Анализ и синтез механизмов поперечно-строгального станка

Кинематический анализ рычажного механизма в перманентном движении методом планов и методом диаграмм. Определение линейных скоростей точек и угловых скоростей звеньев механизма, его силовой анализ методом кинетостатики. План зацепления зубчатых колес.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 10.09.2012
Размер файла 454,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

Задание на курсовую работу

1. Кинематический и силовой анализ механизма

1.1 Структурный анализ рычажного механизма

1.2 Построение совмещенных планов положений механизма 5

1.3 Кинематический анализ передаточного механизма

1.4 Построение плана скоростей механизма. Определение линейных скоростей точек и угловых скоростей звеньев механизма

1.5 Построение плана ускорений механизма. Определение линейных ускорений точек и угловых ускорений звеньев механизма

1.6 Построение кинематических диаграмм выходного звена

1.7 Силовой анализ механизма

2. Синтез зубчатой передачи

2.1 Геометрический расчет зубчатой передачи

2.2 Построение плана зацепления зубчатых колес

2.3 Проверка правильности графических построений

Список использованной литературы

рычажный механизм кинематический силовой

Задание на курсовую работу

Рычажный механизм поперечно-строгального станка

Основные размеры: lAB = 0.11 м; lBC = 0.58 м; lCD = 0.29 м; lAD = 0.6 м; y = 0.64 м.

Массы звеньев: m1 = 12 кг; m2 = 50 кг; m3 = 38 кг; m5 = 96 кг.

Моменты инерции звеньев: IS1 = 0.35 кг·м2; IS2 = 1.5 кг·м2; IS3 = 1.25 кг·м2.

Сила сопротивления резанию: Pрх = 6800 Н.

Расчетное положение: 3.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Привод станка

1. Кинематический и силовой анализ механизма

Цель работы: провести кинематический анализ рычажного механизма в перманентном движении методом планов и методом диаграмм; выполнить силовой анализ рычажного механизма методом кинетостатики.

1.1 Структурный анализ рычажного механизма

Заданный рычажный механизм содержит стойку и 5 подвижных звеньев, образующих 7 низших кинематических пар

().

Рассчитаем степень свободы механизма по формуле Чебышева:

.

Число степеней свободы механизма равно числу входных звеньев, следовательно, механизм имеет работоспособную структуру.

Производим разложение механизма на структурные группы.

Сначала выделяем группу Ассура 4-5 (рис. 1 а).

Рис. 1. Структурный анализ рычажного механизма

Проверим ее степень свободы:

.

Группа состоит из двух звеньев и, следовательно, относится ко II классу, 2 порядку.

Оставшийся механизм показан на рис. 1 б. Проверяем его работоспособность:

.

Выделяем группу Ассура 2-3 (рис. 1 в) и проверим ее степень свободы:

.

Группа также состоит из двух звеньев и относится ко II классу, 2 порядку.

После выделения этой группы Ассура остается первичный механизм, относящийся к I классу (рис. 1 г).

Таким образом, заданный рычажный механизм состоит из первичного механизма I класса и двух последовательно присоединенных групп Ассура II класса.

Заданный рычажный механизм относится ко II классу.

Составим формулу строения механизма:

I (1) > II (2, 3) > II (4, 5).

1.2 Построение совмещенных планов положений механизма

Для построения планов положений механизма принимаем масштабный коэффициент .

С учетом этого находим размеры звеньев механизма на чертеже:

[мм];

[мм];

[мм];

[мм];

[мм].

[мм]

Сначала на чертежном листе строим планы крайних положений механизма, в которых выходное звено 5 имеет останов. Крайнее положение, предшествующее началу рабочего хода звена 5, принимаем за начальное (нулевое). От нулевого положения делим окружность движения точки B кривошипа на 12 равных частей и нумеруем положения точки B по ходу вращения кривошипа. Затем методом засечек строим в тонких линиях звенья механизма для каждого из 12-ти положений кривошипа. Обводим жирными линиями звенья механизма в расчетном положении (в данном случае во 2-ом положении), условно изображая все кинематические пары. Центры тяжести звеньев S1, S3, S5 обозначаем только в расчетном 2-ом положении. Траекторию движения центра тяжести S3 показываем пунктирной линией.

С чертежа определяем ход (максимальное перемещение) звена 5:

[мм]; [м].

Вылет резца:

[мм]; [м].

Расстояние от точки F звена 5 до центра тяжести S5:

[мм]; [м].

Пользуясь разметкой перемещения точки F, строим диаграмму изменения силы сопротивления для рабочего хода. По оси ординат диаграммы принимаем масштабный коэффициент [Н/мм].

В процессе движения механизма изменяется расстояние от точки C до точки B, значение которого будет использовано в дальнейших расчетах. Поэтому для удобства сведем в таблицу 1.1 значения переменной длины , измеренные с чертежа, переводя их в натуральную величину .

Таблица 1.1. Значения переменного расстояния CB

Положение

0

1

2

3

4

5

6

7

8

9

10

11

, мм

157,9

184,7

205,8

217,9

219,2

209,7

190,6

164,7

137,4

117,4

114,9

131,4

, м

0,474

0,554

0,617

0,654

0,658

0,629

0,572

0,494

0,412

0,352

0,344

0,394

1.3 Кинематический анализ передаточного механизма

Передаточный механизм привода поперечно-строгального станка представляет собой пятиступенчатый зубчатый редуктор. Определим общее передаточное отношение редуктора как произведение передаточных отношений его отдельных ступеней:

Определим частоту вращения выходного вала редуктора:

[об/мин].

Следовательно, и входное звено (кривошип 1) рычажного механизма вращается с частотой n1 = 35 об/мин.

1.4 Построение плана скоростей механизма. Определение линейных скоростей точек и угловых скоростей звеньев механизма

Рассмотрим расчетное (2-е) положение механизма.

Кинематика механизма исследуется в перманентном движении, поэтому угловую скорость кривошипа щ1 считаем постоянной.

Точки A, S1 и C неподвижны, поэтому скорости .

Определяем угловую скорость вращения кривошипа 1 по формуле:

[с-1].

Определяем линейную скорость точки B1 кривошипа 1:

[м/с].

Для построения плана скоростей принимаем масштабный коэффициент . Тогда длина отрезка , изображающего скорость на чертеже, будет равна:

[мм].

Очевидно, что .

Угловую скорость звена 2 определим по формуле:

[с-1].

Для определения скорости точки С звена 3 составим два векторных уравнения:

Решаем их графически, проводя на плане скоростей линии относительных скоростей и до их пересечения в точке с. Затем из плана скоростей находим значения скоростей:

[м/с];

[м/с].

Угловую скорость кулисы 3 определим по формуле:

[с-1].

Направление угловой скорости звена 3 определяется направлением относительной скорости .

Для определения скорости точки E звена 3 составим векторное уравнение:

[м/с].

[мм.].

Для определения скорости точки E5 звена 5 составим два векторных уравнения:

Решаем их графически, проводя на плане скоростей линии относительных скоростей и до их пересечения в точке e5. Затем из плана скоростей находим значения скоростей:

[м/с];

[м/с].

Звено 5 совершает прямолинейное поступательное движение, следовательно, .

1.5 Построение плана ускорений механизма

Точки A, S1 и C неподвижны, поэтому .

Т.к. мы рассматриваем перманентное движение механизма, кривошип 1 вращается с постоянной угловой скоростью, и его угловое ускорение .

Ускорение точки B1 кривошипа 1, совершающего равномерное вращение вокруг неподвижной точки A, будет равно его нормальной составляющей:

[м/с2].

Для построения плана ускорений принимаем масштабный коэффициент . Тогда длина отрезка , изображающего ускорение на чертеже, будет равна [мм].

Найдем ускорение точки С звена 3. Составим 2 уравнения:

Теперь можно найти ускорения и :

[м/с2]

[м/с2]

Для построения на плане скоростей делим на масштабный коэффициент :

[мм]

[мм].

Угловое ускорение звена 2 найдем по формуле:

[с-2]

Графически найдем ускорение . Зная направление ускорения , проводим вспомогательную прямую из точки .

[м/с2]

Найдем :

[м/с2]

По теореме подобия построим ускорения точки. По условию сказано, что точка с находится посередине звена DE. Следовательно, ускорение точки

[мм].

Угловое ускорение звена 3 найдем по формуле:

[с-2]

Из точки проводим вспомогательную линию перпендикулярно звену 5

1.6. Построение кинематических диаграмм выходного звена

Диаграмму перемещения выходного звена 5 строим в первую очередь, т.к. значения перемещения известны в 12-ти положениях механизма. По оси ординат откладываем значения перемещения с учетом масштабного коэффициента [м/мм], а по оси абсцисс откладываем время t. С учетом того, что время одного полного оборота кривошипа представлено на диаграмме отрезком длиной 180 мм, масштабный коэффициент времени

.

Диаграмму скорости выходного звена строим графическим дифференцированием диаграммы перемещения, используя метод касательных.

Задаемся полюсным отрезком интегрирования H1 = 40 мм. Тогда масштабный коэффициент перемещения по оси ординат равен

.

Диаграмму ускорения выходного звена строим графическим дифференцированием диаграммы скорости также методом касательных.

Задаемся полюсным отрезком дифференцирования H2 = 20 мм. Тогда масштабный коэффициент ускорения по оси ординат:

.

1.7 Силовой анализ механизма

Целью силового анализа является определение реакций звеньев в кинематических парах механизма, а также уравновешивающего момента, который уравновешивает систему заданных активных сил и сил инерций. Для силового расчета механизма будем использовать метод кинетостатики.

Рассмотрим расчетное (3-е) положение механизма.

Определяем активные силы, действующие на звенья механизма.

На звенья 1, 2, 3 и 5 действуют силы тяжести, приложенные в соответствующих центрах тяжести звеньев:

На выходное звено 5 на рабочем ходу действует сила полезного сопротивления , значение которой изменяется в соответствии с заданной диаграммой нагрузки, а на холостом ходу - постоянная сила сопротивления = 0 [Н]. Расчетное (3-е) положение механизма соответствует рабочему ходу, поэтому, согласно диаграмме, принимаем [Н].

Определим инерционную нагрузку, действующую на звенья механизма. Совокупность сил инерции, действующих на каждое отдельное звено, приводим к главному вектору и главному моменту сил инерции этого звена.

Сначала рассчитаем главные векторы сил инерции звеньев:

, т.к. центр тяжести S1 неподвижен;

[Н]; [Н].

[Н].

Главные векторы сил инерции направлены противоположно векторам ускорений центров тяжести соответствующих звеньев.

Рассчитаем главные моменты сил инерции звеньев:

[Н·м];

[Н·м];

[Н·м].

Главные моменты сил инерции направлены противоположно угловым ускорениям соответствующих звеньев.

Согласно принципу Даламбера, заданный рычажный механизм можно формально рассматривать находящимся в состоянии равновесия под действием приложенных активных сил, инерционных сил, и уравновешивающего момента Mур, который, по сути, является реактивным моментом, действующим на вал входного звена 1 со стороны выходного вала редуктора.

Разделим механизм на группы Ассура и входное звено, заменив отброшенные связи (т.е. звенья) реакциями, и поочередно рассмотрим их равновесие.

Для удобства и наглядности решения задачи изображаем на чертежном листе группы Ассура и входное звено с масштабным коэффициентом и показываем направления всех сил, приложенных к звеньям.

Сначала рассмотрим группу Ассура 4-5. Составляем векторное уравнение равновесия системы сил, действующих на звенья группы:

Рассмотрим отдельно звено 4 (рис. 2).

Рис. 2. Схема нагружения кулисного камня 4

Вводим вспомогательную локальную систему координат xDy и составляем три уравнения равновесия звена 4:

Из первого уравнения следует, что . Из третьего уравнения следует, что x2 = 0, следовательно, вектор реакции проходит через точку D.

Строим план сил группы Ассура 4-5 согласно векторному уравнению. Принимаем масштабный коэффициент .

Рассчитываем длины отрезков, изображающих векторы сил на плане сил:

[мм];

[мм];

[мм].

Решение уравнения на плане сил получаем, проводя линии действия неизвестных реакций и до их пересечения. Реакцию во внутренней кинематической паре группы найдем из условия равновесия звена 5:

Т.к. в этом уравнении известны все силы, кроме искомой реакции , то её вектор можно построить замыканием четырех известных векторов сил на плане сил.

После построения плана сил из него можно найти:

[Н];

[Н];

[Н].

Для определения координаты точки приложения равнодействующей реакции составим уравнение равновесия звена 5 в виде:

;

[м].

Рассматриваем следующую группу Ассура 2-3.

Составляем векторное уравнение равновесия группы:

Рассмотрим отдельно звено 2 (рис. 3).

Рис. 3. Схема нагружения звена 2

Вводим вспомогательную локальную систему координат xCy и составляем три уравнения равновесия звена 2:

Величину реакции можно определить, составив уравнение равновесия группы в целом:

;

Рассмотрим звено 3

Запишем уравнение равновесия для 3-го звена

Величину реакции можно определить, составив уравнение равновесия в целом:

[Н].

Строим план скоростей группы Ассура 2-3 согласно векторному уравнению. Принимаем масштабный коэффициент

Рассчитываем длины отрезков, изображающих векторы сил на плане сил:

[мм];

[мм];

[мм]; (т.к. величина получилась малой, то ей можно пренебречь)

[мм];

[мм]; (т.к. величина получилась малой, то ей можно пренебречь)

[мм];

После построения плана сил находим

Рассмотрим равновесие входного звена механизма.

Запишем векторное уравнение равновесия:

Строим план сил входного звена 1 согласно векторному уравнению. Принимаем масштабный коэффициент .

Длины отрезков, изображающих векторы сил на плане сил:

[мм];

[мм].

В уравнении равновесия известны все силы, кроме , поэтому её можно легко построить замыканием многоугольника сил.

После построения плана сил из него находим:

[Н].

Для определения величины уравновешивающего момента запишем уравнение равновесия моментов входного звена в виде:

;

[Н·м].

2. Синтез зубчатой передачи

Цель работы: рассчитать основные геометрические параметры нулевой эвольвентной цилиндрической зубчатой передачи и построить план зацепления зубчатых колес.

2.1 Геометрический расчет зубчатой передачи

Согласно ГОСТ 13755-68 принимаем параметры исходного контура:

- коэффициент высоты головки зуба ;

- коэффициент радиального зазора ;

- угол исходного контура ;

- радиус скругления головки зуба рейки .

Определим следующие геометрические параметры:

а) делительный шаг зубьев:

[мм];

б) радиусы делительных окружностей:

[мм];

[мм];

в) радиусы основных окружностей:

[мм];

[мм];

г) угол зацепления равен стандартному углу исходного контура, т.к. передача нулевая:

бw = б = 20є;

д) межосевое расстояние (нулевой передачи):

[мм];

е) радиусы начальных окружностей в нулевой передаче:

[мм];

[мм];

ж) делительная высота ножек зубьев:

[мм];

[мм];

з) делительная высота головок зубьев:

[мм];

[мм];

и) полная высота зубьев колес:

[мм];

[мм];

к) радиусы окружностей вершин зубьев колес:

[мм];

[мм];

л) радиусы окружностей впадин зубьев колес:

[мм];

[мм];

м) делительная ширина впадин зубьев нулевых колес:

[мм];

[мм];

н) делительная толщина зубьев нулевых колес:

[мм];

[мм];

о) углы давления эвольвент зубьев на окружности вершин:

[рад];

[рад];

п) инволюты углов давления профилей зубьев на окружности вершин:

р) толщины зубьев колес на окружности вершин:

[мм];

[мм];

с) коэффициент перекрытия передачи (торцовый):

;

т) ориентировочное значение коэффициента потерь на трение в зубчатом зацеплении:

,

где f = 0,1 - коэффициент трения скольжения в зацеплении стальных колес (при наличии смазки).

у) ориентировочное значение к.п.д. зубчатой передачи (без учета потерь в подшипниках):

.

2.2 Построение плана зацепления зубчатых колес 1 и 2

Для построения плана эксплуатационного зацепления на чертежном листе принимаем масштабный коэффициент .

На чертеже изображаем зубчатые колеса в положении, когда точка контакта взаимодействующей пары зубьев совпадает с полюсом зацепления P.

Показываем теоретическую линию зацепления N1N2, а также ее активную часть AB.

На профилях соприкасающихся зубьев выделяем рабочие участки a1b1 и a2b2, соответствующие активной части AB линии зацепления.

Активную часть AB линии зацепления разбиваем на 5 равных участков, граничные точки которых обозначаем 1, 2, 3, 4. Соответственно этим точкам на рабочих участках профилей отмечаем пары сопряженных точек; затем выделяем сопряженные участки профилей.

2.3 Проверка правильности графических построений

С целью проверки правильности графических построений выполним следующие проверки.

Проверка по толщине зуба на окружности вершин:

с чертежа [мм];

;

с чертежа [мм];

.

Проверка по коэффициенту перекрытия:

,

где мм - шаг зубьев по нормали (расстояние между одноименными эвольвентными профилями двух соседних зубьев любого из колес, измеренное по линии зацепления);

.

Все погрешности не превышают 5%, следовательно, можно сделать вывод, что план зацепления построен с удовлетворительной точностью.

Список использованной литературы

1. Авдеев В.А. Синтез цилиндрической зубчатой передачи по качественным характеристикам: учеб. пособие. - Саратов: Изд-во СПИ, 1975. - 42 с.

2. Артоболевский И.И. Теория механизмов и машин. - 4-е изд., перераб. и доп. - М.: Наука, 1988. - 640 с.

3. Кореняко А.С., Кременштейн Л.И., Петровский С.Д., Овсиенко Г.М., Баханов В.Е. Курсовое проектирование по теории механизмов и машин / Под ред. А.С. Кореняко. - 4-е изд., перераб. и доп. - М.: Альянс, 2009. - 332 с.

4. Курсовое проектирование по теории механизмов и машин / Под общ. ред. Г.Н. Девойно. - Мн.: Высшая школа, 1986. - 286 с.

5. Машков А.А. Теория механизмов и машин. - Минск: Вышейш. шк., 1971. - 471 с.

6. Попов С.А., Тимофеев Г.А. Курсовое проектирование по теории механизмов и механике машин: учеб. пособие для втузов. - М.: Высшая школа, 2004. - 458 с.

7. Смелягин А.И. Теория механизмов и машин. Курсовое проектирование: учеб. пособие. - М.: ИНФРА-М; Новосибирск: Изд-во НГТУ, 2006. - 263 с.

8. Теория механизмов и машин: учеб. пособие для студ. высш. учеб. заведений / [М.З. Коловкий, А.Н. Евграфов, Ю.А. Семёнов, А.В. Слоущ]. - 2-е изд., испр. - М.: Издательский центр «Академия», 2008. - 560 с.

9. Теория механизмов и механика машин : учебник для студ. высш. техн. учеб. заведений / [К.В. Фролов, С.А. Попов, А.К. Мусатов и др.]; под ред. К.В. Фролова. - 5-е изд., стер. - М.: Высшая школа, 2005. - 496 с.

1. Размещено на www.allbest.ru


Подобные документы

  • Синтез, структурный и кинематический анализ рычажного механизма. Построение планов положений механизма. Определение линейных скоростей характерных точек и угловых скоростей звеньев механизма методом планов. Синтез кулачкового и зубчатого механизмов.

    курсовая работа [709,2 K], добавлен 02.06.2017

  • Определение положений, скоростей и ускорений звеньев рычажного механизма и их различных точек. Исследование движения звеньев методом диаграмм, методом планов или координат. Расчет усилий, действующих на звенья методом планов сил и рычага Жуковского.

    курсовая работа [2,8 M], добавлен 28.09.2011

  • Структурный анализ рычажного механизма. Кинематическое исследование рычажного механизма графо-аналитическим методом. Определение скоростей и ускорений шарнирных точек, центров тяжести звеньев и угловых скоростей звеньев. Силовой расчёт устройства.

    курсовая работа [800,0 K], добавлен 08.06.2011

  • Рычажный механизм перемещения резца поперечно-строгального станка. Построение кинематических диаграмм выходного звена. Определение линейных ускорений точек и угловых ускорений звеньев механизма. Построение совмещенных планов положений механизма.

    курсовая работа [478,0 K], добавлен 30.06.2012

  • Определение степени подвижности плоского механизма. Основные задачи и методы кинематического исследования механизмов. Определение скоростей точек механизма методом планов скоростей и ускорений. Геометрический синтез прямозубого внешнего зацепления.

    курсовая работа [111,6 K], добавлен 17.03.2015

  • Структурный анализ механизма, определение угловых скоростей и ускорений звеньев. Силовой анализ рычажного механизма, определение сил инерции, расчет кривошипа. Геометрический расчет зубчатой передачи, проектирование планетарного и кулачкового механизмов.

    курсовая работа [387,7 K], добавлен 08.09.2010

  • Структурный и кинематический анализ механизма инерционного конвейера. Определение скоростей, ускорений всех точек и звеньев механизма методом планов. Синтез рычажного механизма. Расчет реакций в кинематических парах и сил, действующих на звенья механизма.

    курсовая работа [314,9 K], добавлен 04.04.2014

  • Структурный анализ рычажного механизма. Его кинематический анализ методом графического дифференцирования: определение скоростей звеньев, ускорений точек. Определение реакций в кинематических парах, и уравновешивающей силы методом Н.Е. Жуковского.

    курсовая работа [42,4 K], добавлен 18.04.2015

  • Кинематический и силовой анализ рычажного механизма поперечно-строгального станка. Методика определения уравновешивающей силы методом рычага Жуковского. Особенности проектирования планетарного редуктора. Анализ комбинированного зубчатого механизма станка.

    курсовая работа [114,4 K], добавлен 01.09.2010

  • Анализ кинематических пар механизма, его структурные составляющие. Определение скоростей точек и угловых скоростей звеньев. Силовой анализ механизма. Построение диаграммы работ сил сопротивления и момента инерции методом графического интегрирования.

    курсовая работа [136,6 K], добавлен 16.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.