Расчет и проектирование привода
Проектирование электропривода с ременной передачей с клиновым ремнём и закрытой зубчатой цилиндрической передачей. Выбор электродвигателя и кинематические расчеты передач, предварительный расчёт валов. Конструктивные размеры шестерен и колёс, выбор муфты.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 29.07.2010 |
Размер файла | 141,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ЗАДАНИЕ
Спроектировать привод.
В состав привода входят следующие передачи:
1 - ременная передача с клиновым ремнём;
2 - закрытая зубчатая цилиндрическая передача.
Мощность на выходном валу Р = 8 кВт.
Частота вращения выходного вала n = 80 об./мин.
Содержание
- Введение
- 1. Выбор электродвигателя и кинематический расчёт
- 2. Расчёт 1-й клиноременной передачи
- 3. Расчёт 2-й зубчатой цилиндрической передачи
- 3.1 Проектный расчёт
- 3.2 Проверочный расчёт по контактным напряжениям
- 3.3 Проверка зубьев передачи на изгиб
- 4. Предварительный расчёт валов
- 4.1 Ведущий вал.
- 4.2 Выходной вал.
- 5. Конструктивные размеры шестерен и колёс
- 5.1 Ведущий шкив 1-й ременной передачи
- 5.2 Ведомый шкив 1-й ременной передачи
- 5.3 Цилиндрическая шестерня 2-й передачи
- 5.4 Цилиндрическое колесо 2-й передачи
- 6. Выбор муфты на выходном валу привода
- 7. Проверка прочности шпоночных соединений
- 7.1 Ведущий шкив 1-й клиноременной передачи
- 7.2 Ведомый шкив 1-й клиноременной передачи
- 7.3 Шестерня 2-й зубчатой цилиндрической передачи
- 7.4 Колесо 2-й зубчатой цилиндрической передачи
- 8. Конструктивные размеры корпуса редуктора
- 9. Расчёт реакций в опорах
- 9.1 1-й вал
- 9.2 2-й вал
- 10. Построение эпюр моментов валов
- 10.1 Расчёт моментов 1-го вала
- 10.2 Эпюры моментов 1-го вала
- 10.3 Расчёт моментов 2-го вала
- 10.4 Эпюры моментов 2-го вала
- 11. Проверка долговечности подшипников
- 11.1 1-й вал
- 11 2-й вал
- 12. Уточненный расчёт валов
- 12.1 Расчёт 1-го вала
- 12.2 Расчёт 2-го вала
- 13. Тепловой расчёт редуктора
- 14. Выбор сорта масла
- 15. Выбор посадок
- 16. Технология сборки редуктора
- Заключение
- Список использованной литературы
Введение
Инженер-конструктор является творцом новой техники, и уровнем его творческой работы в большей степени определяются темпы научно-технического прогресса. Деятельность конструктора принадлежит к числу наиболее сложных проявлений человеческого разума. Решающая роль успеха при создании новой техники определяется тем, что заложено на чертеже конструктора. С развитием науки и техники проблемные вопросы решаются с учетом все возрастающего числа факторов, базирующихся на данных различных наук. При выполнении проекта используются математические модели, базирующиеся на теоретических и экспериментальных исследованиях, относящихся к объемной и контактной прочности, материаловедению, теплотехнике, гидравлике, теории упругости, строительной механике. Широко используются сведения из курсов сопротивления материалов, теоретической механики, машиностроительного черчения и т. д. Все это способствует развитию самостоятельности и творческого подхода к поставленным проблемам.
При выборе типа редуктора для привода рабочего органа (устройства) необходимо учитывать множество факторов, важнейшими из которых являются: значение и характер изменения нагрузки, требуемая долговечность, надежность, КПД, масса и габаритные размеры, требования к уровню шума, стоимость изделия, эксплуатационные расходы.
Из всех видов передач зубчатые передачи имеют наименьшие габариты, массу, стоимость и потери на трение. Коэффициент потерь одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 0,01. Зубчатые передачи в сравнении с другими механическими передачами обладают большой надежностью в работе, постоянством передаточного отношения из-за отсутствия проскальзывания, возможностью применения в широком диапазоне скоростей и передаточных отношений. Эти свойства обеспечили большое распространение зубчатых передач; они применяются для мощностей, начиная от ничтожно малых (в приборах) до измеряемых десятками тысяч киловатт.
К недостаткам зубчатых передач могут быть отнесены требования высокой точности изготовления и шум при работе со значительными скоростями.
Косозубые колеса применяют для ответственных передач при средних и высоких скоростях. Объем их применения - свыше 30% объема применения всех цилиндрических колес в машинах; и этот процент непрерывно возрастает. Косозубые колеса с твердыми поверхностями зубьев требуют повышенной защиты от загрязнений во избежание неравномерного износа по длине контактных линий и опасности выкрашивания.
Одной из целей выполненного проекта является развитие инженерного мышления, в том числе умение использовать предшествующий опыт, моделировать используя аналоги. Для курсового проекта предпочтительны объекты, которые не только хорошо распространены и имеют большое практическое значение, но и не подвержены в обозримом будущем моральному старению.
Существуют различные типы механических передач: цилиндрические и конические, с прямыми зубьями и косозубые, гипоидные, червячные, глобоидные, одно- и многопоточные и т. д. Это рождает вопрос о выборе наиболее рационального варианта передачи. При выборе типа передачи руководствуются показателями, среди которых основными являются КПД, габаритные размеры, масса, плавность работы и вибронагруженность, технологические требования, предпочитаемое количество изделий.
При выборе типов передач, вида зацепления, механических характеристик материалов необходимо учитывать, что затраты на материалы составляют значительную часть стоимости изделия: в редукторах общего назначения - 85%, в дорожных машинах - 75%, в автомобилях - 10% и т. д.
Поиск путей снижения массы проектируемых объектов является важнейшей предпосылкой дальнейшего прогресса, необходимым условием сбережения природных ресурсов. Большая часть вырабатываемой в настоящее время энергии приходится на механические передачи, поэтому их КПД в известной степени определяет эксплуатационные расходы.
Наиболее полно требования снижения массы и габаритных размеров удовлетворяет привод с использованием электродвигателя и редуктора с внешним зацеплением.
1 Выбор электродвигателя и кинематический расчёт
По табл. 1.1[1] примем следующие значения КПД:
- для ременной передачи с клиновым ремнем: ?1 = 0,96
- для закрытой зубчатой цилиндрической передачи: ?2 = 0,975
Общий КПД привода будет:
? = ?1 x ... x ?n x ?подш.2 x ?муфты
= 0,96 x 0,975 x 0,992 x 0,98 = 0,899
где ?подш. = 0,99 - КПД одного подшипника.
???????муфты = 0,98 - КПД муфты.
Угловая скорость на выходном валу будет:
?вых. = ? x nвых. / 30 = 3,142 x 80 / 30 = 8,378 рад/с
Требуемая мощность двигателя будет:
Pтреб. = Pвых. / ? = 8 / 0,899 = 8,899 кВт
В таблице П.1[1](см. приложение) по требуемой мощности выбираем электродвигатель 160M8, с синхронной частотой вращения 750 об/мин, с параметрами: Pдвиг.=11 кВт и скольжением 2,5% (ГОСТ 19523-81). Номинальная частота вращения nдвиг. = 750-750x2,5/100=731,25 об/мин,угловая скорость ?двиг. = ? x nдвиг. / 30 = 3,14 x 731,25 / 30 = 76,576 рад/с.
Oбщее передаточное отношение:
U = ?вход. / ?вых. = 76,576 / 8,378 = 9,14
Для передач выбрали следующие передаточные числа:
U1 = 1,6
U2 = 5,6
Рассчитанные частоты и угловые скорости вращения валов сведены ниже в таблицу :
Вал 1-й |
n1 = nдвиг. / U1 = 731,25 / 1,6 = 457,031 об./мин. |
?1 = ?двиг. / U1 = 76,576 / 1,6 = 47,86 рад/c. |
|
Вал 2-й |
n2 = n1 / U2 = 457,031 / 5,6 = 81,613 об./мин. |
?2 = ?1 / U2 = 47,86 / 5,6 = 8,546 рад/c. |
Мощности на валах:
P1 = Pтреб. x ?1 x ?подш. = 8899 x 0,96 x 0,99 = 8457,61 Вт
P2 = P1 x ?2 x ?подш. = 8457,61 x 0,975 x 0,99 = 8163,708 Вт
Вращающие моменты на валах:
T1 = P1 / ?1 = (8457,61 x 103) / 47,86 = 176715,629 Нxмм
T2 = P2 / ?2 = (8163,708 x 103) / 8,546 = 955266,557 Нxмм
По таблице П.1(см. приложение учебника Чернавского) выбран электродвигатель 160M8, с синхронной частотой вращения 750 об/мин, с мощностью Pдвиг.=11 кВт и скольжением 2,5% (ГОСТ 19523-81). Номинальная частота вращения с учётом скольжения nдвиг. = 731,25 об/мин.
Передаточные числа и КПД передач
Передачи |
Передаточное число |
КПД |
|
1-я ременная передача с клиновым ремнём |
1,6 |
0,96 |
|
2-я закрытая зубчатая цилиндрическая передача |
5,6 |
0,975 |
Рассчитанные частоты, угловые скорости вращения валов и моменты на валах
Валы |
Частота вращения, об/мин |
Угловая скорость, рад/мин |
Момент, Нxмм |
|
1-й вал |
457,031 |
47,86 |
176715,629 |
|
2-й вал |
81,613 |
8,546 |
955266,557 |
2. Расчёт 1-й клиноременной передачи
1. Вращающий момент на меньшем ведущем шкиве:
T(ведущий шкив) = 116211,346 Нxмм.
2. По номограмме на рис. 7.3[1] в зависимости от частоты вращения меньшего ведущего шкива n(ведущий шкив) (в нашем случае n(ведущий шкив)=731,247 об/мин) и передаваемой мощности:
P = T(ведущий шкив) x ?(ведущий шкив) = 116211,346 x 10-6 x 76,576 = 8,899 кВт
принимаем сечение клинового ремня А.
3. Диаметр меньшего шкива по формуле 7.25[1]:
d1 = (3...4) x T(ведущий шкив)1/3 = (3...4) x 116211,3461/3 = 146,399...195,198 мм.
Согласно табл. 7.8[1] принимаем d1 = 160 мм.
4. Диаметр большого шкива (см. формулу 7.3[1]):
d2 = U x d1 x (1 - ?) = 1,6 x 160 x (1 - 0,015) = 252,16 мм.
где ? = 0,015 - относительное скольжение ремня.
Принимаем d2 = 250 мм.
5. Уточняем передаточное отношение:
Uр = d2 / (d1 x (1 - ?)) = 250 / (160 x (1 - 0,015)) = 1,586
При этом угловая скорость ведомого шкива будет:
?(ведомый шкив) = ?(ведущий шкив) / Uр = 76,576 / 1,586 = 48,282 рад/с.
Расхождение с требуемым (47,86-48,282)/47,86=-0,882%, что менее допускаемого: 3%.
Следовательно, окончательно принимаем диаметры шкивов:
d1 = 160 мм;
d2 = 250 мм.
6. Межосевое расстояние Ap следует принять в интервале (см. формулу 7.26[1]):
amin = 0.55 x (d1 + d2) + T0 = 0.55 x (160 + 250) + 6 = 231,5 мм;
amax = d1 + d2 = 160 + 250 = 410 мм.
где T0 = 6 мм (высота сечения ремня).
Принимаем предварительно значение a? = 797 мм.
7. Расчетная длина ремня по формуле 7.7[1]:
L = 2 x a? + 0.5 x ? x (d1 + d2) + (d2 - d1)2 / (4 x a?) =
2 x 797 + 0.5 x 3,142 x (160 + 250) + (250 - 160)2 / (4 x 797) =
2240,567 мм.
Выбираем значение по стандарту (см. табл. 7.7[1]) 2240 мм.
8. Уточнённое значение межосевого расстояния aр с учетом стандартной длины ремня L (см. формулу 7.27[1]):
aр = 0.25 x ((L - w) + ((L - w)2 - 2 x y)1/2)
где w = 0.5 x ? x (d1 + d2) = 0.5 x 3,142 x (160 + 250) = 644,026 мм;
y = (d2 - d1)2 = (250 - 160)2 = 8100 мм.
Тогда:
aр = 0.25 x ((2240 - 644,026) +EQ \R(;(2240 - 644,026)2 - 2 x 8100) ) = 796,716 мм,
При монтаже передачи необходимо обеспечить возможность уменьшения межосевого расстояния на 0,01 x L = 22,4 мм для облегчения надевания ремней на шкивы и возможность увеличения его на 0,025 x L = 56 мм для увеличения натяжения ремней.
9. Угол обхвата меньшего шкива по формуле 7.28[1]:
?1 = 180o - 57 x (d2 - d1) / aр = 180o - 57 x (250 - 160) / aр = 173,561o
10. Коэффициент режима работы, учитывающий условия эксплуатации передачи, по табл. 7.10[1]: Cp = 1,1.
11. Коэффициент, учитывающий влияние длины ремня по табл. 7.9[1]: CL = 1,06.
12. Коэффициент, учитывающий влияние угла обхвата (см. пояснения к формуле 7.29[1]): C? = 0,984.
13. Коэффициент, учитывающий число ремней в передаче (см. пояснения к формуле 7.29[1]): предполагая, что ремней в передаче будет от 4 до 6, примем коэффициент Сz = 0,85.
14. Число ремней в передаче:
z = P x Cp / (PoCL x C? x Cz) = 8899 x 1,1 / (1870 x 1,06 x 0,984 x 0,85 = 5,904,
где Рo = 1,87 кВт - мощность, передаваемая одним клиновым ремнем, кВт (см. табл. 7.8[1]).
Принимаем z = 6.
15. Скорость:
V = 0.5 x ?(ведущего шкива) x d1 = 0.5 x 76,576 x 0,16 = 6,126 м/c.
16. Нажатие ветви клинового ремня по формуле 7.30[1]:
F0 = 850 x P x Cр x CL / (z x V x C?) + ? x V2 =
850 x 8,899 x 1,1 x 1,06 / (6 x 6,126 x 0,984) + 0,1 x 6,1262 = 247,61 H.
где ? = 0,1 Hxc2/м2 - коэффициент, учитывающий влияние центробежных сил (см. пояснения к формуле 7.30[1]).
17. Давление на валы находим по формуле 7.31[1]:
Fв = 2 x F0 x sin(?/2) = 2 x 247,61 x 6 x sin(173,561o/2) = 2966,63 H.
18. Ширина шкивов Вш (см. табл. 7.12[1]):
Вш = (z - 1) x e + 2 x f = (6 - 1) x 15 + 2 x 10 = 95 мм.
Параметры клиноременной передачи, мм
Параметр |
Значение |
Параметр |
Значение |
|
Тип ремня |
клиновой |
Диаметр ведущего шкива d1 |
160 |
|
Сечение ремня |
А |
Диаметр ведомого шкива d2 |
250 |
|
Количество ремней Z |
6 |
Максимальное напряжение ?max, H/мм2 |
4,848 |
|
Межосевое расстояние aw |
796,716 |
|||
Длина ремня l |
2240 |
Предварительное натяжение ремня Fo, Н |
247,61 |
|
Угол обхвата ведущего шкива ?1, град |
173,561 |
Сила давления ремня на вал Fв, Н |
2966,63 |
3. Расчёт 2-й зубчатой цилиндрической передачи
3.1 Проектный расчёт
Так как в задании нет особых требований в отношении габаритов передачи, выбираем материалы со средними механическими характеристиками (см. гл.3, табл. 3.3[1]):
- для шестерни : сталь : 45
термическая обработка : улучшение
твердость : HB 230
- для колеса : сталь : 45
термическая обработка : улучшение
твердость : HB 200
Допустимые контактные напряжения (формула (3.9)[1]) , будут:
[?H] = ?H lim b x KHL / [SH]
По таблице 3.2 гл. 3[1] имеем для сталей с твердостью поверхностей зубьев менее HB 350 :
?H lim b = 2 x HB + 70 .
?H lim b (шестерня) = 2 x 230 + 70 = 530 МПа;
?H lim b (колесо) = 2 x 200 + 70 = 470 МПа;
KHL - коэффициент долговечности; при числе циклов нагружения больше базового, что имеет место при длительной эксплуатации редуктора принимаем KHL = 1 ; коэффициент безопасности [Sh]=1,1.
Допустимые контактные напряжения:
для шестерни [ ?H1 ] = 530 x 1 / 1,1 = 481,818 МПа;
для колеса [ ?H2 ] = 470 x 1 / 1,1 = 427,273 МПа.
Для прямозубых колес за расчетное напряжение принимается минимальное допустимое контактное напряжение шестерни или колеса.
Тогда расчетное допускаемое контактное напряжение будет:
[ ?H ] = [ ?H2 ] = 427,273 МПа.
Принимаем коэффициент симметричности расположения колес относительно опор по таблице 3.5[1] : KHb = 1,15 .
Коэффициент ширины венца по межосевому расстоянию принимаем:
?ba = b / aw = 0,2 , (см. стр.36[1]).
Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев найдем по формуле 3.7 гл. 3[1]:
aw = Ka x (U + 1) x (T2 x KHb / [ ?H ] 2 x U2 x ?ba ) 1/3 =
49.5 x (5,6 + 1) x (955266,557 x 1,15 / 427,2732 x 5,62 x 0,2)1/3 = 322,219 мм.
где для прямозубых колес Кa = 49.5, передаточное число передачи U = 5,6; T2 = Тколеса = 955266,557 Нxм - момент на колесе.
Ближайшее значение межосевого расстояния по ГОСТ 2185-66 будет : aw = 315 мм .
Нормальный модуль зацепления берем по следующей рекомендации:
mn = (0.01...0.02) x aw мм, для нас: mn = 3,15 . . . 6,3 мм, принимаем:
по ГОСТ 9563-60* (см. стр. 36[1]) mn = 3,5 мм.
Задаемся суммой зубьев:
?Z = z1 + z2 = 2 x aw / mn = 2 x 315 / 3,5 = 180
Числа зубьев шестерни и колеса:
z1 = ?Z / (U + 1) = 180 / (5,6 + 1) = 27,273
Принимаем: z1 = 27
z2 = ?Z - z1 = 180 - 27 = 153
Угол наклона зубьев ? = 0o .
Основные размеры шестерни и колеса:
диаметры делительные:
d1 = mn x z1 / cos(?) = 3,5 x 27 / cos(0o) = 94,5 мм;
d2 = mn x z2 / cos(?) = 3,5 x 153 / cos(0o) = 535,5 мм.
Проверка: aw = (d1 + d2) / 2 = (94,5 + 535,5) / 2 = 315 мм.
диаметры вершин зубьев:
da1 = d1 + 2 x mn = 94,5 + 2 x 3,5 = 101,5 мм;
da2 = d2 + 2 x mn = 535,5 + 2 x 3,5 = 542,5 мм.
ширина колеса: b2 = ?ba x aw = 0,2 x 315 = 63 мм;
ширина шестерни: b1 = b2 + 5 = 63 + 5 = 68 мм;
Определим коэффициент ширины шестерни по диаметру:
?bd = b1 / d1 = 68 / 94,5 = 0,72
Окружная скорость колес будет:
V = ?1 x d1 / 2 = 47,86 x 94,5 x 10-3 / 2 = 2,261 м/c;
При такой скорости следует принять для зубчатых колес 8-ю степень точности.
Коэффициент нагрузки равен:
KH = KHb x KHa x KHv .
Коэффициент KHb=1,026 выбираем по таблице 3.5[1], коэффициент KHa=1 выбираем по таблице 3.4[1], коэффициент KHv=1,05 выбираем по таблице 3.6[1], тогда:
KH = 1,026 x 1 x 1,05 = 1,077
3.2 Проверочный расчёт по контактным напряжениям
Проверку контактных напряжений проводим по формуле 3.6[1]:
?H = (310 / aw) x ((T2 x KH x (U + 1)3) / (b2 x U2))1/2 =
(310 / 315) x ((955266,557 x 1,077 x (5,6 + 1)3;63 x 5,62)) =
380,784 МПа. ? [?H]
Силы действующие в зацеплении вычислим по формуле 8.3 и 8.4[1]:
окружная :
Ft = 2 x T1 / d1 = 2 x 176715,629 / 94,5 = 3740,013 Н;
радиальная: Fr = Ft x tg(?) / cos(?) = 3740,013 x tg(20o) / cos(0o) = 1361,253 Н;
осевая : Fa = F t x tg(?) = 3740,013 x tg(0o) = 0 Н.
3.3 Проверка зубьев передачи на изгиб
Проверим зубья на выносливость по напряжениям изгиба по формуле 3.25[1]:
?F = Ft x KF x YF / (b x mn) ? [?F]
Здесь коэффициент нагрузки KF = KF? x KFv (см. стр. 42[1]). По таблице 3.7[1] выбираем коэффициент расположения колес KF? = 1,068, по таблице 3.8[1] выбираем коэффициент KFv=1,25. Таким образом коэффициент KF = 1,068 x 1,25 = 1,335. YF - коэффициент, учитывающий форму зуба и зависящий от эквивалентного числа Zv (см. гл.3, пояснения к формуле 3.25[1]):
у шестерни : Zv1 = z1 / cos3(?) = 27 / cos3(0o) = 27
у колеса : Zv2 = z2 / cos3(?) = 153 / cos3(0o) = 153
Тогда : YF1 = 3,86
YF2 = 3,574
Допускаемые напряжения находим по формуле 3.24[1]:
[?F] = ?oF lim b x KFL / [Sf] .
KFL - коэффициент долговечности; при числе циклов нагружения больше базового, что имеет место при длительной эксплуатации редуктора принимаем KFL = 1 .
Для шестерни: ?oF lim b = 414 МПа;
Для колеса : ?oF lim b = 360 МПа.
Коэффициент [Sf] безопасности находим по формуле 3.24[1]:
[SF] = [SF]' x [SF]".
где для шестерни [SF]' = 1,75 ;
[SF]' = 1 ;
[SF(шест.)] = 1,75 x 1 = 1,75
для колеса [SF]' = 1,75 ;
[SF]" = 1 .
[SF(кол.)] = 1,75 x 1 = 1,75
Допускаемые напряжения:
для шестерни: [?F1] = 414 x 1 / 1,75 = 236,571 МПа;
для колеса : [?F2] = 360 x 1 / 1,75 = 205,714 МПа;
Находим отношения [?F] / YF :
для шестерни: [?F1] / YF1 = 236,571 / 3,86 = 61,288
для колеса : [?F2] / YF2 = 205,714 / 3,574 = 57,558
Дальнейший расчет будем вести для колеса, для которого найденное отношение меньше.
Проверяем прочность зуба колеса по формуле 3.25[1]:
?F2 = (Ft x KF x YF1) / (b2 x mn) =
(3740,013 x 1,335 x x 3,574) / (63 x 3,5) = 80,928 МПа
?F2 = 80,928 МПа < [?f] = 205,714 МПа.
Условие прочности выполнено.
Механические характеристики материалов зубчатой передачи
Элемент передачи |
Марка стали |
Термообработка |
HB1ср |
?в |
[?]H |
[?]F |
|
HB2ср |
H/мм2 |
||||||
Шестерня |
45 |
улучшение |
230 |
780 |
481,818 |
236,571 |
|
Колесо |
45 |
улучшение |
200 |
690 |
427,273 |
205,714 |
Параметры зубчатой цилиндрической передачи, мм
Проектный расчёт |
|||||
Параметр |
Значение |
Параметр |
Значение |
||
Межосевое расстояние aw |
315 |
Угол наклона зубьев ?, град |
0 |
||
Модуль зацепления m |
3,5 |
Диаметр делительной окружности: |
|||
Ширина зубчатого венца: |
шестерни d1 колеса d2 |
94,5 535,5 |
|||
шестерни b1 колеса b2 |
68 63 |
||||
Числа зубьев: |
Диаметр окружности вершин: |
||||
шестерни z1 колеса z2 |
27 153 |
шестерни da1 колеса da2 |
101,5 542,5 |
||
Вид зубьев |
прямозубая передача |
Диаметр окружности впадин: |
|||
шестерни df1 колеса df2 |
85,75 526,75 |
||||
Проверочный расчёт |
|||||
Параметр |
Допускаемые значения |
Расчётные значения |
Примечание |
||
Контактные напряжения ?H, H/мм2 |
427,273 |
380,784 |
- |
||
Напряжения изгиба, H/мм2 |
?F1 |
236,571 |
80,978 |
- |
|
?F2 |
205,714 |
80,928 |
- |
4. Предварительный расчёт валов
Предварительный расчёт валов проведём на кручение по пониженным допускаемым напряжениям.
Диаметр вала при допускаемом напряжении [?к] = 20 МПа вычисляем по формуле 8.16[1]:
dв ? (16 x Tк / (? x [?к]))1/3
4.1 Ведущий вал
dв ? (16 x 176715,629 / (3,142 x 20))1/3 = 35,569 мм.
Под 1-й элемент (ведомый) выбираем диаметр вала: 40 мм.
Под 2-й элемент (подшипник) выбираем диаметр вала: 45 мм.
Под 3-й элемент (ведущий) выбираем диаметр вала: 50 мм.
Под 4-й элемент (подшипник) выбираем диаметр вала: 45 мм.
4.2 Выходной вал
dв ? (16 x 955266,557 / (3,142 x 20))1/3 = 62,424 мм.
Под свободный (присоединительный) конец вала выбираем диаметр вала: 65 мм.
Под 2-й элемент (подшипник) выбираем диаметр вала: 70 мм.
Под 3-й элемент (ведомый) выбираем диаметр вала: 75 мм.
Под 4-й элемент (подшипник) выбираем диаметр вала: 70 мм.
Диаметры участков валов назначаем исходя из конструктивных соображений.
Диаметры валов, мм
Валы |
Расчетный диаметр |
Диаметры валов по сечениям |
||||
1-е сечение |
2-е сечение |
3-е сечение |
4-е сечение |
|||
Ведущий вал. |
35,569 |
Под 1-м элементом (ведомым) диаметр вала: 40 |
Под 2-м элементом (подшипником) диаметр вала: 45 |
Под 3-м элементом (ведущим) диаметр вала: 50 |
Под 4-м элементом (подшипником) диаметр вала: 45 |
|
Выходной вал. |
62,424 |
Под свободным (присоединительным) концом вала: 65 |
Под 2-м элементом (подшипником) диаметр вала: 70 |
Под 3-м элементом (ведомым) диаметр вала: 75 |
Под 4-м элементом (подшипником) диаметр вала: 70 |
Длины участков валов, мм
Валы |
Длины участков валов между |
|||
1-м и 2-м сечениями |
2-м и 3-м сечениями |
3-м и 4-м сечениями |
||
Ведущий вал. |
105 |
80 |
80 |
|
Выходной вал. |
130 |
80 |
80 |
5. Конструктивные размеры шестерен и колёс
5.1 Ведущий шкив 1-й ременной передачи
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 48 = 72 мм.
Длина ступицы: Lступ = (1,2...1,5) x dвала = 1,2 x 48 = 57,6 мм = 95 мм.
Толщина обода:?о = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 10 мм.
где h = 8,7 мм - глубина канавки под ремень от делительного диаметра.
Внутренний диаметр обода:
Dобода = d1 - 2 x (?o + h) = 160 - 2 x (10 + 8,7) = 122,6 мм
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (122,6 + 72) = 97,3 мм = 97 мм
где Doбода = 122,6 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (122,6 + 72) / 4 = 12,65 мм = 13 мм.
5.2 Ведомый шкив 1-й ременной передачи
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 40 = 60 мм.
Длина ступицы: Lступ = (1,2...1,5) x dвала = 1,2 x 40 = 48 мм = 95 мм.
Толщина обода:?о = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 10 мм.
где h = 8,7 мм - глубина канавки под ремень от делительного диаметра.
Внутренний диаметр обода:
Dобода = d2 - 2 x (?o + h) = 250 - 2 x (10 + 8,7) = 212,6 мм
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (212,6 + 60) = 136,3 мм = 136 мм
где Doбода = 212,6 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (212,6 + 60) / 4 = 38,15 мм = 38 мм.
5.3 Цилиндрическая шестерня 2-й передачи
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 50 = 75 мм.
Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 50 = 40 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b1 = 68 мм.
Фаска: n = 0,5 x mn = 0,5 x 3,5 = 1,75 мм
Округляем по номинальному ряду размеров: n = 2 мм.
5.4 Цилиндрическое колесо 2-й передачи
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 75 = 112,5 мм. = 112 мм.
Длина ступицы: Lступ = (0,8...1,5) x dвала = 1 x 75 = 75 мм
Толщина обода: ?о = (2,5...4) x mn = 2,5 x 3,5 = 8,75 мм. = 9 мм.
где mn = 3,5 мм - модуль нормальный.
Толщина диска: С = (0,2...0,3) x b2 = 0,2 x 63 = 12,6 мм = 13 мм.
где b2 = 63 мм - ширина зубчатого венца.
Толщина рёбер: s = 0,8 x C = 0,8 x 13 = 10,4 мм = 10 мм.
Внутренний диаметр обода:
Dобода = Da2 - 2 x (2 x mn + ?o) = 542,5 - 2 x (2 x 3,5 + 9) = 510,5 мм = 510 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (510 + 112) = 311 мм = 312 мм
где Doбода = 510 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = Doбода - dступ.) / 4 = (510 - 112) / 4 = 99,5 мм = 100 мм.
Фаска: n = 0,5 x mn = 0,5 x 3,5 = 1,75 мм
Округляем по номинальному ряду размеров: n = 2 мм.
6. Выбор муфты на выходном валу привода
В виду того, что в данном соединении валов требуется невысокая компенсирующая способность муфт, то допустима установка муфты упругой втулочно-пальцевой. Достоинство данного типа муфт: относительная простота конструкции и удобство замены упругих элементов. Выбор муфты упругой втулочно-пальцевой производится в зависимости от диаметров соединяемых валов, расчётного передаваемого крутящего момента и максимально допустимой частоты вращения вала. Диаметры соединяемых валов:
d(выход. вала) = 65 мм;
d(вала потребит.) = 65 мм;
Передаваемый крутящий момент через муфту:
T = 955,267 Нxм
Расчётный передаваемый крутящий момент через муфту:
Tр = kр x T = 1,3 x 955,267 = 1241,847 Нxм
здесь kр = 1,3 - коэффициент, учитывающий условия эксплуатации; значения его приведены в таблице 11.3[1].
Частота вращения муфты:
n = 81,613 об./мин.
Выбираем муфту упругую втулочно-пальцевую 2000-65-I.1-65-I.1-У2 ГОСТ 21424-93 (по табл. К21[3]).
Упругие элементы муфты проверим на смятие в предположении равномерного распределения нагрузки между пальцами.
?см. = 2 x 103 x Tр / (zc x Do x dп x lвт) =
2 x 103 x 1241,847 / (10 x 181 x 24 x 44) = 1,299 МПа ? [?см] = 1,8МПа,
здесь zc=10 - число пальцев; Do=181 мм - диаметр окружности расположения пальцев; dп=24 мм - диаметр пальца; lвт=44 мм - длина упругого элемента.
Рассчитаем на изгиб пальцы муфты, изготовленные из стали 45:
?и = 2 x 103 x Tр x (0,5 x lвт + с) / (zc x Do x 0,1 x dп3) =
2 x 103 x 1241,847 x (0,5 x 44 + 4) / (10 x 181 x 0,1 x 243) =
25,808 МПа ? [?и] = 80МПа,
здесь c=4 мм - зазор между полумуфтами.
Условие прочности выполняется.
Муфты
Муфты |
Соединяемые валы |
||
Ведущий |
Ведомый |
||
Муфта упругая втулочно-пальцевая 2000-65-I.1-65-I.1-У2 ГОСТ 21424-93 (по табл. К21[3]). |
Выходной вал d(выход. вала) = 65 мм; |
Вал потребителя d(вала потребит.) = 65 мм; |
7. Проверка прочности шпоночных соединений
7.1 Ведущий шкив 1-й клиноременной передачи
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпонки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
?см = 2 x Т / (dвала x (l - b) x (h - t1)) =
2 x 116211,346 / (48 x (90 - 14) x (9 - 5,5)) = 18,204 МПа ? [?см]
где Т = 116211,346 Нxмм - момент на валу; dвала = 48 мм - диаметр вала; h = 9 мм - высота шпонки; b = 14 мм - ширина шпонки; l = 90 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [?см] = 75 МПа.
Проверим шпонку на срез по формуле 8.24[1].
?ср = 2 x Т / (dвала x (l - b) x b) =
2 x 116211,346 / (48 x (90 - 14) x 14) = 4,551 МПа ? [?ср]
Допускаемые напряжения среза при стальной ступице [?ср] = 0,6 x [?см] = 0,6 x 75 = 45 МПа.
Все условия прочности выполнены.
7.2 Ведомый шкив 1-й клиноременной передачи
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 12x8. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпонки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
?см = 2 x Т / (dвала x (l - b) x (h - t1)) =
2 x 176715,629 / (40 x (90 - 12) x (8 - 5)) = 37,76 МПа ? [?см]
где Т = 176715,629 Нxмм - момент на валу; dвала = 40 мм - диаметр вала; h = 8 мм - высота шпонки; b = 12 мм - ширина шпонки; l = 90 мм - длина шпонки; t1 = 5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [?см] = 75 МПа.
Проверим шпонку на срез по формуле 8.24[1].
?ср = 2 x Т / (dвала x (l - b) x b) =
2 x 176715,629 / (40 x (90 - 12) x 12) = 9,44 МПа ? [?ср]
Допускаемые напряжения среза при стальной ступице [?ср] = 0,6 x [?см] = 0,6 x 75 = 45 МПа.
Все условия прочности выполнены.
7.3 Шестерня 2-й зубчатой цилиндрической передачи
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпонки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
?см = 2 x Т / (dвала x (l - b) x (h - t1)) =
2 x 176715,629 / (50 x (63 - 14) x (9 - 5,5)) = 41,216 МПа ? [?см]
где Т = 176715,629 Нxмм - момент на валу; dвала = 50 мм - диаметр вала; h = 9 мм - высота шпонки; b = 14 мм - ширина шпонки; l = 63 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [?см] = 75 МПа.
Проверим шпонку на срез по формуле 8.24[1].
?ср = 2 x Т / (dвала x (l - b) x b) =
2 x 176715,629 / (50 x (63 - 14) x 14) = 10,304 МПа ? [?ср]
Допускаемые напряжения среза при стальной ступице [?ср] = 0,6 x [?см] = 0,6 x 75 = 45 МПа.
Все условия прочности выполнены.
7.4 Колесо 2-й зубчатой цилиндрической передачи
Для данного элемента подбираем две шпонки, расположенные под углом 180o друг к другу.Шпонки призматические со скруглёнными торцами 20x12. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпонки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
?см = Т / (dвала x (l - b) x (h - t1)) =
955266,557 / (75 x (70 - 20) x (12 - 7,5)) = 56,608 МПа ? [?см]
где Т = 955266,557 Нxмм - момент на валу; dвала = 75 мм - диаметр вала; h = 12 мм - высота шпонки; b = 20 мм - ширина шпонки; l = 70 мм - длина шпонки; t1 = 7,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [?см] = 75 МПа.
Проверим шпонку на срез по формуле 8.24[1].
?ср = Т / (dвала x (l - b) x b) =
955266,557 / (75 x (70 - 20) x 20) = 12,737 МПа ? [?ср]
Допускаемые напряжения среза при стальной ступице [?ср] = 0,6 x [?см] = 0,6 x 75 = 45 МПа.
Все условия прочности выполнены.
Соединения элементов передач с валами
Передачи |
Соединения |
||
Ведущий элемент передачи |
Ведомый элемент передачи |
||
1-я клиноременная передача |
Шпонка призматическая со скруглёнными торцами 14x9 |
Шпонка призматическая со скруглёнными торцами 12x8 |
|
2-я зубчатая цилиндрическая передача |
Шпонка призматическая со скруглёнными торцами 14x9 |
Две шпонки призматические со скруглёнными торцами 20x12 |
8. Конструктивные размеры корпуса редуктора
Толщина стенки корпуса и крышки одноступенчатого цилиндрического редуктора:
? = 0.025 x aw + 1 = 0.025 x 315 + 1 = 8,875 мм
Округляя в большую сторону, получим ? = 9 мм.
?1 = 0.02 x aw + 1 = 0.02 x 315 + 1 = 7,3 мм
Так как должно быть ?1 ? 8.0 мм, принимаем ?1 = 8.0 мм.
Толщина верхнего пояса (фланца) корпуса: b = 1.5 x ? = 1.5 x 9 = 13,5 мм. Округляя в большую сторону, получим b = 14 мм.
Толщина нижнего пояса (фланца) крышки корпуса: b1 = 1.5 x ?1 = 1.5 x 8 = 12 мм.
Толщина нижнего пояса корпуса:
без бобышки: p = 2.35 x ? = 2.35 x 9 = 21,15 мм.
Округляя в большую сторону, получим p = 22 мм.
при наличии бобышки: p1 = 1.5 x ? = 1.5 x 9 = 13,5 мм.
Округляя в большую сторону, получим p1 = 14 мм.
p2 = (2,25...2,75) x ? = 2.65 x 9 = 23,85 мм.
Округляя в большую сторону, получим p2 = 24 мм.
Толщина рёбер основания корпуса: m = (0,85...1) x ? = 0.9 x 9 = 8,1 мм. Округляя в большую сторону, получим m = 9 мм.
Толщина рёбер крышки: m1 = (0,85...1) x ?1 = 0.9 x 8 = 7,2 мм. Округляя в большую сторону, получим m1 = 8 мм.
Диаметр фундаментных болтов (их число ? 4):
d1 = (0,03...0,036) x aw (тихоходная ступень) + 12 =
(0,03...0,036) x 315 + 12 = 21,45...23,34 мм.
Принимаем d1 = 24 мм.
Диаметр болтов:
у подшипников:
d2 = (0,7...0,75) x d1 = (0,7...0,75) x 24 = 16,8...18 мм. Принимаем d2 = 16 мм.
соединяющих основание корпуса с крышкой:
d3 = (0,5...0,6) x d1 = (0,5...0,6) x 24 = 12...14,4 мм. Принимаем d3 = 16 мм.
Размеры, определяющие положение болтов d2 (см. рис. 10.18[1]):
e ? (1...1,2) x d2 = (1...1.2) x 16 = 16...19,2 = 17 мм;
q ? 0,5 x d2 + d4 = 0,5 x 16 + 5 = 13 мм;
где крепление крышки подшипника d4 = 5 мм.
Высоту бобышки hб под болт d2 выбирают конструктивно так, чтобы образовалась опорная поверхность под головку болта и гайку. Желательно у всех бобышек иметь одинаковую высоту hб.
9. Расчёт реакций в опорах
9.1 1-й вал
Силы, действующие на вал и углы контактов элементов передач:
Fx1 = -2966,63 H
Fx3 = -1361,253 H
Fy3 = 3740,013 H
Из условия равенства суммы моментов сил относительно 1-й опоры:
Rx2 = ((-Fx1 * (L1 + L2 + L3)) - Fx2 * L3) / (L2 + L3)
= ((-(-2966,63) * (105 + 80 + 80)) - (-1361,253) * 80) / (80 + 80)
= 5594,107 H
Ry2 = ((-Fy1 * (L1 + L2 + L3)) - Fy3 * L3) / (L2 + L3)
= ((-0 * (105 + 80 + 80)) - 3740,013 * 80) / (80 + 80)
= -1870,007 H
Из условия равенства суммы сил относительно осей X и Y:
Rx4 = (-Fx1) - Rx2 - Fx2
= (-(-2966,63)) - 5594,107 - (-1361,253)
= -1266,224 H
Ry4 = (-Fy1) - Rx2 - Fy3
= (-0) - (-1870,007) - 3740,013
= -1870,006 H
Суммарные реакции опор:
R1 = (Rx12 + Ry12)1/2 = (5594,1072 + -1870,0072)1/2 = 5898,386 H;
R2 = (Rx22 + Ry22)1/2 = (-1266,2242 + -1870,0062)1/2 = 2258,373 H;
9.2 2-й вал
Силы, действующие на вал и углы контактов элементов передач:
Fx3 = 1361,253 H
Fy3 = -3740,013 H
Из условия равенства суммы моментов сил относительно 1-й опоры:
Rx2 = (-Fx2 * L3) / (L2 + L3)
= (-1361,253 * 80) / (80 + 80)
= -680,626 H
Ry2 = (-Fy3 * L3) / (L2 + L3)
= (-(-3740,013) * 80) / (80 + 80)
= 1870,006 H
Из условия равенства суммы сил относительно осей X и Y:
Rx4 = (-Rx2) - Fx2
= (-(-680,626)) - 1361,253
= -680,626 H
Ry4 = (-Rx2) - Fy3
= (-1870,006) - (-3740,013)
= 1870,006 H
Суммарные реакции опор:
R1 = (Rx12 + Ry12)1/2 = (-680,6262 + 1870,0062)1/2 = 1990,019 H;
R2 = (Rx22 + Ry22)1/2 = (-680,6262 + 1870,0062)1/2 = 1990,019 H;
10. Построение эпюр моментов валов
10.1 Расчёт моментов 1-го вала
1-е сечение
Mx = 0 Н x мм
My = 0 Н x мм
M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм
2-е сечение
Mx = 0 Н x мм
My = Fx1 * L1 =
(-2966,63) * 105 = -311496,15 H x мм
M = (Mx12 + My12)1/2 = (02 + -311496,152)1/2 = 311496,15 H x мм
3-е сечение
Mx = Fy1 * (L1 + L2) + Rx2 * L2 =
0 * (105 + 80) + (-1870,007) * 80 = -149600,52 H x мм
My = Fx1 * (L1 + L2) + Rx2 * L2 =
(-2966,63) * (105 + 80) + 5594,107 * 80 = -101297,955 H x мм
M = (Mx12 + My12)1/2 = (-149600,522 + -101297,9552)1/2 = 180669,841 H x мм
4-е сечение
Mx = 0 Н x мм
My = 0 Н x мм
M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм
10.2 Эпюры моментов 1-го вала
10.3 Расчёт моментов 2-го вала
1 - е сечение
Mx = 0 Н x мм
My = 0 Н x мм
M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм
2 - е сечение
Mx = 0 Н x мм
My = 0 Н x мм
M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм
3 - е сечение
Mx = Rx2 * L2 =
1870,006 * 80 = 149600,52 H x мм
My = Rx2 * L2 =
(-680,626) * 80 = -54450,12 H x мм
M = (Mx12 + My12)1/2 = (149600,522 + -54450,122)1/2 = 159201,543 H x мм
4 - е сечение
Mx = 0 Н x мм
My = 0 Н x мм
M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм
10.4 Эпюры моментов 2-го вала
11. Проверка долговечности подшипников
11.1 1-й вал
Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 409 тяжелой серии со следующими параметрами:
d = 45 мм - диаметр вала (внутренний посадочный диаметр подшипника);
D = 120 мм - внешний диаметр подшипника;
C = 76,1 кН - динамическая грузоподъёмность;
Co = 45,5 кН - статическая грузоподъёмность.
Радиальные нагрузки на опоры:
Pr1 = 5898,386 H;
Pr2 = 2258,373 H.
Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 1.
Эквивалентная нагрузка вычисляется по формуле:
Рэ = (Х x V x Pr1 + Y x Pa) x Кб x Кт,
где - Pr1 = 5898,386 H - радиальная нагрузка; Pa = Fa = 0 H - осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,4 (см. табл. 9.19[1]); температурный коэффициент Кт = 1 (см. табл. 9.20[1]).
Отношение Fa / Co = 0 / 45500 = 0; этой величине (по табл. 9.18[1]) соответствует e = 0.
Отношение Fa / (Pr1 x V) = 0 / (5898,386 x 1) = 0 ? e; тогда по табл. 9.18[1]: X = 1; Y = 0.
Тогда: Pэ = (1 x 1 x 5898,386 + 0 x 0) x 1,4 x 1 = 8257,74 H.
Расчётная долговечность, млн. об. (формула 9.1[1]):
L = (C / Рэ)3 = (76100 / 8257,74)3 = 782,655 млн. об.
Расчётная долговечность, ч.:
Lh = L x 106 / (60 x n1) = 782,655 x 106 / (60 x 457,031) = 28541,281 ч,
что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n1 = 457,031 об/мин - частота вращения вала.
11.2 2-й вал
Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 314 средней серии со следующими параметрами:
d = 70 мм - диаметр вала (внутренний посадочный диаметр подшипника);
D = 150 мм - внешний диаметр подшипника;
C = 104 кН - динамическая грузоподъёмность;
Co = 63 кН - статическая грузоподъёмность.
Радиальные нагрузки на опоры:
Pr1 = 1990,019 H;
Pr2 = 1990,019 H.
Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 2.
Эквивалентная нагрузка вычисляется по формуле:
Рэ = (Х x V x Pr2 + Y x Pa) x Кб x Кт,
где - Pr2 = 1990,019 H - радиальная нагрузка; Pa = Fa = 0 H - осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,4 (см. табл. 9.19[1]); температурный коэффициент Кт = 1 (см. табл. 9.20[1]).
Отношение Fa / Co = 0 / 63000 = 0; этой величине (по табл. 9.18[1]) соответствует e = 0.
Отношение Fa / (Pr2 x V) = 0 / (1990,019 x 1) = 0 ? e; тогда по табл. 9.18[1]: X = 1; Y = 0.
Тогда: Pэ = (1 x 1 x 1990,019 + 0 x 0) x 1,4 x 1 = 2786,027 H.
Расчётная долговечность, млн. об. (формула 9.1[1]):
L = (C / Рэ)3 = (104000 / 2786,027)3 = 52016,851 млн. об.
Расчётная долговечность, ч.:
Lh = L x 106 / (60 x n2) = 52016,851 x 106 / (60 x 81,613) = 10622664,486 ч,
что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n2 = 81,613 об/мин - частота вращения вала.
Подшипники
Валы |
Подшипники |
||||||
1-я опора |
2-я опора |
||||||
Наименование |
d, мм |
D, мм |
Наименование |
d, мм |
D, мм |
||
1-й вал |
шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 409тяжелой серии |
45 |
120 |
шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 409тяжелой серии |
45 |
120 |
|
2-й вал |
шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 314средней серии |
70 |
150 |
шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 314средней серии |
70 |
150 |
12 Уточненный расчёт валов
12.1 Расчёт 1-го вала
Крутящий момент на валу Tкр. = 176715,629 Hxмм.
Для данного вала выбран материал: сталь 45. Для этого материала:
- предел прочности ?b = 780 МПа;
- предел выносливости стали при симметричном цикле изгиба
?-1 = 0,43 x ?b = 0,43 x 780 = 335,4 МПа;
- предел выносливости стали при симметричном цикле кручения
?-1 = 0,58 x ?-1 = 0,58 x 335,4 = 194,532 МПа.
2 - е сечение.
Диаметр вала в данном сечении D = 45 мм. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (см. табл. 8.7[1]).
Коэффициент запаса прочности по нормальным напряжениям:
S? = ?-1 / ((k? / (?? x ?)) x ?v + ?? x ?m) , где:
- амплитуда цикла нормальных напряжений:
?v = Mизг. / Wнетто = 311496,15 / 8946,176 = 34,819 МПа,
здесь
Wнетто = ? x D3 / 32 =
3,142 x 453 / 32 = 8946,176 мм3
- среднее напряжение цикла нормальных напряжений:
?m = Fa / (? x D2 / 4) = 0 / (3,142 x 452 / 4) = 0 МПа, Fa = 0 МПа - продольная сила,
- ?? = 0,2 - см. стр. 164[1];
- ? = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- k?/?? = 3,102 - находим по таблице 8.7[1];
Тогда:
S? = 335,4 / ((3,102 / 0,97) x 34,819 + 0,2 x 0) = 3,012.
Коэффициент запаса прочности по касательным напряжениям:
S? = ?-1 / ((k ? / (?t x ?)) x ?v + ?t x ?m), где:
- амплитуда и среднее напряжение отнулевого цикла:
?v = ?m = ?max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 176715,629 / 17892,352 = 4,938 МПа,
здесь
Wк нетто = ? x D3 / 16 =
3,142 x 453 / 16 = 17892,352 мм3
- ?t = 0.1 - см. стр. 166[1];
- ? = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- k?/?? = 2,202 - находим по таблице 8.7[1];
Тогда:
S? = 194,532 / ((2,202 / 0,97) x 4,938 + 0,1 x 4,938) = 16,622.
Результирующий коэффициент запаса прочности:
S = S? x S? / (S?2 + S?2)1/2 = 3,012 x 16,622 / (3,0122 + 16,6222)1/2 = 2,964
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
3 - е сечение.
Диаметр вала в данном сечении D = 50 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 14 мм, глубина шпоночной канавки t1 = 5,5 мм.
Коэффициент запаса прочности по нормальным напряжениям:
S? = ?-1 / ((k? / (?? x ?)) x ?v + ?? x ?m) , где:
- амплитуда цикла нормальных напряжений:
?v = Mизг. / Wнетто = 180669,841 / 10747,054 = 16,811 МПа,
здесь
Wнетто = ? x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =
3,142 x 503 / 32 - 14 x 5,5 x (50 - 5,5)2/ (2 x 50) = 10747,054 мм3,
где b=14 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;
- среднее напряжение цикла нормальных напряжений:
?m = Fa / (? x D2 / 4) = 0 / (3,142 x 502 / 4) = 0 МПа, Fa = 0 МПа - продольная сила,
- ?? = 0,2 - см. стр. 164[1];
- ? = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- k? = 1,8 - находим по таблице 8.5[1];
- ?? = 0,85 - находим по таблице 8.8[1];
Тогда:
S? = 335,4 / ((1,8 / (0,85 x 0,97)) x 16,811 + 0,2 x 0) = 9,139.
Коэффициент запаса прочности по касательным напряжениям:
S? = ?-1 / ((k ? / (?t x ?)) x ?v + ?t x ?m), где:
- амплитуда и среднее напряжение отнулевого цикла:
?v = ?m = ?max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 176715,629 / 23018,9 = 3,838 МПа,
здесь
Wк нетто = ? x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =
3,142 x 503 / 16 - 14 x 5,5 x (50 - 5,5)2/ (2 x 50) = 23018,9 мм3,
где b=14 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;
- ?t = 0.1 - см. стр. 166[1];
- ? = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- k? = 1,7 - находим по таблице 8.5[1];
- ?? = 0,73 - находим по таблице 8.8[1];
Тогда:
S? = 194,532 / ((1,7 / (0,73 x 0,97)) x 3,838 + 0,1 x 3,838) = 20,268.
Результирующий коэффициент запаса прочности:
S = S? x S? / (S?2 + S?2)1/2 = 9,139 x 20,268 / (9,1392 + 20,2682)1/2 = 8,331
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
12.2 Расчёт 2-го вала
Крутящий момент на валу Tкр. = 955266,557 Hxмм.
Для данного вала выбран материал: сталь 45. Для этого материала:
- предел прочности ?b = 780 МПа;
- предел выносливости стали при симметричном цикле изгиба
?-1 = 0,43 x ?b = 0,43 x 780 = 335,4 МПа;
- предел выносливости стали при симметричном цикле кручения
?-1 = 0,58 x ?-1 = 0,58 x 335,4 = 194,532 МПа.
1 - е сечение.
Диаметр вала в данном сечении D = 65 мм. Это сечение при передаче вращающего момента через муфту рассчитываем на кручение. Концентрацию напряжений вызывает наличие шпоночной канавки.
Коэффициент запаса прочности по касательным напряжениям:
S? = ?-1 / ((k ? / (?t x ?)) x ?v + ?t x ?m), где:
- амплитуда и среднее напряжение отнулевого цикла:
?v = ?m = ?max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 955266,557 / 50662 = 9,428 МПа,
здесь
Wк нетто = ? x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =
3,142 x 653 / 16 - 18 x 7 x (65 - 7)2/ (2 x 65) = 50662 мм3
где b=18 мм - ширина шпоночного паза; t1=7 мм - глубина шпоночного паза;
- ?t = 0.1 - см. стр. 166[1];
- ? = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- k? = 1,7 - находим по таблице 8.5[1];
- ?? = 0,7 - находим по таблице 8.8[1];
Тогда:
S? = 194,532 / ((1,7 / (0,7 x 0,97)) x 9,428 + 0,1 x 9,428) = 7,925.
ГОСТ 16162-78 указывает на то, чтобы конструкция редукторов предусматривала возможность восприятия консольной нагрузки, приложенной в середине посадочной части вала. Величина этой нагрузки для редукторов должна быть 2,5 x Т1/2.
Приняв у ведущего вала длину посадочной части под муфту равной длине полумуфты l = 80 мм, получим Мизг. = 2,5 x Tкр1/2 x l / 2 = 2,5 x 955266,5571/2 x 80 / 2 = 97737,739 Нxмм.
Коэффициент запаса прочности по нормальным напряжениям:
S? = ?-1 / ((k? / (?? x ?)) x ?v + ?? x ?m) , где:
- амплитуда цикла нормальных напряжений:
?v = Mизг. / Wнетто = 97737,739 / 23700,754 = 14,846 МПа,
здесь
Wнетто = ? x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =
3,142 x 653 / 32 - 18 x 7 x (65 - 7)2/ (2 x 65) = 23700,754 мм3,
где b=18 мм - ширина шпоночного паза; t1=7 мм - глубина шпоночного паза;
- среднее напряжение цикла нормальных напряжений:
?m = Fa / (? x D2 / 4) = 0 / (3,142 x 652 / 4) = 0 МПа, где
Fa = 0 МПа - продольная сила в сечении,
- ?? = 0,2 - см. стр. 164[1];
- ? = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- k? = 1,8 - находим по таблице 8.5[1];
- ?? = 0,82 - находим по таблице 8.8[1];
Тогда:
S? = 335,4 / ((1,8 / (0,82 x 0,97)) x 14,846 + 0,2 x 0) = 9,983.
Результирующий коэффициент запаса прочности:
S = S? x S? / (S?2 + S?2)1/2 = 9,983 x 7,925 / (9,9832 + 7,9252)1/2 = 6,207
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
3 - е сечение.
Диаметр вала в данном сечении D = 75 мм. Концентрация напряжений обусловлена наличием двух шпоночных канавок. Ширина шпоночной канавки b = 20 мм, глубина шпоночной канавки t1 = 7,5 мм.
Коэффициент запаса прочности по нормальным напряжениям:
S? = ?-1 / ((k? / (?? x ?)) x ?v + ?? x ?m) , где:
- амплитуда цикла нормальных напряжений:
?v = Mизг. / Wнетто = 159201,543 / 32304,981 = 4,928 МПа,
здесь
Wнетто = ? x D3 / 32 - b x t1 x (D - t1)2/ D =
3,142 x 753 / 32 - 20 x 7,5 x (75 - 7,5)2/ 75 = 32304,981 мм3,
где b=20 мм - ширина шпоночного паза; t1=7,5 мм - глубина шпоночного паза;
- среднее напряжение цикла нормальных напряжений:
?m = Fa / (? x D2 / 4) = 0 / (3,142 x 752 / 4) = 0 МПа, Fa = 0 МПа - продольная сила,
- ?? = 0,2 - см. стр. 164[1];
- ? = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- k? = 1,8 - находим по таблице 8.5[1];
- ?? = 0,76 - находим по таблице 8.8[1];
Тогда:
S? = 335,4 / ((1,8 / (0,76 x 0,97)) x 4,928 + 0,2 x 0) = 27,874.
Коэффициент запаса прочности по касательным напряжениям:
S? = ?-1 / ((k ? / (?t x ?)) x ?v + ?t x ?m), где:
- амплитуда и среднее напряжение отнулевого цикла:
?v = ?m = ?max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 955266,557 / 73722,463 = 6,479 МПа,
здесь
Wк нетто = ? x D3 / 16 - b x t1 x (D - t1)2/ D =
3,142 x 753 / 16 - 20 x 7,5 x (75 - 7,5)2/ 75 = 73722,463 мм3,
где b=20 мм - ширина шпоночного паза; t1=7,5 мм - глубина шпоночного паза;
- ?t = 0.1 - см. стр. 166[1];
- ? = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- k? = 1,7 - находим по таблице 8.5[1];
- ?? = 0,65 - находим по таблице 8.8[1];
Тогда:
S? = 194,532 / ((1,7 / (0,65 x 0,97)) x 6,479 + 0,1 x 6,479) = 10,738.
Результирующий коэффициент запаса прочности:
S = S? x S? / (S?2 + S?2)1/2 = 27,874 x 10,738 / (27,8742 + 10,7382)1/2 = 10,02
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
13. Тепловой расчёт редуктора
Для проектируемого редуктора площадь теплоотводящей поверхности А = 0,73 мм2 (здесь учитывалась также площадь днища, потому что конструкция опорных лап обеспечивает циркуляцию воздуха около днища).
По формуле 10.1[1] условие работы редуктора без перегрева при продолжительной работе:
?t = tм - tв = Pтр x (1 - ?) / (Kt x A) ? [?t],
где Ртр = 8,899 кВт - требуемая мощность для работы привода; tм - температура масла; tв - температура воздуха.
Считаем, что обеспечивается нормальная циркуляция воздуха, и принимаем коэффициент теплоотдачи Kt = 15 Вт/(м2xoC). Тогда:
?t = 8899 x (1 - 0,899) / (15 x 0,73) = 82,082o > [?t],
где [?t] = 50oС - допускаемый перепад температур.
Для уменьшения ?t следует соответсвенно увеличить теплоотдающую поверхность корпуса редуктора пропорционально отношению:
?t / [?t] = 82,082 / 50 = 1,642, сделав корпус ребристым.
14. Выбор сорта масла
Смазывание элементов передач редуктора производится окунанием нижних элементов в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение элемента передачи примерно на 10-20 мм. Объём масляной ванны V определяется из расчёта 0,25 дм3 масла на 1 кВт передаваемой мощности:
V = 0,25 x 8,899 = 2,225 дм3.
По таблице 10.8[1] устанавливаем вязкость масла. При контактных напряжениях ?H = 380,784 МПа и скорости v = 2,261 м/с рекомендуемая вязкость масла должна быть примерно равна 30 x 10-6 м/с2. По таблице 10.10[1] принимаем масло индустриальное И-30А (по ГОСТ 20799-75*).
Выбираем для подшипников качения пластичную смазку УТ-1 по ГОСТ 1957-73 (см. табл. 9.14[1]). Камеры подшинпиков заполняются данной смазкой и периодически пополняются ей.
15. Выбор посадок
Посадки элементов передач на валы - Н7/р6, что по СТ СЭВ 144-75 соответствует легкопрессовой посадке.
Посадка муфты на выходной вал редуктора - Н8/h8.
Шейки валов под подшипники выполняем с отклонением вала k6.
Остальные посадки назначаем, пользуясь данными таблицы 8.11[1].
16. Технология сборки редуктора
Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской. Сборку производят в соответствии с чертежом общего вида редуктора, начиная с узлов валов.
На валы закладывают шпонки и напрессовывают элементы передач редуктора. Мазеудерживающие кольца и подшипники следует насаживать, предварительно нагрев в масле до 80-100 градусов по Цельсию, последовательно с элементами передач. Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу. После этого в подшипниковые камеры закладывают смазку, ставят крышки подшипников с комплектом металлических прокладок, регулируют тепловой зазор. Перед постановкой сквозных крышек в проточки закладывают войлочные уплотнения, пропитанные горячим маслом. Проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышку винтами. Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый маслоуказатель. Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой, закрепляют крышку болтами. Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.
Заключение
При выполнении курсового проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение.
Подобные документы
Проектирование и расчет одноступенчатого редуктора с цилиндрической прямозубой зубчатой передачей. Выбор электродвигателя и определение его мощности и частоты вращения. Расчет цилиндрической передачи и валов, проверка подшипников, подбор шпонок и муфты.
курсовая работа [87,7 K], добавлен 07.12.2010Выбор электродвигателя и кинематический расчёт привода. Проверка зубьев передачи на изгиб. Расчёт 2-й зубчатой цилиндрической передачи. Конструктивные размеры шестерен и колёс. Выбор муфт. Построение эпюр моментов на валах. Технология сборки редуктора.
курсовая работа [145,3 K], добавлен 20.01.2011Проектирование привода к ленточному транспортёру. Выбор электродвигателя и кинематический расчет. Расчет зубчатых колёс редуктора. Расчет валов. Конструктивные размеры шестерни и колеса. Расчёт ременной передачи, выбор посадок, сборка редуктора.
курсовая работа [898,8 K], добавлен 24.01.2010Выбор электродвигателя и кинематический расчёт привода. Предварительный расчёт валов редуктора. Конструктивные размеры шестерни и колеса, корпуса редуктора. Расчёт ременной передачи. Подбор подшипников. Компоновка редуктора. Выбор сорта масла, смазки.
курсовая работа [143,8 K], добавлен 27.04.2013Назначение редуктора и особенности его устройства. Признаки классификации редукторов. Энергетический и кинематический расчёты привода. Расчёт зубчатой цилиндрической и открытой конической передач редуктора. Предварительный расчёт валов, выбор муфты.
курсовая работа [355,7 K], добавлен 18.12.2012Выбор электродвигателя, кинематический расчет привода скребкового конвейера. Расчет открытой и закрытой зубчатой передачи. Конструктивные размеры шестерни и колеса. Первый этап компоновки редуктора. Проверка прочности шпоночных соединений. Выбор муфты.
курсовая работа [2,0 M], добавлен 20.04.2016Кинематический расчёт привода и выбор электродвигателя. Расчёт закрытой цилиндрической зубчатой передачи. Конструирование тихоходного вала редуктора. Выбор муфты и расчёт долговечности подшипников. Смазывание зубчатого зацепления, сборка редуктора.
курсовая работа [1,4 M], добавлен 21.09.2013Выбор электродвигателя привода. Расчет основных параметров редуктора, конической и цилиндрической зубчатой передачи. Предварительный и уточненный расчет валов. Конструктивные размеры корпуса. Проверка долговечности подшипников. Этапы компоновки редуктора.
курсовая работа [1,9 M], добавлен 23.10.2011Выбор электродвигателя, кинематические расчеты. Определение вращающего момента на валах редуктора. Расчеты зубчатых колес, валов. Выбор подшипников, муфты, материала; эскизное проектирование. Конструктивные параметры зубчатых колес, корпуса редуктора.
курсовая работа [215,3 K], добавлен 26.06.2016Определение передаточных чисел привода. Выбор материалов и определение допускаемых напряжений. Проектный расчет закрытой цилиндрической зубчатой передачи. Проверочный расчет валов на статическую прочность. Конструктивные размеры элементов редуктора.
курсовая работа [1,5 M], добавлен 03.06.2021