Процесс кристаллизации металла

Параметры процесса кристаллизации, их влияние на величину зерна кристаллизующегося металла. Влияние явления наклепа на эксплуатационные свойства металла. Диаграмма состояния железо-цементит. Закалка металла, состав, свойства и применение бороволокнитов.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 12.12.2011
Размер файла 79,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Процесс кристаллизации металла

1. Параметры процесса кристаллизации, и их влияние на величину

зерна кристаллизующегося металла

Любое вещество может находиться в трех агрегатных состояниях - газообразном, жидком и твердом. Изменение агрегатного состояния происходит при определенных температурах. Температура перехода зависит от давления, но при постоянном давлении они вполне определенны. Переход металла из жидкого состояния в твердое с образованием кристаллической структуры называется первичной кристаллизацией. Плавление - процесс, обратный кристаллизации.

В природе все самопроизвольно протекающие превращения (кристаллизация и плавление) обусловлены тем, что новые состояния в новых условиях являются энергетически более устойчивыми, обладают меньшим запасом энергии.

Энергетическое состояние системы, имеющее огромное число охваченных тепловым движением частиц (атомов, молекул), характеризуется особой термодинамической функцией F, называемой свободной энергией. В условиях постоянного давления:

F = U-TS,1

где - U - внутренняя энергия системы (вещества) - полная энергия, равная сумме кинетической и потенциальной энергии частиц, составляющих данную систему;

Т -

Чем больше свободной энергии системы, тем система менее устойчива. С изменением внешних условий свободная энергия системы изменяется по сложному закону, но различно для жидкого и кристаллического состояний. Схематический характер изменения свободной энергии жидкого и твердого состояний в зависимости от температуры показан на рис. 1.

Рис.1. Изменение свободной энергии жидкого (1) и кристаллического (2) состояний в зависимости от температуры

Из графика видно, что при температуре Тs свободные энергии жидкого и твердого состояний равны, металл находится в равновесии. Тs - равновесная или теоретическая температура кристаллизации, при которой Fж = Fтв. Для начала кристаллизации необходимо уменьшение свободной энергии системы. Охлаждение жидкости ниже равновесной температуры кристаллизации называется переохлаждением. Разница между равновесной Тs и реальной Тк температурой кристаллизации называется степенью переохлаждения ?Т. Степень переохлаждения зависит от природы металла, она увеличивается с повышением частоты металла и ростом скорости охлаждения. Процесс перехода металла из жидкого состояния в кристаллическое можно изобразить кривыми в координатах «время-температура» (рис. 2).

Рис. 2 Кривые охлаждения при кристаллизации

Охлаждение металла в жидком состоянии сопровождается плавным понижением температуры. При достижении температуры кристаллизации на кривой «температура-время» появляется горизонтальная площадка, так как отвод тепла компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации. Жидкий металл обладает большей внутренней энергией, чем твердый, поэтому при кристаллизации выделяется теплота. По окончании кристаллизации, температура снова начинает снижаться и твердое кристаллическое вещество охлаждается. По мере развития процесса кристаллизации в нем участвует все большее и большее число кристаллов. Поэтому процесс вначале ускоряется, пока в какой-то момент взаимное столкновение растущих кристаллов не начинает заметно препятствовать их росту; рост кристаллов замедляется. Тем более, что и жидкости, в которой образуются новые кристаллы, становится все меньше.

В процессе кристаллизации, пока кристалл окружен жидкостью, он имеет правильную форму, но при столкновении и срастании кристаллов их правильная форма нарушается, внешняя форма оказывается в зависимости от условий соприкосновения растущих кристаллов. Кристаллы неправильной формы называются кристаллитами или зернами. Скорость процесса и окончательный размер кристаллов при затвердевании определяется соотношением между скоростью образования центров кристаллизации и скоростью роста кристаллов (рис. 3.).

Рис. 3. Изменение скорости образования зародышей Vз и скорости роста кристаллов Vр в зависимости от степени переохлаждения ?Т

При небольших степенях переохлаждения, когда зародыш критического размера велик, а скорость образования зародышей мала, при затвердевании образуется крупнокристаллическая структура. Чем больше степень переохлаждения, тем больше центров кристаллизации и меньше размер зерна. Чем мельче зерно, тем выше механические свойства сплава.

Небольшие степени переохлаждения достигаются при заливке жидкого металла в форму с низкой теплопроводностью (земляная, шамотовая) или в подогретую металлическую форму. Увеличение переохлаждения происходит при заливке жидкого металла в холодные металлические формы, а также при уменьшении толщины стенок отливок. Поскольку при этом скорость образования зародышей увеличивается более интенсивно, чем скорость их роста, получается более мелкий кристалл.

В реальных условиях процессы кристаллизации и характер образующейся структуры в значительной мере зависят от имеющихся центров кристаллизации. Такими центрами являются частицы тугоплавких неметаллических включений, оксидов, интерметаллических соединений, образуемых примесями. При кристаллизации атомы металла откладываются на активированные поверхности примеси как на готовом зародыше.

Наличие готовых центров кристаллизации приводит к уменьшению размеров кристалла при затвердевании. Рост зерна чаще всего происходит по дендритной схеме. Это связано с тем, что развитие зародышей протекает главным образом в тех направлениях решетки, которые имеют наибольшую плотность упаковки атомов и минимальное расстояние между ними. В этих направлениях образуются ветви - оси первого порядка I. От осей первого порядка начинают расти оси второго порядка II, от них - оси третьего порядка III и т.д.

2. Сущность явления наклепа и его влияние на эксплутационные

свойства металла

Если нагрузка не превысила точки А(условный редел текучести), то после её устранения изменение в металле не произойдёт, но если нагрузка превысила предел текучести и напряжения, например, были равны ?1, то после снятия нагрузки останется деформация, равная а. Если затем опять

Рис. 4. Изменение деформации в зависимости от напряжений

Нагружать металл, то способность его к пластической деформации уменьшится, предел текучести повысится до значения ?1; т.е. чтобы вызвать пластическую деформацию, следует приложить большие напряжения. Это значит, что металл стал прочнее. Упрочнение металла под действием пластической деформации называется наклёпом, или нагартовкой.

Пластическая деформация вносит существенные изменения в строение металла. кристаллизация металл наклеп закалка

Кристаллическая структура пластичеки деформированного металла характеризуется не только искажением кристаллической решётки, но и определённой ориентировкой зёрен - текстурой.

Беспорядочно ориентированные кристаллы под действием деформации поворачиваются осями наибольшей прочности вдоль направления деформации.

Т.о., пластическая деформация вызывает изменение внутреннего строения зерна и его формы, а после определённой величины и уменьшения плотности из-за образования несплошностей. Пластическая деформация приводит металл в структурно неустойчивое состояние.

3. Диаграмма состояния железо-цементит

Диаграмма состояния железо-цементит, структурные составляющие во всех областях диаграммы; превращения и кривая охлаждения с применением правила фаз) для сплава, содержащего 3,3% С.

Рис. 5. Диаграмма «Железо-углерод (цементит)»

Основными компонентами диаграммы являются железо и углерод. Температура плавления железа 1539 0С. В твердом состоянии может находиться в двух модификациях ? (ОЦК-решетка) и ? (ГЦК-решетка). Модификация Fe? существует при температурах до 9110 и от 13920 до 15390С. Важной особенностью Fe? является его ферромагнетизм ниже температуры 7680С, (точка Кюри).

Модификация Fe? существует в интервале температур от 9110 до 13920С.

Железо с углеродом образует растворы внедрения. Растворимость углерода в железе зависит от температуры и от того, в какой кристаллической форме существует железо.

Твердый раствор углерода в ?-Fe называется ферритом; в ?-Fe- аустенитом.

Содержание углерода в диаграмме Fe-C ограничивается 6,67%, т.к. при этой концентрации образуется химическое соединение Fe3C - цементит.

В системе Fe - Fe3C происходят три изотермических превращения:

- t - 14990 С, линия HIB - перитектическое превращение.

ФН + ЖВ > АI;

- t - 11470 С, линия ECF - эвтектическое превращение

ЖС > АЕ + Ц;

- t - 7270 С, линия PSK - эвтектоидное превращение

АS > ФР + Ц > П.

4. Что такое закалка?

Температура нагрева под закалку стали 50 и У12 на диаграмме состояния железо цементит, температуру нагрева под закалку стали 50 и У12. Превращения, происходящие в сталях при выбранном режиме обработки, получаемую структуру и свойства.

Закалка - это термическая обработка, при которой в результате быстрого охлаждения образуется неравновесная структура. Существует закалка без полиморфного превращения и закалка с полиморфным превращением.

Закалка с полиморфным превращением - это термическая обработка металлов и сплавов, при которой происходит мартенситное превращение высокотемпературной фазы. Эта закалка применима к металлам и сплавам, в которых при охлаждении перестраивается кристаллическая решетка.

Непрерывная закалка - наиболее простой способ закалки. Деталь после нагрева помещают в закалочную среду и оставляют в ней до полного охлаждения. Способ применяют при закалке несложных изделий из углеродистых и легированных сталей. Закалочной средой для углеродистых сталей диаметром более 5 мм служит вода, для сталей углеродистых диаметром менее 5 мм и легированных - масло.

5. Боровокниты. Состав, свойства и область применения.

Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя -- борных волокон. Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости, теплопроводностью и электропроводимостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей. Помимо непрерывного борного волокна применяют комплексные боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей облегчает технологический процесс изготовления материала. В качестве матриц для получения бороволокнитов используют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200°С; КМБ-3 и КМБ-Зк не требуют высокого давления при переработке и могут работать при температуре не свыше 100°С; КМБ-2к работоспособен при 300°С.

Размещено на Allbest.ru


Подобные документы

  • Агрегатные состояния вещества: твёрдое, жидкое и газообразное; переход между ними. Термодинамические условия и схема кристаллизации металла. Свободная энергия металла в жидком и твердом состоянии. Энергия металла при образовании зародышей кристалла.

    контрольная работа [1,5 M], добавлен 12.08.2009

  • Различные режимы термомеханической обработки стали. Поверхностное упрочнение стальных деталей. Закалка токами высокой частоты. Газопламенная закалка и старение металла. Обработка стали холодом. Упрочнение металла методом пластической деформации.

    презентация [546,9 K], добавлен 14.10.2013

  • Источники энергии для сварки, их классификация, виды и требования к ним. Особенности и этапы кристаллизации металла в сварочной ванне. Рафинирование металла при сварке плавлением, основные факторы, влияющие на скорость и эффективность данного процесса.

    контрольная работа [203,2 K], добавлен 23.10.2014

  • Особенности сгибания заготовок из тонколистового металла в тисках и при помощи оправок, поочередность всех операций, характеристика инструментов. Анализ типичных дефектов при гибке металла. Этапы гибки прямоугольной скобы и металла круглого сечения.

    презентация [399,9 K], добавлен 16.04.2012

  • Изменение термодинамического потенциала твердого и жидкого металла. Механизм и закономерности кристаллизации металлов. Зависимость параметров кристаллизации от степени переохлаждения. Получение мелкозернистой структуры. Строение металлического слитка.

    презентация [358,7 K], добавлен 14.10.2013

  • Наиболее значимые для человека свойства металлов. Место металла в культурном развитии человечества. Использование различных свойств металла современным человеком. Значение металлопроката в отраслях промышленности. Круг отрезной для резки металла.

    презентация [8,7 M], добавлен 22.01.2014

  • Изучение процесса кристаллизации металлов и определение влияния степени переохлаждения на величину зерна металла. Характеристики магнитных материалов: коэрцитивная сила, магнитная и остаточная индукция. Исследование процесса и операций свободной ковки.

    контрольная работа [393,4 K], добавлен 15.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.