органических жидких абсорбентов применяются диметиланилин, моно-, ди- и триэтаноламин и метилдиэтаноламин. Использование таких абсорбентов ограничено системами, не содержащими твёрдых частиц, поскольку твердые вещества загрязняют органические жидкости.

3 Абсорбционные методы очистки отходящих газов от примесей кислого характера

3.1 Очистка газов от диоксида серы

3.1.1 Абсорбция водой

Абсорбция водой диоксида серы сопровождается реакцией:

Растворимость SO в воде мала. Зависимость между общей концентрацией SOа растворе и равновесным давлением выражается формулой:

,

где - равновесное давление SO; - константа фазового равновесия для SO, м*Па/кмоль; К - константа равновесия реакции.

При абсорбции SO водой процесс лимитируется диффузионным сопротивлением со стороны газа и жидкости. Он может быть проведен а абсорберах различной конструкции. Для колонн с провальными и сетчатыми тарелками коэффициенты массоотдачи могут быть определены из уравнений:

,

,

где и - диффузионные критерии Нуссельта для газа и жидкости; и - диффузионные критерии Прандтля для газа и жидкости; и - критерии Рейнольдса для газа и жидкости; и - коэффициенты массоотдачи со стороны газа и жидкости, м/с; - поверхностно-объемный диаметр пузырьков газа, м (; и - коэффициенты молекулярной диффузии SO в газе и жидкости, м/с; и - кинематические коэффициенты вязкости газа и жидкости, м/с; и - скорость газа и жидкости а газожидкостном слое, м/с.

В связи с низкой растворимостью диоксида серы в воде для очистки требуется большой ее расход и абсорберы с большими объемами. Удаление SO из раствора ведут при нагревании его до 100С. Таким образом, проведение процесса связано с большими энергозатратами.

3.1.2 Известняковые и известковые методы

Достоинством этих методов является простая технологическая схема, низкие эксплуатационные затраты, доступность и дешевизна сорбента, возможность очистки газа без предварительного охлаждения и обеспыливания.

На практике применяются известняк, мел, доломиты, мергели. Известь получают обжигом карбонатных пород при температуре 1100 - 1300С.

Процесс абсорбции диоксида серы для известкового и известнякового методов представляется в виде следующих стадий:

,

,

,

,

,

,

Протекание тех или иных реакций зависит от состава и рН суспензии. В присутствии в растворе различных примесей процесс абсорбции значительно усложняется. Например, действие небольших количеств повышает степень очистки и степень использования известняка. При этом протекают следующие реакции:

Для расчета равновесия при использовании солей кальция предложены эмпирические уравнения:

для системы

:

для системы

:

для системы

.

3.1.3 Магнезитовый метод

Диоксид серы в этом случае поглощают оксид - гидрооксидом магния. В процессе хемосорбции образуются кристаллогидраты сульфита магния, которые сушат, а затем термически разлагают на -содержащий газ и оксид магния. Газ перерабатывают в серную кислоту, а оксид магния возвращают на абсорбцию.

В абсорбере протекают следующие реакции:

Растворимость сульфита магния в воде ограничена, избыток его в виде и выпадает в осадок. Технологическая схема процесса представлена на рис. 2.

Дымовые газы поступают в абсорбер Вентури, орошаемый циркулирующей суспензией. Отношение Т:Ж в суспензии 1:10, рН суспензии на входе 6,8 - 7,5, а на выходе из абсорбера 5,5 - 6. состав циркулирующей суспензии (в %):

вода и примеси - 79,65.

В абсорбере кроме сульфита образуется некоторое количество сульфата:

Рис. 2. схема установки очистки газа от диоксида серы суспензией оксида магния: 1 - абсорбер; 2 - нейтрализатор; 3 - центрифуга; 4 - сушка; 5 - печь

Образование сульфата нежелательно, так как для его разложения необходима более высокая температура (1200-13000С). При таких условиях получается переобожженный , который имеет малую активность по отношению к . Для устранения образования сульфата необходимо использовать ингибиторы окисления или проводить процесс в абсорберах при малом времени контакта газ - жидкость. Другой путь - производить обжиг сульфата в присутствии восстановителей. В этом случае сульфат восстанавливается в сульфит.

Из нейтрализатора часть суспензии выводят на центрифугу для отделения кристаллогидратов солей магния. Обезвоживание солей производят в сушилках барабанного типа с мазутной копкой. Безводные кристаллы обжигают во вращающихся печах или печах кипящего слоя при 9000С, в печь добавляют кокс. При этом идет реакция:

Концентрация в газе, выходящем из печи, 7 - 15%. Газ охлаждают, очищают от пыли и сернокислотного тумана и направляют на переработку в серную кислоту.

Выгружаемый из печи продукт содержит 86,1% и 3,4% . Его охлаждают до 1200С воздухом, идущим на сгорание мазута в топках, после чего отправляют на абсорбцию.

Достоинства магнезитового метода: 1) возможность очищать горячие газы без предварительного охлаждения; 2) получение в качестве продукта рекуперации серной кислоты; 3) доступность и дешевизна хемосорбента; 4) высокая эффективность очистки.

Недостатки: 1) сложность технологической схемы; 2) неполное разложение сульфата магния при обжиге; 3) значительные потери оксида магния при регенерации.

3.2 Очистка газов от сероводорода

3.2.1 Вакуум - карбонатные методы

В этих методах сероводород поглощается из газов водным раствором карбоната натрия или калия. Затем раствор регенерируют нагреванием под вакуумом, охлаждают и снова возвращают на абсорбцию. В основе методов лежит реакция:

В следствие различной растворимости , , и для абсорбции применяют растворы разной концентрации. Поташ лучше растворим в воде, поэтому применяются более концентрированные его растворы, которые имеют высокую поглотительную способность. Это позволяет уменьшит его расход, а также сократить расход пара на регенерацию поташа и расход энергии на перекачивание раствора.

Недостатком использования раствора поташа является их высокая стоимость. Исходя из этого, чаще используют содовый метод.

Если производится регенерация раствора без рекуперации сероводорода, то раствор нагревают в регенераторе, а из него воздухом отдувают сероводород. При этом некоторое количество сульфида натрия окисляется до тиосульфата, что приводит к понижению концентрации абсорбирующей жидкости, поэтому периодически ее заменяют свежей. Технологическая схема очистки газа от сероводорода вакуум - карбонатном методом с получением из сероводорода серной кислоты приведена на рис. 3.

Рис. 3. Схема установки очистки газа от сероводорода вакуум - карбонатном способом: 1 - абсорбер; 2, 9 - насосы; 3 - холодильник - конденсатор; 4 - теплообменник; 5 - подогреватель; 6 - регенератор; 7 - циркуляционный подогреватель; 10 - холодильник; 11 - вакуум - насос; 12 - холодильник; 13 - печь; 14 - котел - утилизатор

После очистки газа в абсорбере раствор подают в холодильник - конденсатор, где его подогревают за счет тепла конденсации паров, выделяющихся при регенерации поглотительного раствора. Затем раствор проходит теплообменник и подогреватель и поступает в регенератор. Раствор регенерирует кипячением под вакуумом (15,6 кПа). Регенерированный раствор направляют в емкость, а затем через теплообменник и холодильник - на орошение абсорбера. Выделяющиеся при регенерации раствора пары сероводорода и воды отсасываются вакуумом - насосом через конденсатор - холодильник, где конденсируется значительная часть паров воды. Далее пары поступают в холодильник, а затем в печь для сжигания сероводорода. Из печи газовая смесь, состоящая из диоксида серы, водяных паров, кислорода и инертных газов, при 9000 С, а затем направляется на окисление в контактный аппарат. После окисления газы направляют на абсорбцию для получения серной кислоты.

3.2.2 Фосфатный процесс

Для абсорбции сероводорода фосфатным методом применяют растворы, содержащие 40 -50% фосфата калия:

Из раствора сероводород удаляют кипячением при 107 - 1150С. Коррозии кипятильников при этом не наблюдается. Растворы стабильны, не образуют продуктов, ухудшающих их качество. Достоинством процесса является также селективность раствора к сероводороду в присутствии .

3.2.3 Щелочно - гидрохиновый метод

Сущность метода в поглощении сероводорода щелочными растворами гидрохинона. При регенерации растворов выделяются элементарная сера и тиосульфата натрия. Гидрохинон является катализатором. Чем выше концентрация хинона в растворе, тем активнее раствор. Метод состоит из следующих стадий:

взаимодействие сероводорода с карбонатом натрия (содой)

окисление гид2росульфида натрия хиноном (окисленная форма гидрохинона)

регенерация соды

регенерация хинона

Последняя стадия осуществляется за счет кислорода, содержащегося в газе, и протекает параллельно с процессами поглощения и окисления сероводорода. Более полную регенерацию хинона проводят в регенераторах.

В процессе абсорбции протекает следующая побочная реакция:

Накопление в растворе и приводит к снижению его поглотительной способности вследствие уменьшения концентрации карбоната натрия и снижения рН среды. Для поддержания активности поглотительного раствора непрерывно добавляют свежие растворы соды и гидрохинона. Для поддержания рН раствора в пределах 9 - 9,5 добавляют 42%-й раствор едкого натрия.

Абсорбцию сероводорода проводят в полом абсорбере с форсунками или плотности орошения 4,35 м3/ч на 1 м3 орошаемого объема. Раствор регенерируют, пропуская через него (барботаж) сжатый воздух. При этом происходит окисление гидрохинона до хинона и флотации выделившейся серы, которую в виде пены собирают на поверхности раствора. Одновременно здесь же происходит окисление части гидросульфида др тиосульфата. Серная пена собирается в пеносборнике, а затем поступает на вакуум - фильтр, где происходит ее отделение. Полученную серу плавят в автоклаве.

Метод позволяют очистить газ от начального содержания сероводорода в газе 0,185 г/м3 до 0,02 г/м3. степень очистки газа зависит от концентрации в нем сероводорода, скорости движения газа в абсорбере и интенсивности орошения, концентрации активных компонентов в растворе и его рН, температуры процесса, от равномерности распределения раствора в абсорбере.

3.3 Очистка газов от оксидов азота

3.3.1 Абсорбция водой

При абсорбции диоксида азота водой в газовую фазу выделяется часть оксида азота, скорость окисления которого при низких концентрациях мала:

Для утилизации оксидов можно использовать разбавленные растворы пероксида водорода с получением азотной кислоты:

Основным фактором, определяющим экономику процесса, является расход пероксида водорода. Он приблизительно равен 6 кг на 1 т кислоты в сутки.

Разработан процесс очистки газов водой и циркулирующей . Физическая абсорбция оксидов азота в азотной кислоте увеличивается с ростом концентрации кислоты и парциального давления . Увеличение поверхности контакта способствует протеканию процесса, так как на границе раздела фаз идет реакция окисления NO в NO2. Для интенсификации процесса используют катализатор. Степень очистки может достигать 97%.

3.3.2 Абсорбция щелочами

Для очистки газов применяют различные растворы щелочей и солей. Хемосорбция диоксида азота раствором соды протекает по уравнению:

Уравнения для хемосорбции различными щелочными растворами или суспензиями представлены ниже:

При абсорбции активность щелочных растворов убивает в такой последовательности:

1 0,84 0,80 0,78 0,63 0,56 0,51 0,44 0,4

0,40 0,39 0,35

Цифры под каждым из щелочных растворов показывают их активность относительно раствора , активность которого условно принята за единицу. Данные приведены для начальной концентрации растворов 100 г/л и времени проскока газа 10 мин. Активность щелочных растворов определяется начальным рН раствора. Активность тем выше, чем выше этот показатель.

При абсорбции растворами аммиака образуются соединения с низкой температурой разложения. Например, образующийся нитрит аммония при 560С полностью распадается:

3.3.3 Селективные абсорбенты

Для очистки газов от при отсутствии в газовой фазе кислорода могут быть использованы растворы для первых растворов протекают реакции с образованием комплексов:

При нагреве до 95 - 1000С комплекс распадается и выделяется в чистом виде, а восстановленный раствор вновь возвращают в производстве. Аналогично разлагается и комплекс .

Раствор является наиболее доступным и эффективным поглотителем. В качестве абсорбента могут быть использованы и травильные растворы, содержащие . Поглотительная способность раствора зависит от концентрации в растворе, температуры и концентрации в газе. При температурах 20 - 250С раствор может поглощать даже при небольших концентрациях. Предел растворимости оксидов азота соответствует соотношению . Присутствие в растворе серной и азотной кислот, солей и органических веществ снижает его поглотительную способность. Однако наличие в растворе 0,5 - 1,5% (об.) серной кислоты предохраняет от окисления кислородом воздуха до .

Использование растворов

, , приводит к дефиксации азота:

Таким же образом взаимодействует и с растворами , , .

При температуре выше 2000С взаимодействует с аммиаком по реакции:

.

Серная кислота используется для поглощения и с образованием нитрозилсерной кислоты:

При нагревании нитрозилсерной кислоты или при разбавлении ее водой происходит выделение оксидов азота:

Взаимодействие оксидов азота с жидкими сорбентами наиболее эффективно протекает при 20 - 400С.

4 Технологический расчет аппаратов

1. Масса поглощаемого вещества и расхода поглотителя

Пересчитаем исходные концентрации в относительные массовые доли:

где:

- мольная масса абсорбтива;

- мольная масса инертного газа;

Объемный расход инертного газа при рабочих условиях:

Массовый расход инертного газа:

где: - плотность инертного газа при 0 0C;

Уравнение материального баланса:

Используя данные равновесия:

Отсюда минимальный расход поглотителя:

, так как здесь

концентрация абсорбтива в воде, равновесная с газом начального состава; определяем из уравнения равновесной прямой:

здесь

- мольная масса воды

=> , где

где ,

здесь Е-коэффициент Генри, П-давление среды.

Действительный расход:

Удельный расход поглотителя:

2. Движущая сила массопередачи

Для случая линейной равновесной зависимости между составами фаз, принимая модель идеального вытеснения в потоках обеих фаз, определим движущую силу в единицах концентрации газовой фазы:

кг/кг

3. Скорость газа и диаметр абсорбера

Предельную скорость газа, выше которой наступает захлебывание насадочных абсорберов, можно рассчитать по уравнению:

, здесь

- ускорение свободного падения;

-плотность воды;

так как поглотитель вода;

Подбираем насадку:

- удельная поверхность насадки;

свободный объем, тогда

Принимаем рабочую скорость равную:

Определяем диаметр абсорбера из уравнения расхода:

Выбираем стандартный диаметр обечайки абсорбера и определяем действительную рабочую скорость газа в колонне.

4. Плотность орошения и активная поверхность насадки

Плотность орошения:

, где

Минимальная эффективная плотность орошения:

, где

линейная эффективная плотность орошения;

Доля активной поверхности насадки может быть найдена:

здесь

p, q - коэффициенты.

5. Расчет коэффициентов массоотдачи и массопередачи

Коэффициент массоотдачи в газовой фазе:

, здесь

- эквивалентный диаметр насадки;

Dy - коэффициент диффузии;

- мольные объемы;

Диффузионный критерий Нуссельта для газовой фазы:

, здесь

Критерий Рейнольдса для газовой фазы в насадке:

здесь

, здесь

вязкость газа при 00C;

С=114 - константа Сатерленда;

Диффузионный критерий Прандтля для газовой фазы:

, тогда

Коэффициент массоотдачи в жидкой фазе:

, здесь

- приведенная толщина стекающей пленки жидкости, здесь вязкость воды;

- коэффициент диффузии абсорбтива в воде при 200C;

Диффузионный критерий Нуссельта для жидкой фазы:

, здесь

Модифицированный критерий Рейнольдса для стекающей по насадке пленке жидкости:

Диффузионный критерий Прандтля для жидкой фазы:

,

Коэффициент массоотдачи:

Переводим коэффициенты массоотдачи в требуемую размерность:

Коэффициент массопередачи по газовой фазе:

6. Поверхность массопередачи и высота абсорбера

Поверхность массопередачи в абсорбере:

Высота насадки, требуемая для создания этой поверхности:

,

Высота абсорбера:

здесь

- число слоев

высота одного слоя;

- расстояние между слоями;

- высота сепарационной части;

- высота кубовой части.

5 Преимущества и недостатки абсорбционных методов очистки отходящих газов

Абсорбционные системы разделяют на водные и неводные. Во втором случае применяют обычно малолетучие органические жидкости. Жидкость используют для абсорбции только один раз или же проводят ее регенерацию, выделяя загрязнитель в чистом виде. Схемы с однократным использованием поглотителя применяют в тех случаях, когда абсорбция приводит непосредственно к получению готового продукта или полупродукта. В качестве примеров можно назвать:

· получение минеральных кислот:

§ абсорбция серного ангидрида (SO3) (производство серной кислоты - H2SO4);

§ абсорбция хлористого водорода (HCl) (получение соляной кислоты);

§ абсорбция оксидов азота (NOx) водой (производство азотной кислоты - HNO3);

§ абсорбция оксидов азота (NOx) щелочными растворами (получение нитратов);

§ др.

· получение солей (абсорбция оксидов азота щелочными растворами с получением нитрит-нитратных щелоков, абсорбция водными растворами извести или известняка с получением сульфата кальция);

· других веществ (абсорбция NH3 водой для получения аммиачной воды и др.).

Схемы с многократным использованием поглотителя (циклические процессы) распространены шире. Их применяют для улавливания углеводородов, очистки от SO2 дымовых газов ТЭС, очистки вентгазов от сероводорода железно-содовым методом с получением элементарной серы , моноэтаноламиновой очистки газов от CO2 в азотной промышленности.

В зависимости от способа создания поверхности соприкосновения фаз различают поверхностные, барботажные и распыливающие абсорбционные аппараты.

В первой группе аппаратов поверхностью контакта между фазами является зеркало жидкости или поверхность текучей пленки жидкости. Сюда же относят насадочные абсорбенты, в которых жидкость стекает по поверхности загруженной в них насадки из тел различной формы.

Во второй группе абсорбентов поверхность контакта увеличивается благодаря распределению потоков газа в жидкость в виде пузырьков и струй. Барботаж осуществляют путем пропускания газа через заполненный жидкостью аппарат либо в аппаратах колонного типа с тарелками различной формы.

В третьей группе поверхность контакта создается путем распыления жидкости в массе газа. Поверхность контакта и эффективность процесса в целом определяется дисперсностью распыленной жидкости.

Для эффективного применения водных абсорбционных сред удаляемый компонент должен хорошо растворяться в абсорбционной среде и часто химически взаимодействовать с водой, как, например, при очистке газов от HCl, HF, NH3, NO2. Для абсорбции газов с меньшей растворимостью (SO2, Cl2, H2S) используют щелочные растворы на основе NaOH или Ca(OH)2. Добавки химических реагентов во многих случаях увеличивают эффективность абсорбции благодаря протеканию химических реакций в пленке. Для очистки газов от углеводородов этот метод на практике используют значительно реже, что обусловлено, прежде всего, высокой стоимостью абсорбентов. Общими недостатками абсорбционных методов является образование жидких стоков и громоздкость аппаратурного оформления.

абсорбционный очистка газ

6 Заключение

В данной работе были рассмотрены абсорбционные методы очистки отходящих газов от примесей кислого характера. Данный метод очистки газов не свободен от определенных недостатков, связанных, прежде всего, с громоздкостью оборудования. Этот метод достаточно капризен в эксплуатации и связан с большими затратами. К недостаткам абсорбционного метода следует отнести также образование твердых осадков, что затрудняет работу оборудования, и коррозионную активность многих жидких сред. Однако, не смотря на эти недостатки, абсорбционный метод еще широко применяется в практике газоочистки, так как он позволяет улавливать наряду с газами и твердые частицы, отличается простотой оборудования и открывает возможности для утилизации улавливаемых примесей.

7 Список литературы

· Ветошкин А.Г., Таранцева К.Р. Технология защиты окружающей среды (теоретические основы). Учебное пособие. /Под ред. доктора технических наук, профессора, академика МАНЭБ и АТП РФ А.Г.Ветошкина - Пенза: Изд-во Пенз. технол. ин-та, 2004. - с.: ил., библиогр.

· Страус В. Промышленная очистка газов / Пер. с англ. М.: Химия, 1981.

· Дытнерский, Ю. И. Основные процессы и аппараты химической технологии: Пособие по проектированию / Г. С. Борисов, В. П. Брыков, Ю. И. Дытнерский - Изд. 3-е, стереотипное. - М.: ООО ИД «Альянс», 2007.

· http://filepo27.narod.ru/teor/63.htm Абсорбционные методы очистки газов(SO(2), N(x)O(y), H(2)S).

· http://splitsystem-rostov.ru Методы очистки воздуха. Описание существующих методов очистки воздуха от вредных газообразных примесей.

· http://www.gazochist.ru/cba/proceses.html Очистка газов от примесей.

Размещено на Allbest.ru


Подобные документы

  • Описание абсорбционных, каталитических, термических методов очистки отходящих газов. Физико-химические свойства Н-бутанола и бензола. Расчет адсорбера системы ВТР периодического действия с неподвижным слоем адсорбента для улавливания паров н-бутанола.

    курсовая работа [174,5 K], добавлен 16.12.2012

  • Система менеджмента качества Новокузнецкого алюминиевого завода. Образование газов при электролитическом производстве алюминия. Особенности технологии сухой очистки отходящих газов, типы реакторов, устройства для улавливания фторированного глинозема.

    отчет по практике [523,3 K], добавлен 19.07.2015

  • Классификация методов и аппаратов для обезвреживания газовых выбросов. Каталитическая очистка газов: суть метода. Конструкция каталитических реакторов. Технологическая схема установки каталитического обезвреживания отходящих газов в производстве клеенки.

    курсовая работа [1,7 M], добавлен 12.06.2011

  • Основное уравнение массопередачи при абсорбции. Абсорбенты, применяемые для очистки отходящих газов в промышленности. Материальный и тепловой баланс абсорбции, кривая равновесия. Абсорбционно-биохимическая установка для очистки вентиляционного воздуха.

    реферат [866,0 K], добавлен 29.01.2013

  • Адсорбция как поглощение газов или паров поверхностью твёрдых тел, называемых адсорбентами. Понятия поглощения паров и газообразных компонентов жидкими поглотителями (абсорбентами). Характеристика закона Генри. Принципы применения абсорбционной очистки.

    реферат [47,0 K], добавлен 24.03.2015

  • Описание технологической схемы установки утилизации теплоты отходящих газов технологической печи. Расчет процесса горения, состав топлива и средние удельные теплоемкости газов. Расчет теплового баланса печи и ее КПД. Оборудование котла-утилизатора.

    курсовая работа [160,1 K], добавлен 07.10.2010

  • Расчет установки для утилизации тепла отходящих газов от клинкерной печи цементного завода. Скрубберы комплексной обработки уходящих газов. Параметры теплоутилизаторов первой и второй ступеней. Определение экономических параметров проектируемой системы.

    курсовая работа [357,3 K], добавлен 15.06.2011

  • Расчет необходимой степени очистки промышленных газов и массы веществ. Разработка вариантов схемы и выбор наиболее рациональной. Выбор пылегазоочистного оборудования и сущность механизмов очистки газов. Расчет платы за выбросы загрязняющих веществ.

    курсовая работа [965,7 K], добавлен 10.12.2010

  • Классификация углеводородных газов. Процесс очистки газов от механических примесей. Осушка газа от воды гликолями. Технология удаление сероводорода и углекислого газа. Физико-химические свойства абсорбентов. Процесс извлечения тяжелых углеводородов.

    презентация [3,6 M], добавлен 26.06.2014

  • Суть технологических процессов газоочистки, виды и свойства катализаторов. Принцип действия каталитической очистки промышленных выбросов электронной промышленности. Способ каталитической очистки высокотемпературных отходящих газов от смолистых веществ.

    курсовая работа [522,2 K], добавлен 29.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.