Технологія і устаткування для переробки бензолу

Технологічні схеми і режим переробки сирого бензолу. Очищення його від неграничних і сірчистих з'єднань та каталітичне гідроочищення. Технологія й устаткування відділення ректифікації смоли і виробництва пеку та переробка фракцій кам'яновугільної смоли.

Рубрика Производство и технологии
Вид реферат
Язык украинский
Дата добавления 06.03.2009
Размер файла 3,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Принципова технологічна схема переробки фракцій кам'яновугільної смоли повинна передбачати виконання наступних операцій: кристалізацію антраценової і нафталінової фракцій з виділенням із кристалізованого продукту антрацену і нафталіну; хімічне очищення важкої, фенольної і нафталіновий (після виділення з її нафталіну) фракцій від фенолів і піридинових основ з одержанням із продуктів очищення концентрованого розчину фенолятів натрію і важких піридинових основ: змішання хімічно очищених фракцій з откристаллизованной антраценовою фракцією; змішання антраценової фракції з пеком іноді з додаванням у цю суміш хімічно очищених поглинальної і нафталінової фракцій, пекових дистилятів і ін.

Окремі фракції, наприклад антраценова 11, фенольная, можуть бути товарними продуктами і не піддаватися в цеху подальшій переробці. Легка фракція з випарників I і II ступіней і після конденсатора-холодильника поєднуються разом і у виді легкої олії передаються на переробку в цех ректифікації. Важка фракція після хімічного очищення також є товарним продуктом, і частина її чи уся фракція використовується як поглинальну олію для уловлювання бензольних вуглеводнів.

Як правило, кінцевими продуктами процесу переробки фракцій є: технічний нафталін з концентрацією основної речовини 97--58%, сирий антрацен з концентрацією основної речовини 2б--<30% (іноді 40%), феноляти натрію з концентрацією основної речовини 21-- 22%, важкі піридинові підстави з концентрацією основної речовини 25--30%; технічні мастила: поглинальне, для просочення деревини, виробництва сажі, обмасливания шихти; композиції пеку з оліями, дорожні дьогті, кам'яновугільні лаки, препаровані смоли. Усі технічні мастила, крім поглинального, так само як і всі композиції, є продуктами змішання підготовлених фракцій між собою чи цими фракціями з пеком у заданих співвідношеннях, що забезпечують одержання кінцевих продуктів, що задовольняють вимогам відповідних Дст і технічних умов.

Технологічні схеми переробки фракцій кам'яновугільної смоли

Технологічна схема переробки нафталінової фракції повинна забезпечити максимальний витяг з її нафталіну й одержання нафталіну з досить високим змістом основної речовини з мінімальними забрудненнями його домішками, особливо домішками тионафтена (нафталін, у якому одна ВІН група в ядрі замінена атомом сірки).

Тионафтен через присутність у ньому атома сірки є отрутою для каталізаторів, застосовуваних у процесах органічного синтезу на основі нафталіну, тому видалення його з нафталіну є украй важливою задачею. Зміст його в смолі, а потім і в нафталіні залежить від змісту сірки в коксуемой шихті; у технічному нафталіні, отриманому зі смол заводів, що переробляють донецькі вугілля, зміст тионафтена 2--2,2%; у нафталіні зі смол заводів, що переробляють низкосернистые вугілля східних і північних басейнів, менш 1%. Температури кипіння нафталіну і тионафтена близькі між собою (218 і 220°С), тому при ректифікації смоли вони зосереджуються в нафталіновій фракції і тільки завдяки істотній різниці в температурах плавлення (80,3°С у нафталіни і 31,3°С у тионафтена) удається їх розділити в процесі кристалізації. При температурі 35°С нафталін кристалізується, а велика частина тионафтена залишається в розчині. Однак свойствотионафгека давати з нафталіном тверді розчини веде до того, що такий поділ не відбувається і практично для всієї нафталінової фракції (мова йде про 82--85%-ний фракції сучасних установок). Відділення тионафтена від нафталіну відбувається вже в процесі пресування при 55--57°С. Незважаючи на це технічний нафталін південних заводів містить до 2--2,2% тионафтена. При одержанні очищених сортів нафталіну на Фенольному заводі технічний нафталін піддається хімічному очищенню сірчаною кислотою і формаліном за аналогією з хімічним очищенням фракцій ВТК.

Розходження у швидкостях реакцій сульфирования нафталіну і тионафтена, конденсації тионафтена і нафталіну з формальдегідом дозволяє знизити зміст тионафтена в 2--3 рази й одержати очищений нафталін вищої якості. Застосування формальдегідного очищення нафталіну дозволяє відмовитися від громіздкої і складної схеми кристалізації і пресування нафталіну й одержати очищений нафталін шляхом формальдегідного очищення концентрованої нафталінової фракції і її наступної ректифікації, У смолоперерабатывающих цехах переробка нафталінової фракції з застосуванням кристалізації здійснюється по одній з наступних схем: механічний кристаллизатор -- центрифуга -- прес або ребристий барабанний кристаллизатор -- прес. По першій схемі переробляється нафталінова фракція зі змістом нафталіну до 70 /про, по другий -з змістом нафталіну 80% і більш.

На переважній більшості смолоперерабатывающих цехів вітчизняних коксохімічних заводів одержують высоко-концетттрированпые нафталінові фракції зі змістом нафталіну не менш 80--82%. Тому переробка таких фракцій робите:!?, основному за схемою бзпабанпый ірис таллизатор прес. Технологічна схема процесу приведена на рис, 54. Нафталінова фракція при 85--95°С зі збірників відділі пия дистиляції перекачується насосом у напірні баки 1, а при надлишку частина її передається в сховище, відкіля в міру необхідності також перекачується в ці напірні баки.

З напірних баків після часткового охолодження до 70--75°С фракція надходить у ванни барабанних кристаллизаторов 2, де відбувається інтенсивна кристалізація нафталіну у виді кірки по зовнішній поверхні обертового барабана, охолоджуваного водою, тому що при кристалізації відбувається виділення тепла. Необхідна температура фракції у ванні підтримується подачею гарячої води.

З поверхні барабанів кірка нафталіну знімається спеціальними ножами і подається на скребковий конвеєр 3, що харчує мішалки 5 пресів; для нагрівання шихти до потрібної температури (54--55°С) у мішалки пресів подається гаряча нафталінова фракція з напірних баків 1. Потім ця маса перемішується і подається на гаряче пресування в прес 4.

Пресування нафталіну здійснюється під тиском 400--600 Мпа за допомогою автоматичних гідропресів I типу ДО-140А.

Спресовані брикети нафталіну виштовхуються в тічку 10 і конвеєром 11 подаються в плавильник. Плавлений нафталін откачивается в сховище, з якого завантажується в спеціальні залізничні цистерни і направляється до споживача.

Відтечи пресування з фільтрів пресів, що містять 50--60% нафталіну, надходять у збірник оттеков у, відкіля насосом 7 перекачуються в механічні кристаллизаторы періодичної дії 8, охолоджувані водою. Откристаллизовавшаяся маса з кристаллизаторов направляється в автоматичні центрифуги 9 періодичної дії.

Після центрифуг кристалічна маса через елеватор надходить на скребковий конвеєр, де шихтується з нафталіном після барабанних кристаллизаторов, а потім подається в мішалки пресів 5. Відтечи після фугування надходять у збірник, а потім на хімічне очищення від фенолів і піридинових основ.

Тому що вторинні відтечи після фугування виводяться з циклу переробки, це дає можливість одержувати пресований (технічний) нафталін, цілком придатний для виробництва фталевого ангідриду Основним продуктом процесу є технічний плавленый нафталін з температурою кристалізації 78,85"З, змістом чистого нафталіну 97,5%, тионафтена до 2,0%, золи не більш 0,15% і вологи не вище 2,0%. Вихід нафталіну від фракції складає 90--92%.

Застосування гарячого пресування (температура прессуемой маси 50--60°С) обумовлене тим, що при цій температурі олія має невелику в'язкість і порівняно легко відокремлюється від кристалів нафталіну. Тому що при цій температурі розчинність нафталіну в олії дуже висока (понад 50%), та олія, що віджимається, (пресові відтечи) захоплює із собою багато нафталіну. Звичайно склад пресових оттеков характеризується наступними . даними:

Якість пресованого нафталіну залежить в основному від концентрації домішок, головним чином тиопафтена, з підвищенням змісту якого температура кристалізації нафталіну знижується. При гарячому пресуванні за схемою кристаллизатор -- прес основна маса тионафтена, що міститься у вихідній нафталіновій фракції, переходить у відтечи, і тому що останні на деяких заводах повертаються в смолу, то значна кількість тионафтена переходить потім у нафталінову фракцію.

Недолік, властивій такій схемі, полягає в тім, що відтечи після гарячого пресування можуть повертатися в смолу не нескінченно, а лише до граничного нагромадження тионафтена у фракції, вище якого неможливо одержати пресований продукт необхідної температури кристалізації.

Спосіб одержання технічного нафталіну шляхом ректифікації митої нафталінової фракції, минаючи стадії кристалізації, фугування і пресування, уже набув промислового застосування за рубежем. У СРСР цей спосіб впроваджений у смолоперерабатывающем цеху одного з заводів, що переробляє низкосернистые вугілля. Переробка антраценової фракції

Антраценова фракція на відміну від нафталінової містить нерозчинні речовини, що знаходяться в зваженому стані, що утрудняє поділ твердої і рідкої фаз методом фільтрування. На установках періодичної дистилляциии і ректифікації смоли на заводах середовищ пеп потужності переробка антраценової фракції ведеться за схемою: механічний кристаллизатор -- вакуум-фільтр -- центрифуга. Вихід продуктів у процесі переробки складає: олія після фільтра 65--75% від фракції; антрацену фугованного &,0--15%, оттеков після центрифуги до 10%, залишку в панні вакуум-фільтра 7% (залишок повертається в цикл переробки). В установках фракціонування смоли, де передбачений добір двох антраценових фракцій, процесу кристалізації піддають тільки 1 антраценову фракцію. Основна маса I фракції зовсім ие містить включень пеку і высококипящих компонентів хризеновой фракції. Відгін до 360°С у I антраценової фракції складає до 90%, тому при її переробці виключається процес фільтрування откри-сталлизованной фракції й у схемі передбачені тільки два процеси: кристалізація і центрифугирование.

За схемою механічний кристаллизатор - центрифуга (рис, 55) для поділі отриманої в результаті кристал лизации гетерогенної системи застосовують високопродуктивну автоматичну центрифугу типу А1-120-4у З відділення фракціонування I антраценова фрацпя насосом подається в напірний бак, відкіля самоеком надходить у механічний кристаллизатор I із впецшил! охолодженням. У кристаллизатор зі збірника 4 насосом 9 подається поглинальна олія в кількості 20% до антраценової фракції, що переробляється, отримане після промивання сіток центрифуг.

У присутності розчинника -- поглинальної олії ефективність кристалізації підвищується і якість сирого антрацену поліпшується.

Фракція в кристаллизаторе прохолоджується до 35--40°С, струм як при більш низькій температурі з її виділяються інші речовини, що є домішкою.

Процес кристалізації в механічному кристаллизаторе протікає періодично. Завантажена в кристаллизатор фракція протягом визначеного часу піддається охолодженню при повільному перемішуванні механічною мішалкою. Тривалість кристалізації в літню пору складає 25--28 ч.

З кристаллизатора 1 открлсталлизованная антраценова фракція у виді густої мулистої маси надходить у мішалку 2, де підігрівається глухою парою до заданої температури, перемішується механічною мішалкою і подається в центрифугу 3 типи Аг-ыоо-4у. Відділення твердої фази від рідкої завжди важко через мелкокристаллической структуру твердої фази.

Сирий антрацен з центрифуги по транспортері 5 подається в бункер 10, відкіля у ваги 11, потім після розфасовки в паперові мішки надходить на зашивочную машину 12 і передається на склад сирого антрацену. Фугат насосом 9 зі збірника 6' подається на склад олій.

Для нормальної роботи центрифуг типу АГ має значення якість антраценової фракції, зміст антрацену повинен бути не менш 70%. Робота центрифуг значно поліпшується при фугуванні в суміші з поглинальною олією. Промите від фенолів і піридинових основ поглинальна олія з відділення мийки насосом перекачується в збірник 8, відкіля насосом 9 -- у збірник 4 на промивання сіток центрифуг 3. Після промивання сіток центрифуг поглинальна олія самопливом надходить у збірник 7, з якого насосом 9 подається в кристаллизатор 1, де змішується з кристалізації, що піддається, 1 антреценовой

фракцією. Цей спосіб кристалізації позволяет поліпшити гранулометрический склад откристалли-зованной фракції.

Фугування откристаллизованной суміші I антраценової і поглинальної фракцій скорочує тривалість операцій просушки і регенерації; поліпшується якість фільтрату і фугованного антрацену, знижується зміст у ньому олії і продукт виходить сипучим, легко піддається транспортуванню і розфасовці. Таким чином, продуктами переробки I антраценової фракції є сирий антрацен і антраценова олія.

Одержуване після центрифуг антраценова олія (відтечи фугування) може служити сировиною для одержання олій для просочення деревини.

Сирий антрацен є сировиною для одержання чистого антрацену.

Сирий антрацен з вугіль Донецького басейну -- це твердий маслянистий продукт, що містить антрацену 25--26%, карбазола до 30%, фепантрена близько 30%, а також кам'яновугільні олії і высококипящие з'єднання.

У сирому антрацені з вугіль Кузнецького басейну міститься антрацену 14--22%, карбазола 25--30%, фенан-трена 15---24%.

Вихід сирого антрацену от смоли складає 2,2--2%. Хімічне очищення застосовується для виділення фенолів і піридинових основ із фракцій кам'яновугільної смоли, у яких вони зосереджені. Як показане вище, зосередження фенолів і піридинових основ у фенольной, нафталіновій і поглинальній фракціях досягає 99%. Отже, тільки ці фракції доцільно піддавати хімічному очищенню. Процес хімічного очищення фракцій заснований на найпростіших хімічних реакціях зв'язування фенолів з лугом з утворенням фенолятів натрію і піридинових основ із сірчаною кислотою з утворенням сульфату піридинових основ. Різниця в щільності фракцій, що промиваються, і розчинів фенолятів натрію і сульфату піридинових основ забезпечує досить ефективне відділення фракцій від цих розчинів при тривалому відстої, однак звичайно між шарами фенолятів і олії утвориться проміжний шар луго-масляної емульсії. Нафталінова фракція може очищатися до чи кристалізації після виділення нафталіну (фуга нафталінових центрифуг 9). Технологічна схема хімічного очищення важкої і нафталінової фракцій представлена на мал. 56. Б цьому випадку сульфат піридину з важкої фракції нейтралізується окремо, а отримані піридинові підстави використовуються як засіб, що запобігає корозію металу при травленні його сірчаною кислотою. Сульфат піридину з нафталінової фракції після нейтралізації поєднується з легкими піридиновими підставами. Через низький зміст найбільш коштовних лсгкокипящих фенолів у важкій фракції іноді обесфеноливание цієї фракції не виробляється, а необесфеноленная фракція використовується в готуванні масла для просочення деревини з підвищеним змістом фенолів, необхідних деяким споживачам.

Іноді для спрощення процесу очищення, а також через відсутність стійкого збуту важких піридинових основ обеспиридинивапис узагалі не роблять, хоча очищення піридинових основ є обов'язковою умовою стабільності властивостей оборотної поглинальної олії. Технологічна схема одержання піридинових основ із сульфату піридину зводиться до нейтралізації розчину сульфату піридину 20%-ний синтетичною аміачною водою. Воду зі збірника насосом через спеціальне барботажтюе пристрій подають у нейтралізатор, заповнений сульфатом піридину. Аміак витісняє піридинові підстави із сульфату піридину й утворить розчин сульфату амонію, що через нижній злив нейтралізатора виводять з нього і передають у сатуратора аміачно-сульфатного відділення, а відстояні важкі піридинові підстави передають на склад.

Технологічна схема готування олій і композицій з олії і пеку зводиться до дозування заданих по рецептурі кількостей чи олій і пеку в ємності і ретельному тривалому їхньому перемішуванню лопатевими чи мішалками насосом.

Як приклад можна привести технологічну схему готування дорожнього дьогтю. Антраценова олія після виділення з нього антрацену надходить у сховище складу, відкіля насосом подається в мерник, розташований на висоті 5--6 м над рівнем землі. У такий же мерник з пекового парку подається гарячий рідкий пек. Мерники обладнані пьезометрическими чи ізотопними покажчиками рівня, каліброваними в чи тоннах кубометрах. З мерника через нижній злив олія і пік у заданих кількостях випускаються в розташоване під ними чи сховище мішалку. З нижньої частини сховища суміш цих компонентів забирається насосами і подасться у верхню частину сховища. Така циркуляція продовжується кілька годин до одержанні готового однорідного продукту, що цим же насосом подається в напірний бак для навантаження.

Аналогічний процес відбувається й у мішалці, але не насосом, а лопатевим пристроєм, що перемішує, що приводиться в обертання електродвигуном. Обов'язковою умовою змішання олій з рідким гарячим пеком є відсутність у них води. Змішання обводненої олії з рідкими гарячими пеками веде до її інтенсивного випару, вспениванию пеку і викиду продукту з воздушек і лазів па територію цеху.

Устаткування для переробки фракцій кам'яновугільної смоли

Для кристалізації антраценової фракції застосовуються механічні кристаллизаторы періодичного дії з зовнішнім водимым охолодженням (мал. 57). Механічний кристаллизатор являє собою сталевий горизонтальний циліндр I діаметром 1,6 і довжиною 6,56 м, усередині якого проходить обертовий вал 2 з лопатками 3.

Обертання вала здійснюється від мотора 4 через редуктор 5 і проміжну шестеренну передачу. При обертанні вала шкребки мішалки видаляють що утворяться настыли кристалів із внутрішньої поверхні барабана. Число оборотів мішалки 7,65 у хвилину.

Відвід тепла, що виділяється при кристалізації й охолодженні розчину, виробляється шляхом зрошення зовнішньої поверхні апарата водою. Для цієї мети над барабаном передбачений водяний колектор. Поверхня зрошення 25 м"2, витрата води на охолодження 2--2,5 м3/год, температура нагрівання води -- на 2°С.

Антраценова маса після кристаллизатора має вид густого шламу, у якому міститься 5--7% чистого антрацену. Ця маса піддається фільтруванню в чи центрифугах вакуум-фільтрах.

Для кристалізації нафталінової фракції, що містить до 80% нафталіну, застосовується барабанний кристаллизатор (охолоджувач). В даний час набув застосування вальцевой кристаллизатор.

Вальцевой кристаллизатор складається з обертаючого вальца (барабана), станини, ванни, кожуха, привода обертання вальца, системи охолодження вальца, системи обігріву ванни, пристроїв для зрізання нафталіну з ребристої поверхні вальца, дискового транспортера і вузлів системи автоматики (мал. 58).

Барабан призначений для безупинної кристалізації нафталіну на його охолоджуваній поверхні. Він складається з циліндричної обичайки, зовнішня поверхня якої виконана ребристої. Це дозволяє збільшити поверхню кристалізації і продуктивність кристаллизатора. До обичайки приварюються стінки, до яких приварені цапфи. Торцеві стінки укріплені радіальними ребрами і постачені люками для обслуговування системи охолодження вальца при експлуатації.

Цапфи встановлені на підшипниках качения, корпуса яких установлені на станині.

Обертання барабана здійснюється механічним приводом, що складається з електродвигуна, клиноремеппой передачі, редукторів, відкритої зубчастої передачі. Станина є опорною конструкцією для кріплення основних складальних одиниць кристаллизатора. Вона складається з вертикальних швелерних стійок, з'єднаних поперечними швелерними балками.

Барабан кристаллизатора нижньою частиною опушений у ванну, прикріплену до станини. Заданий рівень нафталиннойфракции у ванні підтримується автоматично за допомогою пневматичного вимірника рівня і регулирущого клапана, установленого па лінії подачі нафталінової фракції у ванну. Максимальний рівень обмежується переливною трубкою.

Ванна кристаллизатора обігрівається гарячою водою, подаваної в сорочку, що запобігає кристалізації нафталінової фракції у ванні і забивання її тафта. Охолодження барабана виробляється шляхом розбризкування по його внутрішній поверхні води форсунками, розташованими в центральній трубі. Вода збирається в нижній частині барабана і відсмоктується насосом через вертикальний відвід і кільцевий простір між конически розташованими трубами.

Нафталін, що кристалізується на ребристій поверхні барабана, зрізується при його обертанні ножем, установленим на плитах удалину вальца.

Ножові плити шарнірно прикріплені до рами і подпружинены пружинними амортизаторами.

Нафталін, що кристалізується на торцевих стінах вальца, зрізується бічними ножами, що встановлені на кронштейнах, приварених до торцевих стін ванни, і постачені паровими сорочками.

Нафталін, що зрізується ножами, падає в шнек, встановлений уздовж барабана і призначений для транспортування нафталіну до преса.

При роботі кристаллизатора нафталінова фракція безупинно подається у ванну. На поверхні барабана нафталін кристалізується у виді суцільної кірки, що зрізується ножами.

При переробці ! антраценової фракції в суміші з 20% поглинальної олії за схемою механічний кристаллизатор -- центрифуга, а також откристаялизованных у механічних кристаллизаторах оттеков пресування застосовується високопродуктивна центрифуга з автоматичним завантаженням і вивантаженням осаду.

Звичайно застосовують центрифугу типу АГ-200-4ц. Ценрафуга автоматичної, горизонтальної, фільтруючої, періодичної дії, з ножовим зніманням осаду. Всі операції -- завантаження, фільтрація, вивантаження, промивання сита -- виконуються автоматично.

Центрифуга АГ (мал. 59) складається з наступних основних вузлів: станини, кришки, очного вала, ротора рівня

ТЕХНОЛОГІЯ Й УСТАТКУВАННЯ ДЛЯ ОЧИЩЕННЯ КОКСОВОГО ГАЗА ВІД СІРКОВОДНЮ

Уловлювання сірководню є завершальним процесом витягу з коксового газу хімічних продуктів коксування і підготовки газу до його подальшого використання. Складність і різноманіття процесів очищення коксового газу від сірководню й одержання кінцевих продуктів -- чи сірки сарною кислоти -- обумовили виділення цього процесу в самостійний цех, розташований після цеху уловлювання.; В останні роки виявляється тенденція до розташування сірчаних скруберів перед бензольними, сполученню процесів очищення газу від аміаку і сірководню, що веде до об'єднання цих цехів п єдиний цех уловлювання.

Необхідність очищення газу від сірководню диктується як прагненням максимально використовувати коштовні хімічні продукти коксування, що містяться в коксовому газі, так і необхідністю очищення зворотного газу від сірководню, що перешкоджає кваліфікованому використанню його в металургійних процесах, тому що сірководень у контакті з розплавленим чи нагрітої д0 високої температури металом погіршує його механічні властивості. Поряд з цим спалювання коксового газу з високим змістом сірководню веде до утворення сірчистого ангідриду, що забруднює навколишнє середовище і викликає інтенсивну корозію металу.

У зв'язку з цим вимоги до ефективності очищення визначаються не тільки кількістю витягнутого з газу коштовного продукту, але і залишковим змістом сірководню в зворотному газі. Існуючі вимоги до очищеного від сірководню газу допускають зміст у ньому сірководню не більш 3,5 г/м3 при використанні газу в металургійних процесах (нагрівши металу) і як паливо. Однак з розумінь зниження викидів в атмосферу усе більш твердим стає вимога очищення до 0,5 г/м3 для процесів синтезу аміаку, удмухування коксового газу в доменні печі, ці вимоги досягають 0,02 г/м3. Очищення коксового газу від сірководню здійснюється в даний час тільки на заводах, що переробляють высокосернистые донецькі вугілля, чи на заводах, де газ використовується для синтезу аміаку. Широко застосовуваним методом очищення є так називаний вакуум-карбонатний з одержанням сірчаної кислоти, менш розповсюджений мышьяково-содовый з одержанням елементарної сірки, що забезпечує більш глибоке очищення газу, однак він більш складний, більш энерго- і материалоемок.

Технологічні схеми уловлювання сірководню з одержанням сірчаної кислоти й елементарної сірки

Сутність вакуум-карбонатного методу уловлювання сірководню з коксового газу складається в поглинанні сірководню розчином карбонатів чи калію натрію, регенерації насиченого розчину при нагріванні під вакуумом, спалюванні сірководню, що виділився при регенерації, у сірчаний ангідрид і конденсації останнього з водяними парами з одержанням сірчаної кислоти. Одночасно із сірководнем з газу поглинаються ціаністий водень і диоксид вуглецю.

Процеси поглинання є оборотними й описуються наступними хімічними реакціями:

М е2 З3 + Н2S ? М е НСО3 + М е НS;

М е 2 З3 + HС ? М е СN + М е НСО3;

М е2 З3 + З2 + Н2ПРО ? 2 M е НСО3.

Поряд з вищенаведеними йдуть і необоротні реакції:

2 М е НS + 2 ПРО2 > /M е2 S2ПРО3 + Н2ПРО;

2М ес + 2 H2 S + ПРО2 > 2Mе СNS + 2 Н2O .

Крім того, у поглинальному розчині утворяться сульфати, сульфіти чи калію натрію, а також ферроцианид калію ДО4[Fе (СN)6]. Названі необоротні реакції ведуть до нагромадження в розчині поглинача нерегенерируемых з'єднань, випаданню частини їхній у виді опадів у трубопроводах і апаратурі. У зв'язку з цим граничний зміст ферроцианида калію не повинне перевищувати 30 г/л, а роданидов 100--120 г/л, для цього з циклу виводиться частина працюючого розчину, і цикл поповнюється свіжим.

Серед трьох паралельно йдуть реакцій поглинання сірководню, ціаністого водню і диоксида вуглецю найменшу швидкість має остання, разом з тим поглинання диоксида вуглецю знижує зміст у розчині гідросульфату, а отже сероемкость розчину, тому час контакту поглинального розчину з газом в абсорбері не повинне перевищувати 30 с. Сероемкость розчину визначається також концентрацією в ньому вільного лугу; тому що розчинність соди менше, ніж поташу, прагнуть підвищити сероемкость розчину за рахунок збільшення в поглиначі частки поташу. Разом з тим, чим більше в поглиначі поташу, тим більше випадає опадів ферроцианида калію, тим частіше потрібно очищення апаратури і комунікації. Оптимальним вважається співвідношення соди і поташу 1:1. Щоб уникнути випадання опадів поглинального розчину концентрацію його підтримують на рівні 3--5%. Кількість поглинача визначається змістом у ньому сірководню, температурою абсорбції, початковим і кінцевим змістом сірководню в газі.

Як і для всякої оборотної реакцій, умови рівноваги реакції абсорбції -- десорбції сірководню визначаються температурою, тиском, концентрацією сірководню в парах і розчині. Тому процес абсорбції йде при мінімальній температурі, максимальному тиску і концентрації сірководню в газі і мінімальній концепті-рації його в розчині. Зрушення реакції в напрямку десорбції (регенерації розчину) досягається нагріванням поглинача, застосуванням вакууму, видаленням сірководневого газу з зони реакції.

Одержання сірчаної кислоти із сірководневого газу по так називаному методі мокрого каталізу здійснюється в три стадії:

- спалювання сірководню в сірчистий ангідрид H2S + 1,5ПРО2 ? SО2 + H2O + 5,4 М104 кдж/кмоль;

- каталітичне окислювання сірчистого ангідриду в сірчаний

2 + 0,5 ПРО2 = SО3 + 9,6 * 104 кдж/кмоль

- охолодження і спільна конденсація пар сірчаного ангідриду і води з утворенням сірчаної кислоти.

S03(газ) + Н2ПРО(пара) = H24(газ) + 2,4-103 кдж/кмоль

Н3S04 (газ) = Н24 (жидк) + 5 М104 кдж/кмоль.

Спалювання сірководню ведуть із придухою щоб уникнути утворення на цій стадії SО3 і оксидів азоту за рахунок окислювання ціаністого водню (при придусі ціаністий водень окисляється тільки до азоту), при цьому до 2,5% сірководню згоряє тільки до елементарної сірки. Дожигание сірки здійснюється в камері дожига. Процес згоряння SО2 у S03 ведеться з надлишком повітря над каталізатором, БАВ бариево-алгоминиево-ванадиевой контактною масою наступного складу: V2ПРО5 М 12SiО2 М 0,5А1203 МВаО 2КС1.

Технологічна схема вакуум-карбонатного методу сероочистки представлена на мал. 27. Коксовий газ після бензольних скруберів надходить у сірчані скрубери 1, де зрошується поглинальним розчином; газ і розчин послідовно проходять два скрубери, рухаючи назустріч один одному (противотоком). Очищений газ після другого по ходу газу скрубера направляється споживачам, а насичений сірководнем поглинальний розчин насосом 2 подається у верхні секції конденсаторів-холодильників 3, розташованих над регенератором 6, де нагрівається за рахунок тепла сірководневого газу і пар, що виходять з регенератора; подальше нагрівання розчину здійснюється в рідинному теплообміннику 4 за рахунок тепла регенерованого розчину після регенератора. Остаточне нагрівання розчину перед регенерацією виробляється в паровому підігрівнику 5., після якого розчин досягає режимної температури 68--70°С с допомогою глухої пари і надходить на одну з верхніх тарілок регенератора 6.

У регенераторі розчин стікає по тарілках зверху вниз, при цьому він продувається парами, що утворяться в нижній частині регенератора за рахунок нагрівання розчину у выносных циркуляційних підігрівниках 7 глухою парою. З регенератора водяні нари разом із сірководнем, що виділився з поглинача, ціаністим воднем і диоксидом вуглецю через конденсатор-холодильник 3 і сепаратор-отбойник відсмоктуються

вакуум-насосом 11. У верхніх секціях конденсатора-холодильника пари з регенератора прохолоджуються насиченим розчином, у нижніх секціях -- технічної подій. Конденсат з конденсатора-холодильника, сепараторов-отбойников і трубчастих холодильників 12, у яких відбувається остаточне охолодження сірководневого газу після вакуум-насоса, збирається в збірник регенерованого розчину 8, куди надходить також регенерований розчин з нижньої частини регенератора 6. Регенерований розчин зі збірника 8 насосом 9 подається в рідинні теплообмінники, де прохолоджується насиченим розчином, потім прохолоджується в повітряно-водяних зрошувальних холодильниках 10 і подасться на другий по ходу газу скрубер для уловлювання сірководню.

Сірководневий газ після вакуум-насоса і газового холодильника надходить у відділення мокрого каталізу, схема якого показана на мал. 28. Сірководневий газ через мембранний клапан надходить у пек-казан 1, де згоряє в SО2 у суміші з повітрям, подаваним повітродувкою 1. Тепло, що утвориться при спалюванні сірководневого газу в печі-казані, використовується для одержання технологічної пари в казані-утилізаторі, що складає невід'ємну частину печі-казана. Температура продуктів згоряння сірководневого газу складає 1100--1150°С, після проходження казана-утилізатора вона знижується до 780--800°С. Тому що в печі-казані згоряння ведеться при придусі, і частина сірководню не встигає згоріти до SО2, до продуктів згоряння додається необхідна кількість повітря і вони дожигаются в камері дожигания 2.1 Для охолодження продуктів згоряння після камери дожигания до них у камері змішання 3 додається необхідна кількість повітря. Після камери змішання продукти згоряння надходять у контактний апарат 4, де відбувається окислювання сірчистого ангідриду в сірчаний на трьох шарах контактної маси. Тому що й у цьому випадку, окислювання супроводжується нагріванням газів, між другим і третім шарами контактної маси в апарат подається холодне повітря, що знижує температуру продуктів окислювання.

Газ після контактного апарата надходить у зрошуваний кислотою абсорбер 5, у якому пари води і сірчаного ангідриду прохолоджуються і, спільно конденсуючи, утворять сірчану кислоту. Відвід тепла, що виділяється в процесі охолодження і конденсації пар води і сарною кислоти, досягається шляхом подачі па зрошення абсорбера холодної сірчаної кислоти зі збірника 11. Для охолодження нагрітої сірчаної кислоти після абсорбера використовуються повітряно-водяні зрошувальні холодильники 8. Кислота після них надходить у збірники 11, з якого частина насосом 12 повертається на зрошення абсорбера, а надлишок, що утворився при спільній конденсації пар S03 і води, перетікає в збірник 10, відкіля насосом откачивается на склад. Газ після абсорбера 5 надходить у электрофильтр 7 для уловлювання тумана сірчаної кислоти, що образовались при охолодженні пар.

З метою економії пари і використання вторинних ресурсів тепла нагрівши насиченого розчину з регенератора може здійснюватися не в циркуляційних підігрівниках, а у верхніх трубчатках первинних газових холодильників, куди цей розчин подасться замість технічної чи води в рідинних теплообмінниках аміачною водою газосборпикового циклу. Для уловлювання тумана сірчаної кислоти з газів абсорбера після электрофильтра 7 може установлюватися волокнистий фільтр зі стеклоткани, що практично цілком очищає ці гази від тумана і бризів сірчаної кислоти. Зм'якшена вода для харчування казана-утилізатора зі збірника 15 подається в казан насосом 16.

Сутність мышьяково-содового процесу сероочистки складається в хімічному зв'язуванні сірководню оксисульфо-мышьяковой сіллю натрію з утворенням сульфомышья ковой солі натрію, що при регенерації киснем повітря знову окисляється в оксисульфомышьяковую сіль натрію і виділяє елементарну сірку по реакціях:

Кга4Аз35А + Н25 = КгиАзПРО + Н2ПРО ; №4Аз25у + Н25 = №4Ав2й, + НВ0 ; №4Азг5йО + 0,5 02 = Ыа4А523603 -т 3 ; Ма4Аз25т + 0,5 Оа = КзПРО -|- 5 .

Поряд з основними реакціями в процесі поглинання і регенерації протікають і побічні реакції, зокрема при надлишку лугу утвориться сульфогидрат натрію по реакціях:

На2СОа + 11,5 №Н5 + №НСО;(; НаНСОд -| * 11,5 КаНЗ + З0а + НаО ; КаОМ 4-1128 ч* N3115 + Н30 .

При регенерації розчину сульфогидрат частково окисляється в гипосульфит:

2 ЫаНЗ + 2 ПРО2 = N30, + Н20 .

Ціаністий водень, що міститься в газі, сода і сірка утворять роданистый натрій:

2 НСК + ЫаСОз ** 2 №СЫ + СОа + НаО; НаСН + 5 = СМ5 .

Гипосульфит і роданистый натрій, що накопичуються в поглинальному розчині, є нерегенерируемыми баластовими з'єднаннями.

Вихідними матеріалами для готування поглинального розчину мышьяково-содовой сероочистки є білий миш'як Аз2ПРО3 і кальцинована сода N32003. Білий миш'як -- кристалічний порошок білого кольору зі змістом А52ПРО3 90--95%, упаковується в залізні барабани з завальцованной кришкою, є сильнодіючою отрутою. При змішанні миш'яку з розчином соди утвориться мышьяковистый натрій по реакції

2 N303 + АваО3 + Н2ПРО = 2 ЫаНАзОз + 2 СОа.

Отриманий розчин обробляється на окремій установці коксовим газом, що містить сірководень, при цьому йде реакція

2 КтааНА503 + 5 НЗ = Ыа4А5м5а + 6 Н2О. .

Продувка отриманого розчину повітрям дозволяє одержати оксисульфомышьяковую сіль натрію, при цьому миш'як із тривалентного переходить у пятивалентный;

4А5м55 + Ог = Ыа4Аз55ПРО2.

Концентрація миш'яку в поглинальному розчині визначається в залежності від змісту сірководню в коксовому газі, питома витрата розчину -- змістом у газі сірководню і концентрацією миш'яку. Що утворяться в процесі очищення газу і регенерації розчину не-регеперируемые баластові солі підвищують в'язкість розчину і знижують його поглинальну здатність, граничним є зміст балласгпых солей 300--350 г/л. При досягненні цієї межі частина розчину після уловлювання сірководню нейтралізують сірчаною кислотою по реакціях

Ма4Аз56ПРО + На5ПРО4 - 2 №г5ОБ4 + Аз255 + Н35 + Н3ПРО; Ыа4Аз5, + На5ПРО4 = 2 Маа5ПРО4 + АвА -ДО 2 Н28.

При цьому частина Азз переходить в Аз25.ч (тривалентну форму миш'яку) з виділенням елементарної сірки. Що випали в осад Азай і сірку отфильтровывают, розчиняють у содовому розчині і повертають у цикл, фільтрат, що містить до 0,05 г/л №2НА5ПРО4, обробляють залізним купоросом і содою для зв'язування миш'яку в малорастворимые солі заліза РеЛвО і РеАзО які отфильтровывают і вивозять у відвал, "а фільтрат використовують для гасіння коксу.

Технологічна схема очищення газу від сірководню по мышьяково-содовому методу представлена на мал. 29. Коксовий газ після скруберів надходить у электрофильтр 1 для очищення від поглинальної олії, виведеного через збірник 40, потім у нижню частину сірчаного скрубера 2, зрошуваного поглинальним розчином з регенератора 3. Газ після скрубера, очищений від сірководню, через каплеуловитель 41, у якому він звільняється від крапель насиченого розчину, направляється споживачу. Насичений розчин з нижньої частини скрубера через гідрозатвор надходить у проміжний збірник 5, відкіля насосом 7 через паровий підігрівник 6 подається в розподільний бак 4. З напірного бака 4 розчин надходить у нижню частину регенератора 3. Іноді частина розчину (20--25%) з бака направляють разом з регенерованим розчином через регулятор рівня 8 на зрошення скрубера, щоб запобігти випадання в скрубері сірки, тому що частина абсорбованого растворов регенераторі кисню не встигає в ньому прорегеперировать і регенерація закінчується в скрубері.

Регенерацію розчину в регенераторі роблять повітрям, подаваним компресором 37; повітря попередньо проходить маслоотбойник 38 і повітрозбірник 39 і надходить у нижню частину регенератора. Перед компресором повітря очищається від пилу в спеціальному фільтрі. У регенераторі повітря барботирует через шар розчину, флотирует сірку, що виділилася при регенерації розчину, що у виді сірчаної піни збирається на поверхні розчину і через переливну кишеню приділяється в пеносборник 9, а повітря через випускний штуцер іде в атмосферу. У пеносборнике сірчана піна руйнується, і сірчана суспензія надходить па вакуум-фільтр 15, де сірчана паста відокремлюється від розчину. Фільтрат після вакуум-фільтра через вакуум-збірник 24 повертається в поглинальний розчин, сірчана паста, розведена содовим розчином для розчинення сірчистого миш'яку, що забруднює сірку, надходить через розріджувач пасти 16 шпеком 17 у плавильник 18, що обігрівається глухим пором через сорочку і гостру пару, подаваним у нього. Розплавлена сірка надходить у нонжус плавленой сірки 19, з якого стисненим повітрям вичавлюється в збірник плавленой сірки 20, установлений перед барабанним охолоджувачем 2. На барабакпом охолоджувачі, охолоджуваному технічною водою, сірка прохолоджується, покриваючи зовнішню поверхню охолодження тонкою кіркою (2--3 мм), що знімається встановленим * на охолоджувачі шкребком (ножем) і у виді ламаних пластинок неправильної форми накопичується в бункері 22 і передається на склад і в залізничні вагони 23.

У схемі застосовуються: збірники розчинів 12, 13, 33, 35; насоси 14, 26, 29, 32, 34, 36; змішувачі 11, 25, 31; напірні бачки 10, 43; кристаллизатор127.

Для виділення миш'яку з баластових солей частина поглинального розчину насосом 7 подається в нейтралізатор I ступіні 25, у який з напірного бака 42 подасться сірчана кислота. У нейтралізаторі випадає осад у виді сірчистого миш'яку. Розчин з нейтралізатора подається па вакуум-фільтр 28, де з нього виділяються миш'якова паста і фільтрат. Паста знімається шкребком з вакуум-фільтра і надходить у збірник-розчинник сірчистого миш'яку 30, де він розчиняється в содовому розчині при підігріві пором. З розчинника насосом 29 подається в пеносборпик, де змішується з робочим розчином. Фільтрат після вакуум-фільтра направляється на нейтралізатор II ступіні 28, де обробляється розчином соди і залізного купоросу. Після нейтралізаторів розчин направляють на фільтр-прес. Осад, що утворився па ньому, Реазоз і Геазо вивозять у відвал, а фільтрат подають на гасіння коксу. На деяких заводах зі стічних вод після нейтралізації И ступіні одержують сульфат натрію, роданистый чи натрій суміш цих солей. В усіх випадках розчин упаривают, кристалізують, осад отфуговывают на центрифузі. Якщо метою процесу є одержання тільки сульфату натрію, розпарювання ведуть до утворення кристалів сульфату натрію, що залишився в розчині після фугування роданистый натрій після подальшої упарки може бути окислений прожарюванням у печі в сульфат натрію, або спрямований на подальшу переробку для одержання технічного роданида натрію. Можливий варіант розпарювання, кристалізації і фугування з одержанням змішаних солей, що містять 45--46% гипосульфата, 18% сульфата натрію і 17% роданистого натрію. Нарешті, найбільший інтерес представляє одержання змішаної солі тіосульфату, сульфату натрію і чистого роданистого натрію, придатного для виробництва синтетичного волокна нітрон. Процес ведуть шляхом выпарки під вакуумом, кристалізації і відділення кристалів при 25 і 0°С, очищення фугата активованим вугіллям, повторної упарки під вакуумом, кристалізації і фугування при 40--50°С и наступній перекристалізації з этанола і води. Такі установки працюють па одному з заводів України.

Переробка стічних вод цехів мышьяково-содовой сероочистки являє приклад ресурсосберегающей, безвідхідної технології в коксохімічному виробництві. Як указувалося вище, готування свіжого поглинального розчину є дуже відповідальною самостійною операцією. Барабан з білим миш'яком поміщають у закриту судину, де його розкривають механічним ножем. Миш'як з барабана вимивають сильним струменем води в розчинник 30, постачений мішалкою і паровим підігрівом, у розчинник з бункера подається сода. Розчин з розчинника надходить у монжус, з якого повітрям вичавлюється в збірник, а потім на скрубер, після якого розчин знову повертається в збірник, частину розчину подають у другий скрубер, де він продувається повітрям. Розчин після цього скрубера направляють у робочий цикл поглинального розчину.

Для забезпечення сільського господарства засобом боротьби зі шкідниками рослин частина сірки, одержуваної в цехах мышьяково-содовой сероочистки, переробляється в колоїдну (тонкодисперсную) сірку, здатну при розчиненні утворювати колоїдний розчин. Колоїдна сірка виходить шляхом змішання сірчаної пасти із сульфат-спиртової бардой {відходом лісохімічного виробництва), зневоднювання і висушування суміші.

Устаткування для очищення коксового газу від сірководню й одержання сірки і сарною кислоти

Незалежно від способу уловлювання сірководню з коксового газу основними апаратами для поглинання сірководню є скрубери різної конструкції і розмірів; для регенерації насиченого поглинального розчину -- регенератори; для підігріву розчинів широко використовують кожухотрубныс теплообмінники,. парові підігрівники; для остаточного охолодження поглинач нього розчину використовуються повітряно-водяні зрошувальні холодильники і повітряні холодильники типу АВО. Крім того, у кожнім з методів у залежності від; одержуваного продукту застосовуються спеціальні апарата й устаткування.

Скрубери для уловлювання сірководню з коксового газу по конструкції подібні зі скруберами для уловлювання бензолу. Це вертикальні циліндричні апарати висотою 26--32 м, діаметром 4--6 м, заповнені дерев'яної хордовий ттасадкой, поверхня насадки для уловлювання вакуум-карбонатним методом 15--26 тис. мг, мышьяково-содовым 15 тис. м2 і 36 тис. м2 в одному скрубері, діаметр скрубера визначають величиною газового потоку, виходячи зі швидкості газу у вільному перетині скрубера 0,8--1 м/с (вакуумкарбонатный метод) і 0,3--0,9 м/с у загальному перетині скрубера (мышьяково-содовый метод). Необхідна поверхня насадки визначається з розрахунку 0,5 м8 насадки па 1 м3 газу, відповідно визначається число скруберів прийнятого діаметра. Дерев'яна насадка набрана з рейок товщиною 10 мм, висотою 120 мм, із зазорами між рейками 19 мм. У типовий скрубер укладається 113--125 кіл робочої насадки і 6 кіл насадки, що осушує, розташованої над зрошувальним пристроєм. В даний час як робочу насадку усе більш широке застосування знаходять 2-образна алюмінієва і керамічна типу «ипталакс» насадки. Як зрошувальні пристрої в скруберах застосовуються форсунки типу турбинка, а також спеціальний зрошувальний пристрій у виді форсунки діаметром 40--80 мм із п'ятьма тарілками. Діаметр форсунки визначається необхідною щільністю зрошення (при мышьяково-содовом способі 20--45 м3/год розчини на 1 м2 загального перетину скрубера, при вакуум-карбонатному 7--10 м3/год на 1 ма перетину), напором розчину на вході у форсунку. Нижня поднасадочная частина скрубера є переточною шухлядою для розчину.

Регенератор. Для регенерації насиченого поглинального розчину мышьяково-содовой сероочистки застосовується регенератор--порожній сталевий циліндр із конічним днищем і плоским дахом, діаметром 2,5 м і висотою 42,0 м (мал. 30).

Верхня частина регенератора розширена і служить для збору сірчаної піни. Розчин подається в нижню частину регенератора і виводиться через штуцер, розташований у верхній його частині; піна приділяється через спеціальну кишеню в пеносборник. Повітря в регенератор подається через барботер 8 нижню частину, а відпрацьоване повітря приділяється через штуцер, розташований на його даху. Корисна ємність регенератора (до шгуцера для виходу регенерованого розчину) визначає час перебування в ньому розчину, що залежить від концентрації в ньому триоксида миш'яку Ль20а і складає від 45--50 хв при концентрації його 10 кг/м3 до 70--80 хв при концентрації 15--16 кг/м3.

Регенератор поглинального розчину у вакуум-кароонатной сероочистке (мал. 31) являє собою теплоизолированную циліндричну колону діаметром . 3,0-- 3,2 м, висотою 20,7 і ЗОЛ м, у якій розташовано 18--22 тарілки, відстань між ними 700 і 750 мм. Корпус і тарілки виготовляють з углеродистой стали. Нижня частина регенератора - резервуар для поглинального розчину, що підігрівають пором при природній циркуляції його через выносные циркуляційні підігрівники. У регенераторі діаметром 3,2 м кожна тарілка має 10 тонельных ковпачків довжиною по 1810 мм і 9 довжиною по 2520 мм. Подача розчину на регенерацію передбачена на першу чи третю тарілку. У регенераторі діаметром 3,0 м на кожній тарілці по 30 коробчатых ковпаків довжиною 850 мм. Подача поглинального розчину передбачена на першу, другу і третю тарілку.

Для інтенсифікації процесу регенерації, поглинального розчину застосовують також регенератори з плоскими-провальними тарілками. У регенераторі два метром 3,0 м і висотою 3,2 м установлюється 20 тарілок із щелевидпыми отверсиями.

У верхній частині апарата перед виходом пар і газів з регенератора розташований жалюзійний отбойник для затримки крапель розчину.

У місці виходу пар з парового циркуляційного нагрівача розчину для Т зменшення брызгоупоса, нарушающего роботу тарілок, пари, що утворяться при кипінні розчину, проходять жалюзійний сепаратор-отбойник. Корпус регенератора теплоизолирован. Включаються регенератори паралельно. Регенератор працює під вакуумом, що створюється в системі вакуум-насосом.

Холодильник для сірководневих газів прохолоджує вологий газ після вакуум-насоса, він складається з трьох, з'єднаних послідовно трубчаток із загальною поверхнею теплопередачі 48 X 3 = 144 ма, має 132труби довжиною 5500 мм, число ходів у трубному просторі 4, у межтрубном.

Казан-пек-казан для спалювання сірководневого газу (мал. 32). У ньому сполучають дві операції: спалюють сірководневий газ і утилізують тепло продуктів згоряння, що утворилися, для одержання водяної пари. Пек-казан складається з циліндричного сталевого кожуха, футерованного вогнетривким матеріалом. У печі знаходяться труби екранованої системи казана. Кінці труб входять у нижній і верхній колектори. На верху печі поміщений барабан казана, з'єднаний з колектором екранованої системи. Пальники можуть бути розташовані чи угорі внизу і відповідно продукти згоряння виводяться чи знизу зверху. Топка печі-казана постачена вибуховим клапаном і оглядовими стеклам». Діаметр казана 3,820--4,828 м, висота 7,8--13,1 м.

Продуктивність по 100%-ному сірководню 2100 кг/з, по парі 3,1--8,0 т/ч, екранна система печі складається з 138 трубок діаметром 60X4,5 мм.

Контактний апарат. Для окислювання сірчистого ангідриду 5ПРО2 у сірчаний 503 застосовують контактні апарати, що заповнюють каталізатором марки БАВ (бариево-алюминиево-ванадиевой контактною масою). Контактну масу в апараті розташовують трьома (чотирма) ярусами, відокремлюваними друг від друга порожніми просторами і шарами з керамічних кілець Рашига 25X25X4 мм.

Охолодження контактируемых газів після першого і другого шарів контактної маси досягається шляхом безпосереднього змішання з холодним повітрям, подаваним у межсловное простір. У деяких апаратах використовують спеціальні трубчасті теплообмінники. Контактний апарат футерован шамотною цеглою, зовнішня поверхня апарата теплоизолирована.

Температура газу перед кожним шаром контактної маси і кількість подаваного повітря регулюються автоматично. Опір апарата при свіжій масі складає 490--1960 Па, при роботі 3920--6370 Па.

Абсорбер-вежа-абсорбер (рис, 33) являє собою циліндричний сталевий апарат, заповнений керамічними кільцями розміром 150x150 і 50X50 мм рядовий укладанням. У верхній частині абсорбера розташований зрошувальний пристрій для подачі сірчаної кислоти, вище якого покладена насадка, що осушує, з керамічних кілець.

Внутрішня поверхня абсорбера футерована кислототривкою цеглою на діабазовій замазці, дах-- армованим кислотостойким бетоном. Абсорбери бувають двох типорозмірів відповідно з діаметром 4,0--4,5 м, висотою 13,81--14,00 м, поверхнею насадки робочої 6635--7925 м* і що осушує 765--1000 ма.


Подобные документы

  • Схема одноколонної атмосферно-вакуумної ректифікації з багаторазовим підведенням тепла. Технологічна схема ректифікації кам’яновугільної смоли в одноколонному агрегаті. Аналіз методу розрахунку складу фаз і числа теоретичних тарілок фракційної колони.

    курсовая работа [1,7 M], добавлен 18.06.2014

  • Загальна технологічна схема переробки прямого коксового газу. Технологічна схема двоступінчастого охолодження газу в апаратах повітряного охолодження і в скруберах Вентурі. Методи очищення газу від смоли. Розрахунок матеріального балансу коксування.

    курсовая работа [1,4 M], добавлен 13.11.2014

  • Організація територіально-виробничих агропромислових комплексів для переробки буряків з метою здешевлення виробництва цукру. Характеристика обладнання відділення з переробки буряків на ВАТ "Смілянський цукровий комбінат", його ремонт та експлуатація.

    дипломная работа [1,0 M], добавлен 20.10.2011

  • Поточна схема переробки нафти на заводі, її обґрунтування. Матеріальні баланси установок включених в схему. Розрахунок глибини переробки нафти, виходу світлих продуктів. Загальнозаводські витрати, зведений баланс. Склад заводу по технологічних установках.

    курсовая работа [46,8 K], добавлен 08.01.2013

  • Специфіка технологій переробки молочної продукції. Опис і характеристика устаткування для переробки молока і виготовлення продуктів з нього. Опис обладнання для виготовлення молока, масла, твердого сиру, пристрої для охолодження і теплової обробки молока.

    реферат [219,6 K], добавлен 24.09.2010

  • Аналіз завдань автоматизованого виробництва і складання розкладу його основного і транспортного устаткування. Проектування алгоритмічного забезпечення системи оперативного управління автоматизованим завантаженням верстатів і функціонального устаткування.

    курсовая работа [452,5 K], добавлен 28.12.2014

  • Галузеві особливості технологій виробництва харчових продуктів. Паралельні технологічні потоки (по видах сировини), які поступово об'єднуються, а на кінцевій стадії трансформуються в один потік. Технології виробництва цукру, переробки м'яса та молока.

    реферат [31,9 K], добавлен 13.04.2009

  • Підготовка нафти до переробки: видалення розчинених газів та мінеральних солей, зневоднювання нафтової емульсії. Аналіз складу нафти та її класифікація за хімічним складом, вмістом та густиною. Первинні і вторинні методи переробки. Поняття крекінгу.

    реферат [28,3 K], добавлен 18.05.2011

  • Шляхи підвищення ефективності виробництва на основі здійснення науково-технічного прогресу в легкій промисловості. Основні технологічні операції і устаткування підготовчих цехів швейного виробництва. Автоматизація управління устаткуванням в цеху розкрою.

    курсовая работа [45,2 K], добавлен 22.11.2009

  • Проблема переробки відходів. Переваги та недоліки методу біовилуговування. Мікроорганізми та їх роль в біотехнології металів. Технологічний процес біовилуговування. Вилучення германію з відходів свинцево-цинкового виробництва мікробіологічними методами.

    реферат [995,4 K], добавлен 24.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.